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Abstract

We develop the Cauchy theory of the spatially homogeneous inelastic
Boltzmann equation for hard spheres, for a general form of collision rate
which includes in particular variable restitution coefficients depending on the
kinetic energy and the relative velocity. It covers physically realistic models
for granular materials. We prove (local in time) non-concentration estimates
in Orlicz spaces, from which we deduce weak stability and existence theorem.
Strong stability together with uniqueness is proved under additional smooth-
ness assumption on the initial datum, for a restricted class of collision rates.
Concerning the long-time behaviour, we give conditions for the cooling process
to occur or not in finite time.
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1 Introduction and main results

In this paper we address the Cauchy problem for the spatially homogeneous Boltz-
mann equation modelling the dynamic of a homogeneous system of inelastic hard
spheres which interact only through binary collisions. More precisely, describing the
gas by the probability density f(t, v) ≥ 0 of particles with velocity v ∈ RN (N ≥ 2)
at time t ≥ 0, we study the existence and the qualitative behaviour of solutions to
the Boltzmann equation for inelastic collision

∂f

∂t
= Q(f, f) in (0,+∞)× RN ,(1.1)

f(0, ·) = fin in RN .(1.2)

The use of Boltzmann inelastic hard spheres-like models to describe dilute, rapid
flows of granular media started with the seminal physics paper [17], and a huge
physics litterature has developped in the last twenty years. The study of granular
systems in such regime is motivated by their unexpected physical behavior (with the
phenomena of collapse –or “cooling effect”– at the kinetic level and clustering at the
hydrodynamical level), their use to derive hydrodynamical equations for granular
fluids, and their industrial applications.

From the mathematical viewpoint, works on the Cauchy problem for these mod-
els have been first restricted to the so-called inelastic Maxwell model, which is an
approximation where the collision rate is replaced by a mean value independent
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on the relative velocity (see [6] for instance). This simplified model is important
because of its analytic simplifications allowing to use powerful Fourier transform
tools. Nevertheless, although it is possible to modify the collision operator by a
multiplication by a function of the kinetic energy in order to restore its dimensional
homogeneity (see [6] for this pseudo-Maxwell molecules model), fine properties of
the distribution (such as overpopulated tails or self-similar solutions) are broken or
modified by the approximation. Another simplification which has lead to interesting
results is the restriction to one-dimensional models (in space and velocity) (see [2],
[27] and [3]), where, on the contrary to the elastic case, the collision operator has a
non-trivial outcome. Also the recent papers [13, 7] have studied the case of inelastic
hard spheres in various regimes (for instance in a thermal bath, i.e. when a heat
source term is added to the equation) in any dimension. Another common major
physical simplification is to deal with constant restitution coefficients. This choice,
while reasonnable from the viewpoint of the mathematical complexity of the model,
appears inadequate to describe the whole variety of behaviors of these materials
(see the discussion and models in [6] and [27] and the references therein). Lately
the work [6] has considered some cases of restitution coefficients possibly depending
on the kinetic energy of the solution, and the works [27], [3] have considered some
cases of restitution coefficients depending on the relative velocity.

In this work, we shall construct solutions to the freely cooling Boltzmann equa-
tion for hard spheres in any dimension N ≥ 2 and for a general framework of
measure-valued inelasticity coefficients which covers in particular variable restitu-
tion coefficients possibly depending on the relative velocity and the kinetic energy
of the solution. Our framework enables to consider interesting physical features,
such as elasticity increasing when the relative velocity or the temperature decrease
(“normal” granular media) or the opposite phenomenon (“anomalous” granular me-
dia). Let us emphasize that these solutions are new even in the case of a constant
restitution coefficient. We also discuss various conditions on the collisions rate for
the collapse to occur or not in finite time. A second part of this work [22] will be
concerned with the existence of self-similar solutions and the tail behavior of the
distribution.

Before we explain our results and methods in detail, let us introduce the problem.

1.1 A general framework for the collision operator

The bilinear collision operator Q(f, f) models the interaction of particles by means
of inelastic binary collisions (preserving mass and total momentum but dissipating
kinetic energy). We denote by B the rate of occurance of collision of two particles
with pre-collisional velocities v and v∗ which gives rise to post-collisional velocities
v′ and v′∗. The collision may be schematically written

{v}+ {v∗}
B−→ {v′}+ {v′∗} with


v′ + v′∗ = v + v∗

|v′|2 + |v′∗|2 < |v|2 + |v∗|2.
(1.3)
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More precisely, we define the collision operator by its action on test functions
(which is related to the observables of the probability density). Taking ϕ = ϕ(v) to
be some well-suited regular function, we introduce the following weak formulation
of the collision operator

〈Q(f, f), ϕ〉 :=
1

2

∫
RN

∫
RN

f∗ f

∫
D

(ϕ′∗ + ϕ′ − ϕ− ϕ∗)B(E , v − v∗; dz) dv dv∗(1.4)

where D := {u ∈ RN ; |u| ≤ 1}. Here and below we use the shorthand notations
ψ = ψ(v), ψ∗ = ψ(v∗), ψ

′ = ψ(v′) and ψ′∗ = ψ(v′∗) for any function ψ on RN . For
any z ∈ D and v, v∗ ∈ RN we define

v′ = (v + v∗)/2 + z |v∗ − v|/2

v′∗ = (v + v∗)/2− z |v∗ − v|/2,
(1.5)

which is nothing but a parametrization, for any fixed pre-collisional particles {v, v∗},
of all possible resulting post-collisional particles {v′, v′∗} in (1.3). Finally, E is the
kinetic energy of the distribution f , defined by

E :=

∫
RN

f |v|2 dv.

The collision rate B is the product of the norm of the relative velocity by the
collisional cross section, B = |v − v∗| b, reflecting the fact that we are dealing with
hard spheres which undergo contact interactions. The collisional cross section b is
a non-negative measure on D, depending on the kinetic energy E , and on the pre-
collisional velocities v, v∗. It depends on the velocity only through v−v∗ by Gallilean
invariance. The non-negative real |z| is the restitution coefficient which measures
the loss of energy in the collision, since

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1

2
(1− |z|2) |v∗ − v|2 ≤ 0.(1.6)

In the above formula, |z| = 1 corresponds to an elastic collision while z = 0 corre-
sponds to a completely inelastic collision (or sticky collision). In the sequel we shall
denote u = v−v∗ the relative velocity, and for a vector x ∈ RN\{0}, we shall denote
x̂ = x/|x|.

A first simple consequence of the definition of the operator (1.4) and of the
parametrization (1.5) is that mass and momentum are conserved

d

dt

∫
RN

f

(
1
v

)
dv = 0,

a fact that we easily derive (at least formally), multiplying the equation (1.1) by
ϕ = 1 or ϕ = v and integrating in the velocity variable (using (1.4)). In the same
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way, multiplying equation (1.1) by ϕ = |v|2, integrating and using (1.6), we obtain
that the kinetic energy is dissipated

d

dt
E(t) = −D(f) ≤ 0,(1.7)

where we define the energy dissipation functional D and the energy dissipation rate
β, which measures the (averaged) inelasticity of collisions, by

D(f) :=

∫
RN

∫
RN

f f∗ |u|3 β(E , u) dv dv∗

β(E , u) :=
1

4

∫
D

(1− |z|2) b(E , u; dz) ≥ 0.

Finally, we introduce the cooling time, associated to the process of cooling (pos-
sibly in finite time) of granular gases:

Tc := inf{T ≥ 0, E(t) = 0 ∀ t > T} = sup{S ≥ 0, E(t) > 0 ∀ t < S}.(1.8)

This cooling effect (or collapse) is one of the main motivations for the physical and
mathematical study of granular media.

The Boltzmann equation (1.1) is complemented with an initial condition (1.2)
where the initial datum is supposed to satisfy the moment conditions

0 ≤ fin ∈ L1
q(RN),

∫
RN

fin dv = 1,

∫
RN

fin v dv = 0(1.9)

for some q ≥ 2. Notice that we can assume without loss of generality the two last
moment conditions in (1.9), since we may always reduce to that case by a scalling
and translation argument. Here we denote, for any integer q ∈ N, the Banach space

L1
q =

{
f : RN −→ R measurable; ‖f‖L1

q
:=

∫
RN

|f(v)| (1 + |v|q) dv <∞
}
.

We also define the weighted Sobolev spaces W k,1
q (q ∈ R and k ∈ N) by the norm

‖f‖W k,1
q

=
∑
|s|≤k

‖∂sf (1 + |v|q)‖L1 .

We introduce the space of normalized probability measures on RN , denoted by
M1(RN), and the space BVq(RN) (q ∈ R) of Bounded Variation functions, defined
as the set of the weak limits in D′(RN) of sequences of smooth functions which are
bounded in W 1,1

q (RN). Throughout the paper we denote by “C” various constants
which do not depend on the collision rate B.
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1.2 Mathematical assumptions on the collision rate

Let us state the basic assumptions on the collision rate B:

• B takes the form
B = B(E , u; dz) = |u| b(E , u; dz),(1.10)

where b is a finite measure on D for any E , u. This measure b satisfies the
following properties:

• It satisfies the symmetry property

b(E , u; dz) = b(E ,−u,−dz).(1.11)

• For any ϕ ∈ Cc(RN) the function

(v, v∗, E) 7→
∫

D

ϕ(v′) b(E , u; dz)(1.12)

is continuous.

• There exists a continuous function α : (0,∞) → (0,∞), which measures the
intensity of interactions, such that

∀u ∈ RN , E > 0 α(E) =

∫
D

b(E , u; dz).(1.13)

For the energy coupled models we will need the following additional assumption:

• The measure b satisfies the following angular spreading property: for any
E > 0, there is a function jE(ε) ≥ 0, going to 0 as ε→ 0, such that

∀ ε > 0, u ∈ RN

∫
{|û·z|∈[−1,1]\[−1+ε;1−ε]}

b(E , u; dz) ≤ α(E) jE(ε).(1.14)

Moreover we assume that this convergence is uniform according to E when it
is restricted to a compact set of (0,+∞).

For the uniqueness of the energy coupled models, we shall need the following
assumption

H1. The cross-section b reduces to a measure on the sphere

Cu,e =
1− e

2
û+

1 + e

2
SN−1,(1.15)

where e : (0,∞) → [0, 1], E 7→ e(E) depends only on the kinetic energy, and
α = α(E) and e = e(E) are locally Lipschitz on (0,+∞). Morerover, b is
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assumed to be absolutely continuous according to the Hausdorff measure on
Cu,e, and thus writes

b(E , u; dz) = δ{z=(1−e)û/2+(1+e)σ/2} b̃(E , |u|, û · σ) dσ(1.16)

where dσ is the uniform measure on the unit sphere, and b̃ is a non-negative
measurable function.

In the study of the cooling process, we always assume:

H2. The energy dissipation rate β(E , u) in (1.8) is continuous on (0,+∞) × RN

and satisfies
β(E , u) > 0 ∀u ∈ RN , E > 0.(1.17)

We will also need one of the two following additional assumptions:

H3. For any E0, E∞ ∈ (0,∞) (with E0 ≥ E∞) there exists ψ such that

β(E , u) ≥ ψ(|u|) ∀ E ∈ (E∞, E0), ∀u ∈ RN ,(1.18)

with ψ ∈ C(R+,R+) and such that for any R > 0 there exists ψR > 0,

ψ(|u|) ≥ ψR |u|−1 ∀u ∈ RN , |u| > R/2.(1.19)

This assumption is quite natural. In particular, it holds for a ”normal” gran-
ular media.

H4. The cross-section b reduces to a measure on the sphere Cu,e and it is absolutely
continuous according to the Hausdorff measure, where e : (0,∞) × (0,∞) →
[0, 1], (E , |u|) 7→ e(E , |u|) is a continuous function. In particular, (1.16) holds.
Moreover we assume that for any given E and |u|, the function z 7→ b̃(E , |u|, z)
is non-negative, nondecreasing and convex on (−1, 1).

