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Abstract. In this paper we describe the fundamental solution of the equa-
tion that is obtained linearizing the Uehling-Uhlenbeck equation around the
steady state of Kolmogorov type f(k) = k−7/6. Detailed estimates on its
asymptotics are obtained.
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1 Introduction.

This paper is devoted to the analysis of several mathematical properties of the
Uehling Uhlenbeck equation. This equation, introduced by L. W. Nordheim
in [14] and by E. A. Uehling and G. E. Uhlenbeck in [19], describes the
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evolution in the momentum space of a weakly interacting gas of bosons. In
the homogeneous case, this equation has the form:

∂f

∂t
(t, p) = Q(f(t, .))(p) (1.1)

where f ≡ f(t, p) is the particle density in the momentum space at time t.
The precise form of the collision kernel Q(f) is given by:

Q (f) (p1) =

∫
(
R

3
)3

W (p1, p2, p3, p4) q(f)dp2dp3dp4 (1.2)

q (f) = f3f4(1 + f1)(1 + f2) − f1f2(1 + f3)(1 + f4) (1.3)

W (p1, p2, p3, p4) = w(p1, p2, p3, p4)δ(p1 + p2 − p3 − p4) ·
. δ(p1|2 + |p2|2 − |p3|2 − |p4|2) (1.4)

From now on for convenience we write, fi ≡ f(·, pi), i = 1 · · · 4, where δ
represents the Dirac measure and w is basically the differential cross section.
The function w is determined by the specific kind of interaction under con-
sideration. Since boson-boson is a short range interaction it can be assumed
that w is constant (cf. [8] vol. 3), and therefore it can be chosed as w = 1
after rescaling the time.

If we assume that the gas is isotropic, we may write f(t, p) = f(t, |p|) ≡
f(t, k) with k = |p|2. The equation (1.1) reduces then to

∂f

∂t
(k1, t) =

∫ ∫
D(k1)

W (k1, k2, k3, k4) q (f) dk3dk4 (1.5)

(see for instance [17]), where q (f) is as in (1.3) and D (k1) is defined by
means of

D (k1) ≡ {(k3, k4)) : k3 + k4 ≥ k1} (1.6)

and finally

W (k1, k2, k3, k4) =
min

(√
k1,

√
k2,

√
k3,

√
k4

)
√

k1

(1.7)

k2 = k3 + k4 − k1. (1.8)

There are several reasons for considering the equation (1.5) with singular ini-
tial data as k → 0. More precisely, data behaving as k−7/6. This particular
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type of behaviour arises in applications of the equation (1.1) in Bose Einstein
condensation, as in references [4, 16, 17], and in weak turbulence, as in [3].
The interpretation of solutions of equation (1.1) behaving as |p|−7/3 ≡ k−7/6

when k → 0 is the existence of a net flux or sink of particles at the origin
p = 0 (cf. [4, 7]).

Our purpose is to develop a rigorous mathematical theory of well posed-
ness for (1.5) whose solutions behave like k−7/6 as k → 0. In order to do
that, our approach will consist in deriving a suitable semigroup theory for
the problem obtained linearizing (1.5) around k−7/6. We use the semigroup
obtained in this paper in order to study the nonlinear problem in a forthcom-
ing paper. We remark that global solutions for an analogue equation, with
a modified version of the kernel, has been studied by X. G. Lu in [11, 12].

In order to precise the problem under consideration, we notice that for large
values of the density f , the Uehling Uhlenbeck equation can be approximated
by the following one, that has better homogeneity properties:

∂f

∂t
(k1, t) = Q̃(f)(k1) ≡

∫ ∫
D(k1)

W (k1, k2, k3, k4) q̃ (f) dk3dk4 (1.9)

where
q̃(f) = f3f4 (f1 + f2) − f1f2 (f3 + f4) (1.10)

and W and D(k1) are as in (1.6) and (1.7)-(1.8). This equation has been
extensively studied in the context of weak turbulence (cf. [3] and references
therein).