The fact that b is a finite measure onD allows to define the splittingQ = Q+−Q−

where Q+ and Q− are defined in dual form by

〈Q+(g, f), ϕ〉 :=

∫
RN

∫
RN

g∗ f

∫
D

ϕ′ |u| b(E , u; dz) dv dv∗(1.20)

and

〈Q−(g, f), ϕ〉 :=

∫
RN

∫
RN

g∗ f

∫
D

ϕ |u| b(E , u; dz) dv dv∗.(1.21)

A straightforward computation shows that it is possible to give a very simple strong
form of Q− as follows

Q−(g, f) = L(g) f(1.22)
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where L is the convolution operator

L(g)(v) := α(E)

∫
RN

g(v∗) |v − v∗| dv∗.(1.23)

Under assumption H4, the expression of Q+ reduces to

〈Q+(g, f), ϕ〉 :=

∫
RN

∫
RN

g∗ f |u|
∫

SN−1

ϕ′ b̃(E , |u|, û · σ) dσ dv dv∗.(1.24)

We refer to [6] for physical motivations for the case when e = e(E) and to [27] for
the case when e = e(|u|). Under assumption H4 and when one assumes that b̃ only
depends on û · σ, the energy dissipation rate just writes

β(E , u) = CN (1− e2),(1.25)

where CN is a constant depending on the dimension.

We note that the classical Boltzmann collision operator for inelastic hard spheres
with a constant normal restitution coefficient e ∈ [0, 1], as studied for instance
in [6] and [13], is included as a particular case of our model, and satisfies all the
assumptions above. But the formalism (1.4)–(1.14) is much more general than this
case. In particular, we may also consider:

1. Uniformly inelastic collision processes such that

∃ z0 ∈ (0, 1) s.t. suppB(E , u, .) ⊂ D(0, z0) ∀u ∈ RN , ∀ E > 0,(1.26)

which includes the sticky particles model when z0 = 0.

2. The physically important case of a normal restitution coefficient e depending
on the relative velocity and the kinetic energy with a cross-section b̃ depending on
E , u and û · σ. In particular it covers the kind of models studied in [6] (where e
depends on E , and b̃ is independent on E and u).

3. This formalism also covers multidimensional versions of the kind of models
proposed in [27], which corresponds to the case where b is the product of a measure
depending on |u|, |z| and a measure of û · z absolutely continuous according to the
Hausdorff measure. One easily checks that our assumptions are quite natural for
this kind of models as well.

1.3 Statement of the main results

Let us now define the notion of solutions we deal with in this paper.

Definition 1.1 Consider an initial datum fin satisfying (1.9) with q = 2. A non-
negative function f on [0, T ]×RN is said to be a solution to the Boltzmann equation
(1.1)-(1.2) if

f ∈ C([0, T ];L1
2(RN)),(1.27)
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and if (1.1)-(1.2) holds in the sense of distributions, that is,∫ T

0

{∫
RN

f
∂φ

∂t
dv + 〈Q(f, f), φ〉

}
dt =

∫
RN

fin φ(0, .) dv(1.28)

for any φ ∈ C1
c ([0, T )× RN).

It is worth mentioning that (1.27) ensures that the collision term Q(f, f) is
well defined as a function of L1(RN). Indeed, on the one hand, we deduce from
f ∈ C([0, T ];L1

2(RN)) that E(t) ∈ K1 on [0, T ] and thus α(E(t)) ∈ K2 on [0, T ] for
some compact sets Ki ⊂ (0,∞). On the other hand, from the dual form (1.20) it
is immediate that Q± is bounded from L1

1 × L1
1 into L1, with bound α(E) (see also

[13, 22] for some strong forms of the Q+(f, f) term). It turns out that a solution f ,
defined as above, is also a solution of (1.1)-(1.2) in the mild sense:

f(t, .) = fin +

∫ t

0

Q(f(s, .)) ds a.e. in RN .

Another consequence is that if f ∈ L∞([0, T ), L1
q) then f satisfies the chain rule

d

dt

∫
RN

β(f)φ dv = 〈Q(f, f), β′(f)φ 〉 in D′([0, T )),(1.29)

for any β ∈ C1(R) ∩W 1,∞(R), φ ∈ L∞1−q(RN), see [14, 10, 19].

Let us state the main results of this paper. First, we give a Cauchy Theorem
valid when the collision rate B is independent on the kinetic energy.

Theorem 1.2 Assume that B satisfies the assumptions (1.10)-(1.13) with b =
b(u; dz): the cross-section does not depend on the kinetic energy. Take an initial
datum fin satisfying (1.9) with q = 3. Then

(i) For all T > 0, there exists a unique solution f ∈ C([0, T ];L1
2) ∩ L∞(0, T ;L1

3)
to the Boltzmann equation (1.1)-(1.2). This solution conserves mass and mo-
mentum, ∫

RN

f(t, v) dv = 1,

∫
RN

f(t, v) v dv = 0 ∀ t ≥ 0,(1.30)

and has a decreasing kinetic energy

E(t2) ≤ E(t1) ≤ Ein = E(0) ∀ t2 ≥ t1 ≥ 0.(1.31)

(ii) Its time of life (as introduced in (1.8)) is Tc = ∞, in particular, E(t) > 0 for
any t > 0. Morever, assuming H2-H3 or H2-H4 (with e and b̃ independent
on the kinetic energy), there holds

E(t) → 0 and f(t, .) ⇀ δv=0 in M1(RN)-weak ∗ when t→ Tc.(1.32)

In other words, the cooling process does not occur in finite time, but asymp-
totically in large time.
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Remarks 1.3 Let us discuss the assumptions and conclusions of this theorem.

1. Under assumption H4 and when the collision rate is independent on the ki-
netic energy, one can prove in fact that there exists a unique solution f ∈ C([0,∞);L1)
satisfying (1.30) and (1.31) for any initial condition fin satisfying (1.9) with q = 2.
The proof is quite more technical and we refer to [23] where the result is presented for
the true elastic collision Boltzmann equation; nevertheless the proof may be readily
adapted to the inelastic collisional framework.

2. The existence and uniqueness part of Theorem 1.2 (point (i)) extends to a
cross-section B = B(u; dz) ≥ 0 which satisfies the sole assumptions

B(−u;−dz) = B(u; dz),∫
D

B dz ≤ C0 (1 + |v|+ |v∗|)

(v, v∗) 7→
∫

D

ϕ(v′)B(u; dz) ∈ C(RN × RN) ∀ϕ ∈ Cc(RN)

for some constant C0 ∈ R+. This corresponds to the so-called cut-off hard potentials
(or variable hard spheres) in the context of inelastic gases.

3. For a uniformly dissipative collision model, i.e. such that

β(u) ≥ β0 ∈ (0,∞),

a fact which holds under assumption (1.26) or under assumption H4 with a resti-
tution coefficient e satisfying e(|u|) ≤ e0 ∈ [0, 1) for any u ∈ RN , we may prove the
additionnal a priori bound∫ ∞

0

‖f(t, .)‖L1
3
dt ≤ C(‖fin‖L1

2
, β0).

As a consequence, one can easily adapt the proof of existence and uniqueness in
Theorem 1.2 and then one can easily establish that the existence part of Theorem 1.2
holds for any initial datum fin satisfying (1.9) with q = 2.

4. The existence and uniqueness part of Theorem 1.2 (point (i)) immediately
extends to a time dependent collision rate B = |u| γ(t) b(t, u; dz) where b(t, u; ·) is a
probability measure for any u ∈ RN , t ∈ [0, T ] such that b(t, u; dz) = b(t,−u;−dz),
and γ(t) is a positive function in L∞(0, T ).

Now, let us turn to the case where the collision kernel depends on the kinetic
energy of the solution.

Theorem 1.4 Assume now that B satisfies the assumptions (1.10)-(1.14) and that
the cross-section b = b(E , u; dz) depends also on the kinetic energy E. Take an initial
datum fin satisfying (1.9) with q = 3.
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(i) There exists at least one maximal solution f ∈ C([0, Tc);L
1
2) ∩ L∞(0, Tc;L

1
3)

for some Tc ∈ (0,+∞] which satisfies the conservation laws (1.30) and the
decay of the kinetic energy (1.31).

(ii) If the collision rate satisfies the assumption H1, and the initial datum satisfies
the additional assumption fin ∈ BV4 ∩ L1

5, then this solution is unique in the
class of functions C([0, T ], L1

2) ∩ L∞(0, T ;L1
3) for any T ∈ (0, Tc).

(iii) The asymptotic convergence (1.32) holds under the additional assumptions
H2-H3 or H2-H4.

(iv) If α is bounded near E = 0 and jE converges to 0 as ε → 0 uniformly near
E = 0, or if B satifies H4, β is bounded by an increasing function β0 which
only depends on the energy, and fin e

aη |v|η ∈ L1 with η ∈ (1, 2], aη > 0, then
Tc = +∞.

(v) If β(E , u) ≥ β0 Eδ with β0 > 0 and δ < −1/2, then Tc <∞.

Remark 1.5 Let us discuss the assumptions and conclusions of this theorem.

1. In point (ii), the assumption we make in order to get the uniqueness part of
the theorem could most probably be relaxed to a smoothness assumption on b of the
form b depends only on E and z and E → b(E ; dz) is locally Lipschitz from (0,+∞)
to W−1,1(D).

2. Under the assumptions of point (ii) on the initial datum, by using a bootstrap
a posteriori argument as introduced in [23], one can indeed prove that there exists
a unique solution f ∈ C([0,∞);L1) satisfying (1.30) and (1.31) for any initial
condition fin satisfying (1.9) with q > 4 and fin ∈ BV4.

1.4 Plan of the paper

We gather in Section 2 some new integrability estimates on the collision opera-
tor which can be of independent interest. Concerning the gain term we prove
convolution-like estimates in Orlicz spaces. These estimates generalize similar es-
timates in Lebesgue spaces in the elastic and the inelastic case. Concerning the
loss term we give simple bounds from below obtained by convexity. We give then
estimates on the global operator in Orlicz space, which show essentially that even if
the bilinear collision operator is not bounded, its evolution semi-group is bounded
in any Orlicz space (with bound depending on time). The proof is based on Young’s
inequality and only requires elementary tools. In Section 3 we start looking at
solutions of the Boltzmann equation and we prove Theorem 1.2, on the basis of
moments estimates in L1. In Section 4, we extend the existence result to collision
rates depending on the kinetic energy of the solution by proving a weak stability
result on the basis of (local in time) non-concentration estimates obtained by the
study of Section 2, to obtain the existence part of Theorem 1.4. The uniqueness
part of Theorem 1.4 is obtained by proving a strong stability result valid for smooth
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solution. In Section 5 we study the cooling process and prove the remaining parts
of Theorem 1.2 and Theorem 1.4.

2 Estimates in Orlicz spaces

In this section we gather some new functional estimates on the collision operator
in Orlicz spaces, that will be used in the sequel to obtain (local in time) non-
concentration estimates. Let us introduce the following decomposition b = btε + brε
of the cross-section b for ε ∈ (0, 1):{

btε(E , u; dz) = b(E , u; dz)1{−1+ε≤û·z≤1−ε}

brε(E , u; dz) = b(E , u; dz)− btε(E , u; dz)

where 1{−1+ε≤û·z≤1−ε} denotes the usual indicator function of the set {−1 + ε ≤
û · z ≤ 1− ε}. When no confusion is possible the subscript ε shall be omitted.

In the sequel, Λ denotes a function C2 strictly increasing, convex satisfying the
assumptions (A.1), (A.2) and (A.3). This function defines the Orlicz space LΛ(RN),
which is a Banach space (see the definition in appendix).

2.1 Convolution-like estimates on the gain term

In this subsection we shall prove convolution-like estimates in Orlicz spaces. These
estimates extend existing results in Lebesgue spaces: see [15, 16, 24] in the elastic
case and [13] in the inelastic case for a constant normal restitution coefficient. The
proof relies only on elementary tools, essentially Young’s inequality, in the spirit
of [9]. Another proof could be given by interpolating between the L1 and L∞ theo-
ries, as in [15, 16] (using tools of [4]), but this path leads to more technical difficulties.
Moreover the proof given here has several advantages: its simplicity, the fact that
it handles only the dual form of Q+ and the fact that it is naturally well-suited to
deal with Orlicz spaces, since it is based on Young’s inequality.

As shown by the formula for the differential of the Orlicz norm in the appendix,
the crucial quantity to estimate is∫

RN

Q+(f, f) Λ′
(

f

‖f‖LΛ

)
dv.

Most of the difficulty is related to the fact that the bilinear operator Q+ is not
bounded because of the term |v− v∗| in the collision rate. Nevertheless it is possible
to prove a compactness-like estimate with respect to this algebraic weight. When
combined with the damping effect of the loss term this estimate shall show that the
evolution semi-group of the global collision operator is bounded in any Orlicz space.

Let us state the result

12



Theorem 2.1 For any function f ∈ L1
1 ∩LΛ, for any ε ∈ (0, 1), there is an explicit

constant C+
E (ε) such that∫

RN

Q+(f, f) Λ′
(

f

‖f‖LΛ

)
dv ≤ α(E)

[
C+
E (ε)NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))
‖f‖L1

1
‖f‖LΛ

+ (2 + 2N+2) jE(ε) ‖f‖L1
1

∫
RN

f Λ′
(

f

‖f‖LΛ

)
|v| dv

]
.(2.1)

Remark 2.2 Let us comment on the conclusions of this theorem.

1. We establish estimates for the quadratic Boltzmann collision operator but
similar bilinear estimates could be proved under additional assumption on b, namely
that either no frontal collision occurs, i.e. b(E , u; dz) should vanish for û close to z,
or no grazing collision occurs, i.e. b(E , ; dz) should vanish for û close to −z. For
more details on these bilinear estimates and the corresponding assumptions, we refer
to [24] where they are proved in Lebesgue spaces in the elastic framework.

2. Let us emphasize that for z ∼ 0 (close to sticky collisions), the jacobian of the
change of variable (v, v∗) → (v′, v′∗) (both velocities at the same time) is blowing up.
However in our method, we only use the changes of variable v → v′ and v∗ → v′,
keeping the other velocity unchanged, and the jacobians of these changes of variable
remain uniformly bounded as z → 0. This explains why our bounds includes the
sticky particules model, and are uniform as z → 0.

Proof of Theorem 2.1. Let us denote

ϕ(f) = Λ′
(

f

‖f‖LΛ

)
.

Using the decomposition b = bt + br, we control separately the two terms I t and Ir

in the decomposition∫
RN

Q+(f, f)ϕ(f) dv =

∫
RN×RN×D

ff∗ϕ(f ′) |u| bt(E , u; dz) dv dv∗

+

∫
RN×RN×D

ff∗ϕ(f ′) |u| br(E , u; dz) dv dv∗ =: I t + Ir.

Using the bound
|u| = |v − v∗| ≤ |v|+ |v∗|

we have

I t ≤
∫

RN×RN×D

(f |v|)f∗ϕ(f ′) bt(E , u; dz) dv dv∗

+

∫
RN×RN×D

f(f∗|v∗|)ϕ(f ′) |u| bt(E , u; dz) dv dv∗ =: I t
1 + I t

2.

13



Now these two terms are treated similarly: the two changes of variable φ1 : v → v′

and φ2 : v∗ → v′ (while the other integration variables are kept fixed) are allowed
thanks to the truncation. Indeed it is straightforward to compute their jacobian:{

Jφ1(v, v∗, z) = 2N (1 + z · û)−1

Jφ2(v, v∗, z) = 2N (1− z · û)−1

which yields the bound
2N−1 ≤ Jφ1 , Jφ2 ≤ 2N ε−1.(2.2)

Thus, by applying the Young’s inequality (A.4)

f∗ϕ(f ′) = ‖f‖LΛ

(
f∗

‖f‖LΛ

)
ϕ(f ′) ≤ ‖f‖LΛ Λ

(
f∗

‖f‖LΛ

)
+ ‖f‖LΛ Λ∗(ϕ(f ′)),

we get for I t
1 the following estimate

I t
1 ≤ ‖f‖LΛ

∫
RN×RN×D

f |v|Λ
(

f∗
‖f‖LΛ

)
bt(E , u; dz) dv dv∗

+‖f‖LΛ

∫
RN×RN×D

f |v|Λ∗(ϕ(f ′)) bt(E , u; dz) dv dv∗ =: I t
1,1 + I t

1,2.

On the one hand, using

∀x ∈ R+, Λ(x) ≤ xΛ′(x),

which is a trivial consequence of the fact that Λ(0) = 0 and Λ′ is increasing, we have

I t
1,1 ≤ α(E) ‖f‖L1

1

∫
RN

f ϕ(f) dv.

The Hölder’s inequality in Orlicz spaces (A.5) recalled in the appendix then yields

I t
1,1 ≤ α(E)NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))
‖f‖L1

1
‖f‖LΛ .(2.3)

On the other hand, using that Λ∗(y) = y (Λ′)−1(y)− Λ((Λ′)−1(y)), we get

I t
1,2 ≤

∫
RN×RN×D

f |v|f ′ ϕ(f ′) bt(E , u; dz) dv dv∗.

Since the cross-section bt is truncated, we can apply the change of variable v∗ → v′,
with the bound (2.2), and we get

I t
1,2 ≤ α(E) 2Nε−1 ‖f‖L1

1

∫
RN

f ϕ(f) dv.
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The Hölder’s inequality (A.5) then yields

I t
1,2 ≤ α(E) 2Nε−1 ‖f‖L1

1
NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))
‖f‖LΛ .(2.4)

Next, the term I t
2 is exactly similar to I t

1, except that one has to use the change of
variable v → v′ instead of v∗ → v′ (with the bound (2.2) again). Therefore gathering
(2.3), (2.4) and the same estimate for I t

2, we obtain

I t ≤ 2α(E) (1 + 2Nε−1) ‖f‖L1
1

[
NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))]
‖f‖LΛ .(2.5)

Finally, for the term Ir, we can split it as

Ir ≤
∫

RN×RN×D

f f∗ ϕ(f ′)1{û·z≥0} |u| br(E , u; dz) dv dv∗

+

∫
RN×RN×D

f f∗ ϕ(f ′)1{û·z≤0} |u| br(E , u; dz) dv dv∗ =: Ir
1 + Ir

2 .

Then for Ir
1 , we use the Young’s inequality (A.4) to obtain

Ir
1 ≤

∫
RN×RN×D

f f∗ ϕ(f∗)1{û·z≥0} |u| br(E , u; dz) dv dv∗

+

∫
RN×RN×D

ff ′ ϕ(f ′)1{û·z≥0} |u| br(E , u; dz) dv dv∗.

In the second integral we make the change of variable v → v′, whose jacobian is less
than 2N thanks the truncation û · z ≥ 0 and the formula for the jacobian, and we
use that under the truncation

|v − v∗| ≤ 2|v′ − v∗| ≤ 2(1 + |v′|)(1 + |v∗|).

Hence we obtain

Ir
1 ≤ (1 + 2N+1)

(
sup

u∈RN

∫
D

br(E , u; dz)
)
‖f‖L1

1

∫
RN

f ϕ(f) (1 + |v|) dv

≤ (1 + 2N+1)α(E) jE(ε) ‖f‖L1
1

∫
RN

f ϕ(f) (1 + |v|) dv.

The term Ir
2 is treated similarly using Young’s inequality and the change of variable

v∗ → v′, whose jacobian is also less than 2N under the truncation û · z ≤ 0. It
satisfies therefore the same estimate. Thus we obtain the estimate

Ir ≤ (2 + 2N+2)α(E) jE(ε) ‖f‖L1
1

∫
RN

f ϕ(f) (1 + |v|) dv.(2.6)

Defining
C+
E (ε) = 2(1 + 2Nε−1) + (2 + 2N+2) jE(ε),(2.7)

we conclude the proof gathering (2.5) and (2.6). ut
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2.2 Minoration of the loss term

In this subsection we recall a well-known result about the minoration of the loss
term Q−. Let us recall first the following classical estimate.

Lemma 2.3 For any non-negative measurable function f such that

f ∈ L1
1(RN),

∫
RN

f dv = 1,

∫
RN

f v dv = 0,(2.8)

we have

∀ v ∈ RN ,

∫
RN

f∗ |v − v∗| dv∗ ≥ |v|.

Proof of Lemma 2.3. Using Jensen’s inequality∫
RN

ϕ(g∗) dµ∗ ≥ ϕ

(∫
RN

g∗ dµ∗

)
with the probability measure dµ∗ = f∗ dv∗, the measurable function v∗ 7→ g∗ = v−v∗
and the convex function ϕ(s) = |s|, we deduce the result. ut

Then the proof of the following proposition is straightforward:

Proposition 2.4 For a non-negative function f satisfying (2.8), we have∫
RN

Q−(f, f) Λ′
(

f

‖f‖LΛ

)
dv ≥ α(E)

∫
RN

f Λ′
(

f

‖f‖LΛ

)
|v| dv.(2.9)

2.3 Estimate on the global collision operator and a priori
estimate on the solutions

Combining Theorem 2.1 and Proposition 2.4 we get

Theorem 2.5 Let us consider a non-negative function f satisfying (2.8). Then
there is an explicit constant CE depending on the collision rate through the functions
α and jE such that∫

RN

Q(f, f) Λ′
(

f

‖f‖LΛ

)
dv ≤ CE

[
NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))]
‖f‖L1

1
‖f‖LΛ .

More precisely, CE = α(E)C+
E (ε0), with ε0 such that jE(ε0) ≤ (2 + 2N+2)−1 ‖f‖−1

L1
1

and where C+
E is defined in (2.7).

Proof of Theorem 2.5. One just has to combine (2.1) and (2.9) and pick a ε0 small
enough such that

(2 + 2N+2) ‖f‖L1
1
jE(ε0) ≤ 1.

ut
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Corollary 2.6 Assume that B satisfies (1.10)-(1.11) and (1.13)-(1.14) and let con-
sider a solution f ∈ C([0, T ];L1

2) to the Boltzmann equation (1.1)-(1.2) associated
to an initial datum fin ∈ L1

2 and to the collision rate B. Assume moreover that
(1.30) holds and there exists a compact set K ⊂ (0,+∞) such that

∀ t ∈ [0, T ], E(t) ∈ K.

Then, there exists a C2, strictly increasing and convex function Λ satisfying the
assumptions (A.1), (A.2) and (A.3) (which only depends on fin) and a constant CT

(which depends on K, T and B) such that

sup
[0,T ]

‖f(t, .)‖LΛ ≤ CT .

Remark 2.7 Let us emphasize that these non-concentration bounds are valid for the
sticky particules model (in this case they provide an exponentially growing bound in
LΛ for all times). As a particular case we deduce some explicit bounds on the entropy
when it is finite initially. Moreover, since our bounds are uniform as b ⇀ δz=0, we
also deduce a proof of the sticky particules limit (for a cross-section being a diffuse
measure converging to a Dirac mass at z = 0) by the Dunford-Pettis Lemma. This
shows moreover that this limit is not singular.