An interesting feature of the equation (1.9), (1.10) is the existence of sin-
gular steady states. In the reference [20] may be found a detailed study of

the equation Q̃(f) = 0 with f(k) = kα. The results of that paper show that
the only admisible solution of this form is the one with α = −7/6.

The main contribution of this paper is to study the fundamental solution
corresponding to the linearization of the equation (1.9), (1.10) around the
solution k−7/6. To this end, we make an extensive use of the ideas in [20]. In
that paper, Balk and Zakharov have developed a very general technique for
the study of linear kinetic equations with homogeneous kernels. In this paper
we have adapted those ideas to the specific problem considered here and, in
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particular we have obtained rather refined L∞ estimates for the fundamental
solution associated to the equation that will be needed for the study of the
nonlinear problem (1.1)-(1.4).

The plan of the paper is the following. In Section 2, we linearise the equation
(1.9), (1.10) around the steady state f(k) = k−7/6 and obtain the Cauchy
problem (2.9). We state in Theorem 2.2 our main result about the existence,
uniqueness and behaviour of the solutions. In order to introduce and moti-
vate the natural functional framework we perform a first change of variables
and obtain the new formulation of the problem in (2.13). This one is then re-
duced to the Carleman type equation (2.30) and (2.31). In Section 3 we solve
in detail the Carleman’s equation using the classical Wiener-Hopf method.
In Section 4 we derive several estimates for the resulting fundamental so-
lution of the linearized problem. Finally, in several Appendices at the end
of the paper we have collected some technical results which are used in the
arguments.

2 The Linearized problem: Carleman’s equa-

tion

We first proceed to linearise the equation (1.6)-(1.10) around the particular
solution k−7/6. To this end we write

f = k−7/6 + F.

Plugging this expression into (1.5)-(1.8) and keeping only the terms which are
linear with respect to F we obtain the linearized Uehling Uhlenbeck equation

∂F

∂t
= QL(F ) ≡

∫
D(k1)

W (k1, k2, k3, k4) ql(F ) dk3 dk4 (2.1)

for t > 0, k > 0, where

ql(F ) =
1

k
7/6
3 k

7/6
4

(F1 + F2) +
1

k
7/6
4

(
1

k
7/6
1

+
1

k
7/6
2

)F3 +
1

k
7/6
3

(
1

k
7/6
1

+
1

k
7/6
2

)F4

− 1

k
7/6
1

1

k
7/6
2

(F3 + F4) −
1

k
7/6
1

(
1

k
7/6
3

+
1

k
7/6
4

)F2 −
1

k
7/6
2

(
1

k
7/6
3

+
1

k
7/6
4

)F1.(2.2)

We express, in the following Proposition the collision integral QL in a more
suitable way for our next calculations.
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Proposition 2.1 Equation (2.1)-(2.2) might be written as

∂F

∂t
= − a

k1/3
F (k) +

1

k4/3

∫ ∞

0

K(
r

k
) F (r) dr, (2.3)

where K ∈ C∞ ((0, 1) ∪ (1, +∞)) satisfies:

K(r) ∼ a1r
1/2 as r → 0 (2.4)

K(r) ∼ a2r
−7/6 as r → +∞ (2.5)

K(r) ∼ a3(1 − r)−5/6 + a4 + O((1 − r)1/6) as r → 1− (2.6)

K(r) ∼ a5(r − 1)−5/6 + a6 + O((1 − r)1/6) as r → 1+, (2.7)

and ai ∈ R, i = 1, · · · 6. The constants a > 0, ai and the kernel K(r) can be
explicitely computed and they are given in the Appendix A.

Proof. Using the symmetries of the right hand side of (2.1), the equation
may be written as follows:

∂F

∂t
= F1

∫
D(k1)

W{ 1

k
7/6
3 k

7/6
4

− 1

k
7/6
2

(
1

k
7/6
3

+
1

k
7/6
4

)} dk3 dk4

+ 2

∫
D(k1)

F3 W { 1

k
7/6
4

(
1

k
7/6
1

+
1

k
7/6
2

) − 1

k
7/6
1

1

k
7/6
2

} dk3 dk4

+

∫
D(k1)

F2 W { 1

k
7/6
3 k

7/6
4

− 1

k
7/6
1

(
1

k
7/6
3

+
1

k
7/6
4

)} dk3 dk4

≡ I3 F1 + I1 + I2, (2.8)

where W is as in (1.7).
Tedious but elementary computations, which are sketched in Appendix A1,
show that I1 +I2 can be written as the integral term in (2.3) and I3 is exactly
−ak−1/3. The asymptotics (2.5)-(2.7) can be obtained by means of explicit
computations.