Proof of Corollary 2.6. Since fin ∈ L1(RN), as recalled in the appendix, a refined
version of the De la Vallée-Poussin theorem [20, Proposition I.1.1] (see also [18, 19])
guarantees that there exists a function Λ satisfying the properties listed in the
statement of Corollary 2.6 and such that∫

RN

Λ(|fin|) dv < +∞.

Then the LΛ norm of f satisfies

d

dt
‖ft‖LΛ =

[
NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))]−1 ∫
RN

Q(f, f) Λ′
(

|f |
‖f‖LΛ

)
dv

thanks to Theorem A.2, and thus using Theorem 2.5, we get

∀ t ∈ [0, T ],
d

dt
‖ft‖LΛ ≤ CE(t) ‖ft‖L1

1
‖ft‖LΛ .

Thanks to the assumptions (1.13) and (1.14), the constant CE(t) provided by The-
orem 2.5 is uniform when the kinetic energy belongs to a compact set. Thus we
deduce

∀ t ∈ [0, T ],
d

dt
‖ft‖LΛ ≤ CK ‖ft‖L1

1
‖ft‖LΛ .(2.10)

for some explicit constant CK > 0 depending on K and the collision rate. We
conclude thanks to the Gronwall lemma. ut
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3 Proof of the Cauchy theorem for non-coupled

collision rate

In this section we fix T∗ > 0 and we assume that the collision rate B satisfies

B = B(t, u; dz) = |u| γ(t) b(t, u; dz),(3.1)

where b is a probability measure on D for any t ∈ [0, T∗] and u ∈ RN satisfying

∀ t ∈ [0, T∗], ∀u ∈ RN , b(t, u; dz) = b(t,−u;−dz)(3.2)

and where γ satisfies
0 ≤ γ(t) ≤ γ∗ on (0, T∗).(3.3)

3.1 Propagation of moments

In this subsection we establish several moments estimates which are well known
for the Boltzmann equation with elastic collision, see [23, 21, 5] and the references
therein, as well as the recent works [13, 7] for the inelastic case. Let us emphasize
that these moment estimates are uniform with respect to the normal restitution
coefficient e or more generally to the support of b(t, u; ·) in D.

First we give a result of propagation of moments valid for general collision rates
using a rough version of the Povzner inequality.

Proposition 3.1 Assume that B satisfies (3.1)–(3.3). For any 0 ≤ fin ∈ L1
q(RN)

with q > 2 and T > 0, there exists CT such that any solution f to the inelastic
Boltzmann equation (1.1),(1.2) on [0, T ] satisfies, at least formally,

sup
[0,T ]

‖f(t, ·)‖L1
k
≤ CT .

Proof of Proposition 3.1. We make the proof for the third moment, the general
moment estimate being similar. For any function Ψ : RN → R+ such that Ψ(v) :=
ψ(|v|2) for some function ψ : R+ → R+, the evolution of the associated moment is
given by

d

dt

∫
RN

f Ψ dv =

∫
RN×RN

f f∗KΨ dv dv∗,

where

KΨ :=
1

2

∫
D

(Ψ′ + Ψ′
∗ −Ψ−Ψ∗)B(t, u; dz).

For ψ(z) = zs, s > 1, the function ψ is super-additive, that is ψ(x)+ψ(y) ≤ ψ(x+y),
and it is an increasing function. As a consequence,

Ψ′ + Ψ′
∗ −Ψ−Ψ∗ ≤ ψ(|v′|2) + ψ(|v′∗|2)− ψ(|v′|2 + |v′∗|2)

+ψ(|v|2 + |v∗|2)− ψ(|v|2)− ψ(|v∗|2)
≤ ψ(|v|2 + |v∗|2)− ψ(|v|2)− ψ(|v∗|2),
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which implies

KΨ ≤ γ(t)

2
|v − v∗|

[
ψ(|v|2 + |v∗|2)− ψ(|v|2)− ψ(|v∗|2)

]
.

Making the choice ψ(x) = x3/2 and using the inequality

(x1/2 + y1/2) [(x+ y)3/2 − x3/2 − y3/2] ≤ C (x1/2 + y1/2) min(x1/2y, xy1/2)

≤ C (xy + x1/2y3/2)(3.4)

for any x, y > 0, we get

d

dt

∫
RN

f |v|3 dv ≤ C γ(t)

∫
RN×RN

f f∗ (|v|2 |v∗|2 + |v| |v∗|3) dv dv∗,(3.5)

and we conclude thanks to the Gronwall Lemma. ut
Finally we give a much more precise result on the evolution moment in the

case when assumption H4 is made. One the one hand, we prove uniform in time
propagation of algebraic moment (as introduced in [25, 1, 11]) and exponential
moment (which starting reference is [5]). On the other hand we prove appearance
of exponential moment (while appearance of algebraic moments where initiated in
[8, 29]) using carefully tools developed in [7]. These estimates may be seen as a
priori bounds, but in fact, by the bootstrap argument introduced in [23], they can
be obtained a posteriori for any solution given by the existence part of Theorem 1.2
and Theorem 1.4.

Proposition 3.2 We make assumption H4 on B. A solution f to the inelastic
Boltzman equation (1.1),(1.2) on [0, Tc) satisfies the additional moment properties:

(i) For any s > 2, there exists Cs > 0 such that

sup
t∈[0,Tc)

‖f(t, .)‖L1
s
≤ max {‖fin‖L1

s
, Cs}.(3.6)

(ii) If fin e
r |v|η ∈ L1(RN) for r > 0 and η ∈ (0, 2], there exists C1, r

′ > 0, such that

sup
t∈[0,Tc)

∫
RN

f(t, v) er′ |v|η dv ≤ C1.(3.7)

(iii) For any η ∈ (0, 1/2) and τ ∈ (0, Tc) there exists aη, Cη ∈ (0,∞) such that

sup
t∈[τ,Tc)

∫
RN

f(t, v) eaη |v|η dv ≤ Cη.(3.8)

Let us emphasize that all the constants do not depend on the inelasticity coefficient
e (so that the estimates are uniform with respect to the inelasticity of the Boltzmann
operator) and that the constant Cs, aη, Cη may depend on fin only through its kinetic
energy Ein.
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Proof of Proposition 3.2. The proof of (i) is classical and we refer for intance to
[23, 21, 28] and the references therein. The proofs of (ii) and (iii) are variants of [5,
Theorem 3]. Let us define

mp :=

∫
RN

f |v|2p dv.

Taking ψ(x) = xp/2 and B of the above form, there holds

d

dt
mp =

∫
RN

Q(f, f) |v|2p dv = α(E)

∫
RN×RN

f f∗ |v − v∗|Kp(v, v∗) dv dv∗,(3.9)

where

Kp(v, v∗) :=
1

2

∫
SN−1

(|v′|2p + |v′∗|2p − |v|2p − |v∗|2p)
b̃(E , |u|, σ · û)

α(E)
dσ.(3.10)

From [7, Lemma 1, Corollary 1] (see also [13, Lemma 3.1 to Lemma 3.4]), there
holds

Kp(v, v∗) ≤ γp (|v|2 + |v∗|2)p − |v|2p − |v∗|2p(3.11)

where (γp)p=3/2,2,... is a decreasing sequence of real numbers such that

0 < γp < min(1,
4

p+ 1
)(3.12)

(notice that the assumptions [7, (2.11)-(2.12)-(2.13)] are satisfied under our assump-
tions on the collision kernel). Let us emphasize that the estimate (3.11) does not de-
pend on the inelasticity coefficient e(E , |u|). Then, from [7, Lemma 2 and Lemma 3],
we have

1

α(E)

∫
RN

Q(f, f) |v|2p dv ≤ γp Sp − (1− γp)mp+1/2(3.13)

with

Sp :=

kp∑
k=1

(
p
k

)
(mk+1/2mp−k +mk mp−k+1/2),

where kp := [(p + 1)/2] is the integer part of (p + 1)/2 and

(
p
k

)
stands for the

binomial coefficient. Gathering (3.9) and (3.13), we get

d

dt
mp ≤ α(E) (γp Sp − (1− γp)mp+1/2) ∀ p = 3/2, 2, . . .(3.14)

By Hölder’s inequality and the conservation of mass,

m
1+ 1

2p
p ≤ mp+1/2

and, by [7, Lemma 4], for any a ≥ 1, there exists A > 0 such that

Sp ≤ AΓ(a p+ a/2 + 1)Zp
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with
Zp := max

k=1,..,kp

{zk+1/2 zp−k, zk zp−k+1/2}, zp :=
mp

Γ(a p+ 1/2)
.

We may then rewrite (3.14) as

dzp

dt
≤ α(E)

(
Aγp

Γ(a p+ a/2 + 1)

Γ(ap+ 1/2)
Zp − (1− γp) Γ(a p+ 1/2)1/2p z1+1/2p

p

)
(3.15)

for any p = 3/2, 2, . . . On the one hand, from (3.12), there exists A′ such that

Aγp
Γ(ap+ a/2 + 1)

Γ(ap+ 1/2)
≤ A′ pa/2−1/2 ∀ p = 3/2, 2, . . .(3.16)

On the other hand, thanks to the Stirling’s formula n! ∼ nn e−n
√

2πn when n→∞
and the estimate (3.12), there exists A′′ > 0 such that

(1− γp) Γ(a p+ 1/2)1/2p ≥ A′′ pa/2 ∀ p = 3/2, 2, . . .(3.17)

Gathering (3.15), (3.16) and (3.17), we obtain the differential inequality

dzp

dt
≤ α(E)

(
A′ pa/2−1/2 Zp − A′′ pa/2 z1+1/2p

p

)
(3.18)

for any p = 3/2, 2, . . .

Step 3. Proof of 3.7. On the one hand, we remark, by an induction argument, that
taking p0 := max(3/2, (2A′/A′′)2) the sequence of functions zp := xp is a sequence of
supersolutions of (3.18) for any x > 0 and for p ≥ p0. On the other hand, choosing
x0 large enough, which may depend on p0, with have from (i) that the sequence
of functions zp := xp is a sequence of supersolutions of (3.18) for any x ≥ x0 and
for p ∈ {3/2, . . . , p0}. As a consequence, since zp for p = 0, 1/2, 1 are bounded by
‖fin‖L1

2
, we have proved that there exists x0 such that the set

Cx :=

{
z = (zp); zp ≤ xp ∀ p ∈ 1

2
N

}
(3.19)

is invariant under the flow generated by the Boltzmann equation for any x ≥ x0: if
f(t1) ∈ Cx then f(t2) ∈ Cx for any t2 ≥ t1.

We put a := 2/η ≥ 1. Noticing that∫
RN

f(v) er |v|η dv =
∞∑

k=0

rk

k!
mk η/2(3.20)

we get, from the assumption made on fin, that

mk/a(0) ≤ C0
k!

rk
∀ k ∈ N.

21



Since we may assume r ∈ (0, 1], the function y 7→ C0
Γ(y+1)

ry is increasing, and we
deduce by Hölder’s inequality that for any p

mp(0) ≤ C0
`p!

r`p
≤ C0

Γ(ap+ 2)

rap+2
with `p := [a p] + 1.

From the definition of zp we deduce

zp(0) ≤ C0
ap (ap+ 1)

rap+2
≤ xp

1(3.21)

for any p and for some constant x1 ∈ (0,∞). Choosing x := max{x0, x1} we get
from (3.19) and (3.21) that for any p

zp(t) ≤ xp ∀ t ∈ [0, Tc).

Therefore, we have

mp(t) ≤ Γ(ap+ 1/2)xp ∀ p = 3/2, 2, . . . , ∀ t ∈ [0, Tc).

The function y 7→ Γ(y+1/2)xy being increasing, we deduce from Hölder’s inequality
that for any k ∈ N∗

mk/a(t) ≤ Γ(ap+ 1/2)xp ≤ Γ(k + a/2 + 1/2)xk/a+1/2 with p := [2k/a]/2 + 1/2.

For r′ < 2x−1/a(1 + a)−1 we have

∀ t ∈ [0, Tc)

∫
RN

f(t, v) er′ |v|η dv ≤
∞∑

k=0

Γ(k + a/2 + 1/2)

k!
xk/a+1/2 (r′)k

≤ C
∞∑

k=0

(
a+ 1

2
x1/ar′

)
<∞

from which (3.7) follows.

Step 4. Proof of 3.8. Let fix τ ∈ (0, Tc). We claim that there exists x large enough
and some increasing sequence of times (tp)p≥p0 which are bounded by τ such that
for any p

∀ t ∈ [tp, Tc) zp(t) ≤ xp.(3.22)

We yet know by classical arguments (see [23, 28]) that for p0 (defined at the beginning
of Step 3) there exists x1, larger than x0 defined in (3.19), such that (3.22) holds
for any p ≤ p0 and tp = τ/2. We then argue by induction, assuming that for p ≥ p0

there holds:

zk ≤ xk on [tp−1/2, Tc) ∀ k ≤ p− 1/2(3.23)

zp ≥ xp on [tp−1/2, tp),(3.24)
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for some x ≥ x1 to be defined. If (3.24) does not hold, there is nothing to prove
thanks to Step 3. Gathering (3.23), (3.24) with (3.18) we get from the definition of
p0 and the fact that E(t) ∈ [E(τ), E(0)] so that α(E) ≥ α0 > 0

dzp

dt
≤ −α0

A′′

2
pa/2 z1+1/2p

p on (tp−1/2, tp).(3.25)

Integrating this differential inequality we obtain

−z
− 1

2p
p (tp) ≤ z

− 1
2p

p (tp−1/2)− z
− 1

2p
p (tp) ≤ − 1

2p

A′′ α0

2
pa/2 (tp − tp−1/2).

Defining (tp) in the following way:

t0 :=
τ

2
, tp := tp−1/2 +

τ

2

p1−a/2

sa

, sa :=
∞∑

p=0

p1−a/2

and defining x2 := (8 sa)
2/(A′′ α0 τ)

2 we have then proved zp(tp) ≤ xp
2 and therefore

zp(t) ≤ xp for any t ≥ (tp, Tc) with x = max{x1, x2} thanks to Step 3. Setting
a := 2/η > 4 (η < 1/2) we have

∞∑
k=0

t1+k/2 ≤ τ(3.26)

and we conclude as in the end of Step 3. ut

3.2 Stability estimate in L1
2 and proof of the uniqueness part

of Theorem 1.2

Proposition 3.3 Assume that B satisfies (3.1)–(3.3). For any two solutions f and
g of the inelastic Boltzmann equation (1.1),(1.2) on [0, T ] (T ≤ T∗) we have

d

dt

∫
RN

|f−g| (1+|v|2) dv ≤ C γ∗

∫
RN

(f+g) (1+|v|3) dv
∫

RN

|f−g| (1+|v|2) dv.(3.27)

We deduce that there is CT > 0 depending on B and supt∈[0,T ] ‖f + g‖L1
3

such that

∀ t ∈ [0, T ], ‖ft − gt‖L1
2
≤ ‖fin − gin‖L1

2
eCT t.

In particular, there exists at most one solution to the Cauchy problem for the inelastic
Boltzmann equation in C([0, T ];L1

2) ∩ L1(0, T ;L1
3).

Proof of Proposition 3.3. We multiply the equation satisfied by f − g by φ(t, y) =
sgn(f(t, y)− g(t, y)) k , where k = (1 + |v|2). Using the chain rule (1.29), we get for
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all t ≥ 0

d

dt

∫
RN

|f − g| k dv =
1

2

∫
RN×RN×D

[(f − g)g∗ + f(f∗ − g∗)]

(φ′ + φ′∗ − φ− φ∗)B(t, u; dz) dv∗ dv

=
1

2

∫
RN×RN×D

(f − g) (f∗ + g∗)

(φ′ + φ′∗ − φ− φ∗)B(t, u; dz) dv∗ dv

≤ 1

2

∫
RN×RN×D

|f − g| (f∗ + g∗)

(k′ + k′∗ − k + k∗)B(t, u; dz) dv∗ dv,

where we have just use the symmetry hypothesis (3.1), (3.2) on B and a change of
variable (v, v∗) → (v∗, v). Then, thanks to the bounds (3.1), (3.3) we deduce

d

dt

∫
RN

|f − g| k dv ≤ γ∗

∫
RN×RN

|u| |f − g| (f∗ + g∗) k∗ dv∗dv

≤ γ∗

∫
RN

|f − g| k dv
∫

RN

(f∗ + g∗) k
3/2
∗ dv∗

which yields the differential inequality (3.27). The end of the proof is straightforward
by a Gronwall Lemma. ut

The uniqueness in C([0, T );L1
2) ∩ L1(0, T ;L1

3) as stated in Theorem 1.2 is given
by Proposition 3.3.

3.3 Sketch of the proof of the existence part of Theorem 1.2

As for the existence part, we briefly sketch the proof. We follow a method introduced
in [23] and developped in [12]. We split the proof in three steps.

Step 1. Let us first consider an initial datum fin satisfying (1.9) with q = 4 and
let us define the truncated collision rates Bn = B 1|u|≤n. The associated collision
operators Qn are bounded in any L1

q, q ≥ 1, and are Lipschitz in L1
2 on any bounded

subset of L1
2. Therefore following a classical argument from Arkeryd, see [1], we

can use the Banach fixed point Theorem and obtain the existence of a solution
0 ≤ fn ∈ C([0, T ];L1

2) ∩ L∞(0, T ;L1
4) for any T > 0, to the associated Boltzmann

equation (1.1)-(1.2), which satisfies (1.30)-(1.31).

Step 2. From Proposition 3.1, for any T > 0, there exists CT such that

sup
[0,T ]

‖fn‖L1
4
≤ CT .

Moreover, coming back to the proof of Proposition 3.3 (see also the first step in the
proof of [12, Theorem 2.6]), we may establish the differential inequality

d

dt
‖fn − fm‖L1

2
≤ C1 ‖fn + fm‖L1

3
‖fn − fm‖L1

2
+
C2

n
‖fn + fm‖2

L1
4
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for any integers m ≥ n. Gathering these two informations we easily deduce that (fn)
is a Cauchy sequence in C([0, T ];L1

2) for any T0. Denoting by f ∈ C([0, T ];L1
2) ∩

L∞(0, T ;L1
4) its limit, we obtain that f is a solution to the Boltzmann equation

(1.1)-(1.2) associated to the collision rate B and the initial datum fin by passing to
the limit in the weak formulation (1.28) of the Boltzmann equation written for fn.

Step 3. When the initial datum fin satisfies (1.9) with q = 3 we introduce the
sequence of initial data fin,` := fin 1{|v|≤`}. Since fin,` ∈ L1

4, the preceding step give
the existence of a sequence of solutions f` ∈ C([0, T ];L1

2) ∩ L∞(0, T ;L1
3) for any

T > 0 to the Boltzmann equation (1.1),(1.2) associated to the initial datum fin,`.
From Proposition 3.1, for any T > 0, there exists CT such that

sup
[0,T ]

‖f`‖L1
3
≤ CT .

Thanks to (3.27) we establish that (f`) is a Cauchy sequence in C([0, T ];L1
2) and we

conclude as before. ut

Remark 3.4 Note here that an alternative path to the proof of existence could have
been the use of the result of propagation of Orlicz norm which shows here that the
solution is uniformly bounded for t ∈ [0, T ] in a certain Orlicz space. Together with
the propagation of moments and Dunford-Pettis Lemma, it would yield the exis-
tence of a solution by classical approximation arguments and weak stability results
as presented below. More generally the propagation of Orlicz norm by the collision
operator can be seen as a new tool (as well as a clarification) for the theory of solu-
tions to the spatially homogeneous Boltzmann equation with no entropy bound, as in
the inelastic case, or in the elastic case when the initial datum has infinite entropy,
see also [1, 23] where other strategies of proof are presented.

4 Proof of the Cauchy theorem for coupled colli-

sion rate

4.1 Weak stability and proof of the existence part of Theo-
rem 1.4

Proposition 4.1 Consider a sequence Bn = Bn(t, u; dz) of collision rates satisfying
the structure conditions (3.1)-(3.2) and the uniform bound

0 ≤ γn(t) ≤ γT ∀ t ∈ [0, T ], ∀n ∈ N∗,

and let us denote by fn ∈ C([0, T );L1
2) ∩ L∞(0, T ;L1

3) the solution associated to Bn

thanks to the existence result of the preceding section (existence and uniqueness part
of Theorem 1.2 and Remark 1.3 4th point). Assume furthermore that (fn) belongs
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to a weak compact set of L1((0, T ) × RN) and that there exists a collision rate B
satisfying (3.1)-(3.3) and such that for any ψ ∈ Cc(RN)

γn → γ and

∫
D

ψ(v′) bn(t, u; dz) →
∫

D

ψ(v′) b(t, u; dz) a.e.

Then there exists a function f ∈ C([0, T );L1
2)∩L∞(0, T ;L1

3) and a subsequence fnk

such that
fnk

⇀ f weakly in L1((0, T )× RN),

and f is a solution to the Boltzmann equation (1.1)-(1.2) associated to B.

Such a stability/compactness result is very classical and we refer to [10, 1] for
its proof.

Proof of the existence part of Theorem 1.4. We assume without restriction that
there exists a decreasing function α0 such that α ≤ α0 on [0, Ein]. We proceed in
three steps.

Step 1. We start with some a priori bounds. We set Y3 := ‖f‖L1
3
. From the Povner

inequality (3.5) (with γ(t) = α(E(t)) and the dissipation of energy equation (1.7),
we have

d

dt
Y3 ≤ C1 α0(E)Y3, Y3(0) = Y3(fin)(4.1)

and
d

dt
E ≥ −C1 α0(E)Y3, E(0) = Ein,(4.2)

for some constant C1 (which depends on Ein). There exists T∗ such that any solution
(Y3, E) to the above differential inequalities system is defined on [0, T∗] and satisfies

sup
[0,T∗]

Y3(t) ≤ 2Y3(fin), inf
[0,T∗]

E(t) ≥ Ein/2.(4.3)

More precisely, we choose T∗ such that

C1 α0(Ein/2)T∗ ≤ Y3(fin) and C1 α0(Ein/2)2Y3(fin)T∗ ≤ Ein/2,

in such a way that if (Y3, E) satisfies Y3 ≤ 2Y3(fin) and (4.2) on (0, T∗) or if (Y3, E)
satisfies E ≥ Ein/2 and (4.1) on (0, T∗) then (4.3) holds. Then we introduce

X :=
{
E ∈ C([0, T∗]), Ein/2 ≤ E(t) ≤ Ein on (0, T∗)

}
.

Step 2. Let us consider a function E1 ∈ X and define B2(t, u; dz) := B(E1(t), u; dz).
From assumption (1.13) we may write

B2(t, u; dz) = |u| γ2(t) b2(t, u; dz)

where b2 is a probability measure and γ2(t) satisfies

γ2(t) = α(E1(t)) ≤ α0(Ein/2) < +∞ ∀ t ∈ [0, T∗].
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Thanks to Theorem 1.2 there exists a unique solution f2 ∈ C([0, T∗];L
1
2)∩L∞(0, T∗;L

1
3)

to the Boltzmann equation (1.1)-(1.2) associated to the collision rate B2 and we set
E2 := E(f2). In such a way we have defined a map Φ : X → X, Φ(E1) = E2.

In order to apply the Schauder fixed point Theorem, we aim to prove that Φ
is continuous and compact from X to X. Consider (En

1 ) a sequence of X which
uniformly converges to E1. Since (En

1 ) belongs to the compact set [Ein/2, Ein] for any
n and any t ∈ [0, T∗], we deduce by applying Corollary 2.6 to the sequence (fn

2 )
associated to Bn

2 (t, u; dz) = B(En
1 (t), u; dz) that

∀n ≥ 0, sup
[0,T∗]

∫
RN

Λ(fn
2 (t, v)) dv ≤ C2,(4.4)

for a superlinear function Λ and a constant C2 > 0. Moreover, from Proposition 3.1
we have

∀n ≥ 0, sup
[0,T∗]

∫
RN

fn
2 (t, v) |v|3 dv ≤ C3(4.5)

for some constant C3 > 0.
On the one hand, gathering (4.4), (4.5) and using the Dunford-Pettis Lemma, we

obtain that (fn
2 ) belongs to a weak compact set of L1((0, T∗)×R3). Propositon 4.1

then implies that there exists f2 ∈ C([0, T∗];L
1
2) ∩ L∞(0, T∗;L

1
3) such that, up to a

subsequence, fn
2 ⇀ f2 weakly in L1(0, T ;L1

2) and f2 is the solution to the Boltzmann
equation associated to B2(t, u; dz) = B(E1(t), u; dz). Since this limit is unique by the
previous study, the whole sequence (fn

2 ) converges weakly to f2, and in particular

En
2 ⇀ E2 weakly in L1(0, T )(4.6)

where E2 is the kinetic energy of f2.
On the other hand, there holds

d

dt
En

2 = −
∫

RN×RN

fn
2 f

n
2∗ |u|3 β(En

1 , u) dvdv∗ =: −Dn
2 .

Since β(En
1 , u) ≤ α(En

1 )/4 ≤ α0(Ein/2)/4, we deduce from (3.1) that Dn
2 is bounded

in L∞(0, T ) which in turn implies

‖En
2 ‖W 1,∞(0,T ) ≤ C4.(4.7)

From the Ascoli Theorem we infer that the sequence (En
2 ) belongs to a compact set

of C([0, T ]). Since the cluster points for the uniform norm are included in the set
of cluster points for the L1 norm, it then follows from (4.6) that Φ(En

1 ) = E(fn
2 )

converges to E(f2) = Φ(E1) for the uniform norm on C([0, T ]), which ends the proof
of the continuity of Φ. Of course, the a priori bound (4.7) and the Ascoli Theorem
also imply that Φ is a compact map on X. We may thus use the Schauder fixed point
Theorem to conclude to the existence of at least one Ē ∈ X such that Φ(Ē) = Ē .
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Then, the solution f̄ ∈ C([0, T∗];L
1
2) ∩ L∞(0, T∗;L

1
3) to the Boltzmann equation

associated to B̄(t, u; dz) := B(Ē(t), u; dz) satisfies∫
RN

f̄(t, v) |v|2 dv = Φ(Ē)(t) = Ē(t)

and therefore f̄ is a solution to the Boltzmann equation associated to B in
C([0, T∗];L

1
2) ∩ L∞(0, T∗;L

1
3).

Step 3. We then consider the class of solution f : (0, T1) → L1
3 such that f ∈

C([0, T ];L1
2)∩L∞(0, T ;L1

3) for any T ∈ (0, T1), E is decreasing, f is mass conserving.
By Zorn Lemma, there exists a maximal interval [0, Tc) such that

(Tc <∞ and E(t) → 0 when t→ Tc) or Tc = ∞.

In order to end the proof, the only thing one has to remark is that if Tc < ∞
and lim

t↗Tc

E(t) = Ec > 0, then lim
t↗Tc

Y3(t) <∞ (by (4.1)) so that f ∈ C([0, Tc];L
1
2) ∩

L∞(0, Tc;L
1
3) and we may extends the solution f to a larger time interval. ut

4.2 Strong stability and uniqueness part of Theorem 1.4

In this subsection we give a quantitative stability result in strong sense, under the
additional assumption of some smoothness on the initial datum and the collision
rate. Let us first prove a simple result of propagation of the total variation of the
gradient of the distribution.

Proposition 4.2 Let B be a collision rate satisfying assumptions (3.1)-(3.2)-(3.3)
and 0 ≤ fin ∈ BV4∩L1

5 an initial datum. Then there exists CT∗, depending on γ∗ and
‖fin‖L1

5
, such that any solution f ∈ C([0, T∗], L

1
2) ∩ L∞(0, T∗, L

1
3) to the Boltzmann

equation constructed in the previous step satisfies

∀ t ∈ [0, T∗], ‖ft‖BV4 ≤ ‖fin‖BV4 e
CT∗ t

Proof of Proposition 4.2. The proof is based on the same kind of Povzner inequality
as above. Let us first prove the estimate by a priori approach, for the sake of
clearness. We have the following formula for the differential of Q:

∇vQ(f, f) = Q(∇vf, f) +Q(f,∇vf).

This property is proved in the elastic case in [28] but it is strictly related to the
invariance property of the collision operator

τhQ(f, f) = Q(τhf, τhf)

where the translation operator τh is defined by

∀ v ∈ RN , τhf(v) = f(v − h).
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It is easily seen that it remains true in the inelastic case under our assumptions.
The propagation of the L1

5 norm has already been established. Then we estimate
the time derivative of the L1

4 norm of the gradient along the flow:

d

dt
‖∇vft‖L1

4
=

∫
RN×RN×D

f (∇vf∗)
[
(1 + |v′|4) sgn(∇vf)′ + (1 + |v′∗|4) sgn(∇vf)′∗

−(1 + |v|4) sgn(∇vf)− (1 + |v∗|4) sgn(∇vf)∗

]
B dv dv∗

≤
∫

RN×RN×D

f |∇vf∗|
[
(1 + |v′|4) + (1 + |v′∗|4)− (1 + |v|4)

−(1 + |v∗|4)
]
B dv dv∗ + 4 γ∗ ‖ft(1 + |v|5)‖L1 ‖∇vf(1 + |v|)‖L1

≤ C ‖ft‖L1
5
‖∇vf‖L1

4

using a Povzner inequality as in (3.4). This shows the a priori propagation of the
BV4 norm by a Gronwall argument.

Now let us explain how to obtain the same estimate by a posteriori approach.
First concerning the a posteriori propagation of the L1

5 norm, it is similar to the
method in [23] and does not lead to any difficulty. Concerning the propagation of
BV4 norm, we look at some “discretized derivative”. Let us denote k = sgn(τhf −
f) (1 + |v|4). We can compute by the chain rule the following time derivative (using
the invariance property of the collision operator)

d

dt
‖τhft − ft‖L1

4
=

∫
RN×RN×D

(τhfτhf∗ − ff∗) [k′ − k]B dv dv∗

=

∫
RN×RN×D

(τhf − f)f∗ [k′ + k′∗ − k − k∗]B dv dv∗

+
1

2

∫
RN×RN×D

(τhf − f)(τhf∗ − f∗) [k′ + k′∗ − k − k∗]B dv dv∗

≤
∫

RN×RN×D

|τhf − f |f∗
[
|v′|4 + |v′∗|4 − |v|4 + |v∗|4

]
B dv dv∗

+
1

2

∫
RN×RN×D

|τhf − f ||τhf∗ − f∗|[
|v′|4 + |v′∗|4 + |v|4 + |v∗|4

]
B dv dv∗.

Then using the same rough Povzner inequality as in the proof of Proposition 3.1,
we have [

|v′|4 + |v′∗|4 − |v|4 + |v∗|4
]
|v − v∗| ≤ C (1 + |v|4)(1 + |v∗|5)

and[
|v′|4 + |v′∗|4 + |v|4 + |v∗|4

]
≤ C

[
(1 + |v|4)(1 + |v∗|5) + (1 + |v∗|4)(1 + |v|5)

]
.
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Hence we deduce that

d

dt
‖τhft − ft‖L1

4
≤ C γ∗ ‖τhft − ft‖L1

4

[
‖f‖L1

5
+ ‖τhft − ft‖L1

5

]
and for |h| ≤ 1, we deduce

d

dt
‖τhft − ft‖L1

4
≤ C γ∗ ‖τhft − ft‖L1

4
‖f‖L1

5
.

By a Gronwall argument it shows for any |h| ≤ 1 that

∀ t ∈ [0, T∗], ‖τhft − ft‖L1
4
≤ ‖τhfin − fin‖L1

4
eCT∗ t

for a constant CT∗ depending on γ∗ and supt∈[0,T∗] ‖ft‖L1
5
. By dividing by h and

letting h goes to 0, we conclude that

∀ t ∈ [0, T∗], ‖∇vft‖M1
4
≤ ‖∇vfin‖M1

4
eCT∗ t

which ends the proof. ut

Now let us assume that the collision rate satisfies (1.10)–(1.14) plus the addi-
tional assumption H1: the measure b reduces to a mesure on the sphere Cu,e with
e(E), α(E) : (0,+∞) → [0, 1] locally Lipschitz functions. Let us take fin ∈ BV4 ∩L1

5

and let us consider two solutions f, g ∈ C([0, Tc];L
1
2) ∩ L∞(0, T ;L1

3) constructed by
the previous steps. For these two solutions the function e(E) is locally Lipschitz, so
is the function β(E) and the differential equation (1.7) satisfied by E(ft) on [0, T∗]
implies that it is bounded from below on this interval. Thus thanks to the continu-
ity of α, the assumptions of Proposition 4.2 are satisfied, and thus the BV4 norm is
bounded on any time interval [0, T∗] ⊂ [0, Tc) .

Proposition 4.3 Let B be a collision rate satisfying (1.10)–(1.14) plus the addi-
tionnal assumption H1. Let f, g ∈ C([0, T∗];L

1
2) ∩ L∞(0, T∗;L

1
3) be two solutions

with mass 1 and momentum 0 such that E(ft), E(gt) ∈ K on [0, T∗] with K compact
of (0,+∞) and

∀ t ∈ [0, T∗], ‖ft‖BV4 , ‖gt‖BV4 ≤ CT∗ .

Then there is a constant C ′
T∗ depending on B, K and CT∗ such that

∀ t ∈ [0, T∗], ‖ft − gt‖L1
2
≤ ‖fin − gin‖L1

2
eC′T∗ t.

Proof of Proposition 4.3. Let us denote Qf (resp. Qg) the collision operator with
collision rate associated with E = E(ft) (resp. E = E(gt)). Without restriction we
assume by symmetrization that b̃ has its support included in û · σ ≤ 0.

Let us denote D = f − g and S = f + g. The evolution equation on D writes

∂

∂t
D =

1

2
[Qf (D,S) +Qf (S,D)] + [Qf (g, g)−Qg(g, g)]
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and thus the time derivative of the L1
2 norm of D is

d

dt
‖D‖L1

2
=

1

2

∫
RN×RN×SN−1

SD∗

[
(1 + |v|2) sgn(D′) + (1 + |v′∗|2) sgn(D′

∗)

−(1 + |v|2) sgn(D)− (1 + |v∗|2) sgn(D)∗

]
|u| b̃(E(ft), û · σ) dv dv∗ dσ

+

∫
RN×RN×SN−1

gg∗

[
(1 + |v′e(ft)|

2) sgn(D′
e(ft))b̃(E(ft), û · σ)

−(1 + |v′e(gt)|
2) sgn(D′

e(gt))b̃(E(gt), û · σ)

]
|u| dv dv∗ dσ

−
∫

RN×RN×SN−1

gg∗(1 + |v|2) sgn(D)|u|
[
b̃(E(ft), û · σ)− b̃(E(gt); û · σ)

]
dv dv∗ dσ

=: I1 + I2 + I3

(the subscripts recall that the post-collisional velocities depend on the choice of the
restitution coefficient e). The first term is easily dealt with by the same arguments
as in the non-coupled case:

I1 ≤
∫

RN×RN×SN−1

S |D∗| (1+|v|2) |u| b̃(E(ft), û·σ) dv dv∗ dσ ≤ α(E(ft)) ‖S‖L1
3
‖ft−gt‖L1

1
.

The third term I3 is controlled by

I3 ≤ |α(E(ft))− α(E(gt))| ‖g‖L1
3
‖g‖L1

1

and using that α is locally Lipschitz on K we get

I3 ≤ CK |E(ft)− E(gt)| ‖g‖L1
3
‖g‖L1

1
≤ CK ‖ft − gt‖L1

2
‖g‖L1

3
‖g‖L1

1

for some constant CK depending on α and K.
As for the second term I2, we use the change of variable v∗ → v′ with v, σ fixed

and e given. This change of variable depends on e and we denote v∗ = φσ,e(v, v
′).

Let us denote the jacobian by Je. It is computed in [13]:

Je(cos θ) =

(
1 + e

4

)N

(1− cos θ)(4.8)

and thus since by symmetrization we suppose here that θ ∈ [π/2, π], we have

∀ e ∈ [0, 1], ∀ θ ∈ [0, π], Je(cos θ) ∈

[(
1

4

)N

, 2

(
1

2

)N
]
.(4.9)

Thus we get

I2 =

∫
RN×RN×SN−1

g (1 + |v′|2) sgn(D′) |u|
[
g(φσ,e(ft)(v, v

′)) Je(ft)(cos θ)

−g(φσ,e(gt)(v, v
′)) Je(gt)(cos θ)

]
b̃(E , cos θ) dv dv′ dσ.

31



So we can split this term as

I2 =

∫
RN×RN×SN−1

g (1 + |v′|2) sgn(D′) |u|
[
g(φσ,e(ft)(v, v

′))

−g(φσ,e(gt)(v, v
′))

]
Je(ft)(cos θ) b̃(E , cos θ) dv dv′ dσ

+

∫
RN×RN×SN−1

g (1 + |v′|2) sgn(D′) |u|
[
Je(ft)(cos θ)

−Je(gt)(cos θ)
]
g(φσ,e(gt)(v, v

′)) b̃(E , cos θ) dv dv′ dσ = I2,1 + I2,2.

For the term I2,2 we use that, from the formula (4.8) and the fact that E 7→ e(E) is
locally Lipschitz,∣∣∣Je(ft)(cos θ)−Je(gt)(cos θ)

∣∣∣ ≤ C |e(ft)−e(gt)| ≤ CK ‖E(ft)−E(gt)‖L1
2
≤ CK ‖ft−gt‖L1

2
.

Then doing the (elastic) change of variable backward v′ → v∗ (whose jacobian is
bounded by (4.9)) we get

I2,2 ≤ CK ‖ft − gt‖L1
2
‖g‖L1

3
‖g‖L1

1
.

We now aim to prove that for any functions f, g which energies Ef and Eg be-
long to a compact K ⊂ (0,∞) there exists a constant CK such that the following
functional inequality holds

I2,1 ≤ CK ‖ft − gt‖L1
2
‖g‖L1

4
‖g‖BV4 .(4.10)

Let first assume that f and g are smooth functions, say f, g ∈ D(RN). We have∣∣∣g(φσ,e(ft)(v, v
′))− g(φσ,e(gt)(v, v

′))
∣∣∣ ≤ ‖φσ,e(ft)(v, v

′)− φσ,e(gt)(v, v
′)‖(∫ 1

0

∣∣∣∇vg((1− t)φσ,e(ft)(v, v
′) + tφσ,e(gt)(v, v

′))
∣∣∣ dt) .

As for the difference |φσ,e(ft)(v, v
′) − φσ,e(gt)(v, v

′)|, it is easy to see that for some
fixed v, v′, σ the corresponding v∗ = φσ,e(v, v

′) are aligned for any e (on the line
determined by the plan defined by v, v′, σ and the direction defined by the angle
θ/2 between v′ − v and v∗ − v). Thus it remains to look for the algebraic length of
[φσ,e(ft)(v, v

′), φσ,e(gt)(v, v
′)] on this line, which is given explicitely in [13]:

|φσ,e(ft)(v, v
′)− φσ,e(gt)(v, v

′)| = |v − v′|
cos θ/2

2|e(ft)− e(gt)|
(1 + e(ft))(1 + e(gt))

.

Thus we get
|φσ,e(ft)(v, v

′)− φσ,e(gt)(v, v
′)| ≤ CK |u| ‖ft − gt‖L1

2
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and the term I2,1,1 is controlled by (using the uniform bound (4.9) on Je(ft)(cos θ))

I2,1,1 ≤ CK ‖ft − gt‖L1
2

∫ 1

0

∫
RN×RN×SN−1

g (1 + |v′|2) |u|2

|∇vg((1− t)φσ,e(ft)(v, v
′) + tφσ,e(gt)(v, v

′))| b(cos θ) dv dv′ dσ dt.

Finally for any t ∈ [0, 1] we want to perform the change of variable

v′ → (1− t)φσ,e(ft)(v, v
′) + tφσ,e(gt)(v, v

′).(4.11)

Some tedious but elementary computations yields

φσ,e(v, v
′) = v − 4|v − v′|

1 + e

[
σ

2 cos θ/2
+

v − v′

|v − v′|

]
.

We deduce that

(1− t)φσ,e1(v, v
′) + tφσ,e2(v, v

′) = φσ,e0(v, v
′)

with

e0 =
te1 + (1− t)e2 + e1e2
1 + (1− t)e1 + te2

∈ [min{e1, e2},max{e1, e2}].

Thus we deduce that the jacobian of the change of variable (4.11) is given by

(
Je(ft,gt)(cos θ)

)−1
with e(ft, gt) =

te(ft) + (1− t)e(gt) + e(ft)e(gt)

1 + (1− t)e(ft) + te(gt)

and thus is uniformly bounded thanks to (4.8). Therefore we obtain (4.10) for
smooth functions. When f, g ∈ BV4 we argue by density, introducing two sequences
of smooth functions (fn) and (gn) which converge respectively to f and g in L1 and
are bounded in BV4, we pass to the limit n→∞ in the functionnal inequality (4.10)
written for the functions fn and gn. We then easily conclude that (4.10) also holds
for f and g.

Collecting all the terms we thus get

d

dt
‖ft − gt‖L1

2
≤ C ′

T∗ ‖ft − gt‖L1
2

where C ′
T∗ depends on K, b and some uniform bounds on ‖f‖L1

4
and ‖g‖BV4 . This

concludes the proof by a Gronwall argument. ut
The uniqueness part of Theorem 1.4 follows straightforwardly from Proposi-

tion 4.3 and the discussion made just before its statement.
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5 Study of the cooling process

In this section we prove the cooling asymptotic as stated in point (ii) of Theorem
1.2 and points (iii), (iv), (v) of Theorem 1.4. We first prove the collapse of the
distribution function in the sense of weak * convergence to the Dirac mass in the
set of measures.

Proposition 5.1 Let Tc ∈ (0,+∞] be the time of life of the solution. Under the
sole additional assumption H2, there holds

f(t, .) ⇀
t→Tc

δv=0 weakly ∗ in M1(RN).(5.1)

Proof of Proposition 5.1. We split the proof in two steps.

Step 1. Assume first that E → 0 when t→ Tc. This includes the case when Tc < +∞
(since the convergence to 0 of the kinetic energy follows from the existence proof
in this case) and it will be established under additional assumptions on B when
Tc = +∞ but probably holds true under the sole assumption H2 in this case as well.
For any 0 ≤ ϕ ∈ D(RN\{0}), there exists r > 0 such that ϕ = 0 on D(0, r) and
then, there exists Cϕ = Cϕ(r, ‖ϕ‖∞) such that |ϕ(v)| ≤ Cϕ |v|2. As a consequence,∫

RN

f ϕ dv ≤ Cϕ E(t) → 0,

from which we deduce that any weak * limit µ̄ of f in M1 satisfies supp µ̄ ⊂ {0}.
Therefore, (5.1) follows using the conservations (1.30) and the energy bound (1.31).

Step 2. Assume next that E → E∞ > 0 (and thus also Tc = +∞). Then for a
fixed time T > 0 and for any non-negative sequence (tn) increasing and going to
+∞, there exists a subsequence (tnk

) and a measure µ̄ ∈ L∞(0, T ;M1
2 ) such that

the function fk(t, v) := f(tnk
+ t, v) satisfies

fk ⇀ µ̄ weakly ∗ in L∞(0, T ;M1).(5.2)

Moreover, for any ϕ ∈ Cc(RN), there holds

d

dt

∫
RN

fk ϕdv = 〈Q(fk, fk), ϕ〉 on (0, T ),

with 〈Q(fk, fk), ϕ〉 bounded in L∞(0, T ). From Ascoli Theorem, we get∫
RN

fk ϕdv →
∫

RN

ϕdµ̄(v) uniformly on [0, T ].

As a consequence, for any given function χε ∈ Cc(R3 × R3) such that 0 ≤ χε ≤ 1
and χε(v, v∗) = 1 for every (v, v∗) such that |v| ≤ ε−1 and |v∗| ≤ ε−1 we may pass
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to the limit (using the continuity of β = β(E , u) which is uniform on the compact
set determined by [E∞, E0] and the support of χε)∫ T

0

Dε(fk) dt −→
k→+∞

∫ T

0

∫
RN×RN

|u|3β(E∞, u)χε(v, v∗) dµ̄ dµ̄∗ dt,(5.3)

where we have defined for any measure (or function) λ:

Dε(λ) :=

∫
RN×RN

|u|3 β(E , u)χε(v, v∗) dλ(v) dλ(v∗).

From the dissipation of energy (1.7) and the estimate from below (1.18), there holds

d

dt
E(t) ≤ −D(f) with D(f) :=

∫
RN×RN

|u|3 β(E , u) f f∗ dv dv∗,

which in turn implies that t 7→ D(f(t, .)) ∈ L1(0,∞), and then∫ T

0

Dε(fk) dt ≤
∫ T

0

D(fk) dt =

∫ tnk
+T

tnk

D(f) dt −→
k→∞

0.(5.4)

Gathering (5.3) and (5.4), and letting ε goes to 0, we deduce that∫
RN×RN

|u|3β(E∞, u) dµ̄ dµ̄∗ = 0 on (0, T ).

The positivity (1.17) of β(E∞, u) then implies that µ̄ = c̄ δv=w̄ for some measurable
functions w̄ : (0, T ) → RN and c̄ : (0, T ) → R+. Moreover, from the conservation of
mass and momentum (1.30) and the bound of energy (1.31) we deduce that c̄ = 1
and w̄ = 0 a.e. It is then classical to deduce (by the uniqueness of the limit and the
fact that it is independent on time) that (5.1) holds. ut

To conclude that this weak convergence of the distribution to the Dirac mass
as time goes to infinity implies the convergence of the kinetic energy to 0 (i.e. the
kinetic energy of the Dirac mass) we have to show that no kinetic energy is “created”
at infinify as t→ Tc. To this purpose we put stronger assumptions on the collision
rate. The first additional assumption H3 roughly speaking means that the energy
dissipation functional is strong enough to forbid it, whereas the second additional
assumption H4 allows to use the uniform propagation of moments of order strictly
greater than 2 to forbid it.

Proposition 5.2 Let Tc ∈ (0,+∞] be the time of life of the solution. Then if either
Tc < +∞, or Tc = ∞ and B satisfies additional assumptions H2-H3 or H2-H4,
we have

E(t) → 0 when t→ Tc.(5.5)
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Proof of Proposition 5.2. We split the proof in three steps.

Step 1. Assume first Tc <∞. The claim follows from the existence proof.

Step 2. Assume now Tc = ∞ and that B satisfies assumption H3: (1.18)-(1.19). We
argue by contradiction: assume that E(t) 6→ 0, that is, there exists E∞ > 0 such that
E(t) ∈ (E∞, Ein). Reasoning as in Proposition 5.1, we get, for a fixed time T > 0 and
for any sequence (tn) increasing and going to +∞, that there exists a subsequence
(tnk

) and a measure µ̄ ∈ L∞(0, T ;M1
2 ) such that the function fk(t, v) := f(tnk

+ t, v)
satisfies (5.2) and ∫ T

0

D0
ε(fk) dt→

∫ T

0

D0
ε(µ̄) dt,(5.6)

where we have defined for any measure (or function) λ:

D0
ε(λ) :=

∫
RN×RN

|u|3 ψ(|u|)χε(v, v∗) dλ(v) dλ(v∗).

From the dissipation of energy (1.7) and the estimate from below (1.18), there holds

d

dt
E(t) ≤ −D0(f) with D0(f) :=

∫
RN×RN

|u|3 ψ(|u|) f f∗ dvdv∗,(5.7)

which in turn implies that t 7→ D0(f(t, .)) ∈ L1(0,∞), and then∫ T

0

D0
ε(fk) dt ≤

∫ T

0

D0(fk) dt =

∫ tnk
+T

tnk

D0(f) dt −→
k→∞

0.(5.8)

Gathering (5.6) and (5.8), and letting ε goes to 0, we deduce that D0(µ̄) = 0 on
(0, T ). The positivity of ψ implies as in Proposition 5.1 that supp µ̄ ⊂ {0} and
µ̄ = δv=0. As this limit is unique and independent on time we deduce that (5.1)
holds.

Now, on the one hand, taking R =
√
E∞/2 there holds∫

Bc
R

f |v|2 dv =

∫
RN

f |v|2 dv −
∫

BR

f |v|2 dv ≥ E∞ −R2 ≥ E∞/2(5.9)

for any t ≥ 0. On the other hand, for T large enough, there holds thanks to (5.1)∫
BR/2

f dv ≥ 1

2
for any t ≥ T.(5.10)

Remarking that on BR/2 ×Bc
R there holds, thanks to (1.19),

|u|3 ψ(|u|) ≥ |v∗|3

8
ψ

(
|v∗|
2

)
≥ ψR

|v∗|2

4
,(5.11)
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we may put together (5.7)-(5.11) and we get thanks to (5.9) and (5.10)

d

dt
E(t) ≤ −

∫
BR/2

∫
Bc

R

|v − v∗|3 ψ(|v − v∗|) f f∗ dvdv∗

≤ −ψR

4

∫
BR/2

f dv

∫
Bc

R

f∗ |v∗|2 dv∗ ≤ −ψR

4

1

2

E∞
2

for any t ≥ T . This implies that E becomes negative in finite time and we get a
contradiction.

Step 3. Finally, assume that Tc = +∞ and B satisfies assumption H4. On the one
hand, thanks to (3.6), there holds

sup
[0,∞)

∫
RN

f(t, v) |v|3 dv <∞.

On the other hand, arguing as in Step 2, we obtain (keeping the same notations)
that (5.2) and then (from the uniform bound in L1

3)

E(fk) → Ē = E(µ̄) and D(µ̄) = 0.

The dissipation of energy vanishing implies that

|u|3 µµ∗ ≡ 0 or β(Ē , u) is not positive on (0, T )× R2N .

In the first case we deduce that µ̄ = δv=0 as in Step 2 and then Ē = E(δv=0) = 0.
In the second case we deduce, from (1.17), that Ē is not positive. In both case,
there exists τk such that τk →∞ and E(τk) → 0 and therefore (5.2) holds since E is
decreasing. ut

Now we turn to some criterions for the cooling process to occur or not in finite
time.

Proposition 5.3 Assume that α is bounded near E = 0, and jE converges to 0 as
ε→ 0 uniformly near E = 0, then Tc = +∞.

Proof of Proposition 5.3. It is enough to remark that, thanks to the hypothesis
made on α and jE , the a priori bound in Orlicz norm that one deduces from (2.10)
as in Corollary 2.6 extends to all times:

∀ t ≥ 0 ‖ft‖LΛ ≤ ‖fin‖LΛ exp
(
C ‖fin‖L1

2
t
)

for some constant C depending on the collision rate. It shows that the energy cannot
vanish in finite time. ut

Proposition 5.4 Assume that B satisfies H4, that for some increasing and positive
function β0 there holds β(E , u) ≤ β0(E) for any u ∈ RN , E ≥ 0, and that fin e

r |v|η ∈
L1 for some r > 0 and η ∈ (1, 2], then Tc = +∞.
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Proof of Proposition 5.4. From the dissipation of energy (1.7), the bound on β and
the decay of the energy (1.31) we have

dE
dt

≥ −β0(Ein)

∫
RN

∫
RN

f f∗ |u|3 dvdv∗ =: −β0(Ein) (I1,R + I2,R)

where 
I1,R :=

∫
RN×RN

|u|3 1{|u|≤R} f f∗ dv dv∗

I2,R :=

∫
RN×RN

|u|3 1{|u|≥R} f f∗ dv dv∗.

On the one hand, for any R > 0, we have using (1.30)

I1,R ≤ R

∫
RN×RN

|u|2 f f∗ dv dv∗ = 2R E .

On the other hand, we infer from Proposition 3.2 (since B satisfies H4) that

sup
t∈[0,Tc)

∫
RN

f(t, v) e2 r′ |v|η dv ≤ C1

for some r′, C1 ∈ (0,∞). Therefore

I2,R ≤
∫

RN×RN

(4 |v|3 + 4 |v∗|3) 21{|v|>R/2} f f∗ dv dv∗

≤ 8 e−r′ Rη

∫
RN

(1 + |v|3) er′ |v|η f dv

∫
RN

(1 + |v∗|3) f∗ dv∗ ≤ C2 e
−r′ Rη

.

Gathering these three estimates, we deduce

d

dt
E ≥ −C3R E − C3 e

−r′ Rη

,

which in turns implies, thanks to the Gronwall Lemma,

∀R > 0, inf
t∈[0,T ]

E(t) ≥ Ein e
−C3 R T − e−r′ Rη

R
.

We conclude that E(t) > 0 for any t ∈ [0, T ] and any fixed T > 0, choosing R large
enough (using that η > 1). ut

Proposition 5.5 Assume β(E , u) ≥ β0 Eδ with β0 > 0 and δ < −1/2, then Tc <
+∞.

Proof of Proposition 5.5. On the one hand, from the dissipation of energy (1.7) and
the bound on β, we have

dE
dt

≤ −β0 Eδ

∫
RN

∫
RN

f f∗ |u|3 dvdv∗.
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On the other hand, from Jensen inequality and the conservation of mass and mo-
mentum, there holds∫

RN

∫
RN

f f∗ |u|3 dvdv∗ ≥
(∫

RN

∫
RN

f f∗ |u|2 dvdv∗
)3/2

= (2 E)3/2.

Gathering these two estimates, we get

d

dt
E ≤ −β0 Eδ+3/2

and E vanishes in finite time. ut

Appendix: Some facts about Orlicz spaces

The goal of this appendix is to gather some results about Orlicz spaces in order to
make this paper as self-contained as possible. The definition and Hölder’s inequality
are recalls of results which can be found in [26] for instance. We also state and prove
a simple formula for the differential of Orlicz norms, which is most probably not new,
but for which we were not able to find a reference.

Definition

We recall here the definition of Orlicz spaces on RN according to the Lebesgue
measure. Let Λ : R+ → R+ be a function C2 strictly increasing, convex, such that

Λ(0) = Λ′(0) = 0,(A.1)

∀ t ≥ 0, Λ(2 t) ≤ cΛ Λ(t),(A.2)

for some constant cΛ > 0, and which is superlinear, in the sense that

Λ(t)

t
−→

t→+∞
+∞.(A.3)

We define LΛ the set of measurable functions f : RN → R such that∫
RN

Λ(|f(v)|) dv < +∞.

Then LΛ is a Banach space for the norm

‖f‖LΛ = inf

{
λ > 0 |

∫
RN

Λ

(
|f(v)|
λ

)
dv ≤ 1

}
and it is called the Orlicz space associated with Λ. The proof of this last point can
be found in [26, Chapter III, Theorem 3]. Note that the usual Lebesgue spaces Lp

for 1 ≤ p < +∞ are recovered as particular cases of this definition for Λ(t) = tp.
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Let us mention that for any f ∈ L1(RN), a refined version of the De la Vallée-
Poussin theorem [20, Proposition I.1.1] (see also [18, 19]) guarantees that there exists
a function Λ satisfying all the properties above and∫

RN

Λ(|f(v)|) dv < +∞.

Hölder’s inequality in Orlicz spaces

Let Λ a function C2 strictly increasing, convex satisfying the assumptions (A.1),
(A.2) and (A.3), and Λ∗ its complementary Young function, given (when Λ is C1)
by

∀ y ≥ 0, Λ∗(y) = y(Λ′)−1(y)− Λ((Λ′)−1(y)).

It is straightforward to check that Λ∗ satisfies the same assumptions as Λ. Recall
the Young’s inequality

∀ x, y ≥ 0, x y ≤ Λ(x) + Λ∗(y).(A.4)

Then one can define the following norm on the Orlicz space LΛ∗ :

NΛ∗(f) = sup

{∫
RN

|fg| dv ;

∫
RN

Λ(|g|) dv ≤ 1

}
.

One can extract from [26, Chapter III, Section 3.4, Propositions 6 and 9] the fol-
lowing result

Theorem A.1 (i) We have the following Hölder’s inequality for any f ∈ LΛ, g ∈
LΛ∗: ∫

RN

|fg| dv ≤ ‖f‖LΛ NΛ∗(g).(A.5)

(ii) There is equality in (A.5) if and only if there is a constant 0 < k∗ < +∞ such
that (

|f |
‖f‖LΛ

) (
k∗|g|
NΛ∗(g)

)
= Λ

(
|f |

‖f‖LΛ

)
+ Λ∗

(
k∗|g|
NΛ∗(g)

)
(A.6)

for almost every v ∈ RN .

Differential of Orlicz norms

In order to propagate bounds on Orlicz norms along the flow of the Boltzmann
equation, we shall need a formula for the time derivative of the Orlicz norm.

Theorem A.2 Let Λ be a function C2 strictly increasing, convex satisfying (A.1),
(A.2), (A.3), and let 0 6= f ∈ C1([0, T ], LΛ). Then we have

d

dt
‖ft‖LΛ =

[
NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))]−1 ∫
RN

∂tf Λ′
(

|f |
‖f‖LΛ

)
dv.(A.7)
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Proof of Theorem A.2. From [26, Chapter III, Proposition 6]), our assumptions on
Λ imply that ∫

RN

Λ

(
|f |

‖f‖LΛ

)
dv = 1(A.8)

for all 0 6= f ∈ LΛ. By differentiating this quantity along t we get:

0 =

∫
RN

∂tf Λ′
(

|f |
‖f‖LΛ

)
dv − 1

‖ft‖LΛ

d

dt
‖ft‖LΛ

∫
RN

f Λ′
(

|f |
‖f‖LΛ

)
dv

Now using the case of equality in the Hölder’s inequality (A.5) we have∫
RN

f Λ′
(

|f |
‖f‖LΛ

)
dv = ‖f‖LΛ NΛ∗

(
Λ′

(
|f |

‖f‖LΛ

))
since the equality (A.6) is trivially satisfied with

g = Λ′
(

|f |
‖f‖LΛ

)
and k∗ = NΛ∗(g), using that

xy = Λ(x) + Λ∗(y)

as soon as y = Λ′(x). This concludes the proof. ut
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