As we already said in the Introduction, the main goal of this work is to
obtain a semi explicit expression of the solution to the Cauchy problem asso-
ciated to equation (2.3). To this end we construct the fundamental solution
F (k, k0, t) of the Uehling Uhlenbeck equation, which solves: Ft(t, k, k0) = − a

k1/3
F (t, k, k0) +

1

k4/3

∫ ∞

0

K(
r

k
) F (t, r, k0) dr, t > 0, k > 0,

F (t, k, k0) = δ(k − k0), k0 > 0.
(2.9)
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We transform now (2.9) to a more convenient form by means of the following
change of variables:

r = ey, k = ex; (2.10)

F (t, k, 1) = G(t, x), K(r/k) = K(e−(x−y)) = ex−yK(x − y), (2.11)

with
K(x) = e−xK(e−x). (2.12)

We are then lead to the following Cauchy problem:
∂

∂t
G(t, x) = e−x/3

(
−aG(t, x) +

∫ ∞

−∞
K(x − y)G(t, y) dy

)
,

G(0, x) = δ(x),
(2.13)

for t > 0 and x ∈ R.
Analysing the solution of (2.13), is crucial to understand the analyticity

properties of the function Φ(ξ) = −a+K̂(ξ), where K̂ is the Fourier transform
of K. It turns out that this function is meromorphic with explicit poles in
the imaginary axes (cf. Appendix B). On the other hand, the positions of the
zeros of Φ(ξ) determine the asymptotics of G(t, x). In particular the zeros of
Φ that are closer to the line Imξ = 4/3 are placed at ξ = 7i/6, ξ = 13i/6
and there are two zeros placed symmetrically with respect to the imaginary
axes at the points

ξ = ±u0 + v0i (2.14)

where the values of u0 and v0 are computed numerically and are given by

u0 = 0.331..., v0 = 1.84020....

2.1 Functional framework.

As a first step we precise the class of functions where it is natural to solve
(2.13).
Due to (2.4) and (2.5), the behaviour of the kernel K is

K(x) ∼ a1e
x
6 as x → −∞ (2.15)

K(x) ∼ a2e
− 3

2
x as x → +∞. (2.16)
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Therefore, in order for the integral term in (2.13) to be convergent it is
natural to assume :

|G(t, x)| ≤ Ce−Mx for x < 0, |G(t, x)| ≤ Ce−mx for x > 0 (2.17)

for some m > −1/6 and M < 3/2, and where from now on, C is a generic
constant that might change from line to line.
Suppose now that G is a function satisfying (2.17). Then, by (2.15) and
(2.16)

|
∫ ∞

−∞
K(x − y)G(y)dy| ≤ C

(
e−

3
2
x + e−mx

)
(2.18)

for x > 0. We deduce from (2.18) that the right hand side of (2.13) may be
estimated as:

e−x/3

∣∣∣∣−aG(x) +

∫ ∞

−∞
K(x − y)G(y) dy

∣∣∣∣ ≤ C
(
e−(m+ 1

3
)x + e−

11
6

x
)

, (2.19)

for x > 0. Therefore, for any initial data of (2.13), say compactly sup-
ported, it would follow from the equation that (2.17) for x > 0 holds for
some m ∈ (1/6, 11/6]. Iterating the argument, we deduce (2.17) for x > 0
with M < 3/2 and m = 11/6.

Notice that, since we are interested in solving the problem (2.13) whose
initial data is a Dirac mass, one would have an additional term e−3x/2 in the
right hand side of (2.18). We define then:

U(M) = {H ∈ L∞
loc(R); H satisfies (2.17) with m = 11/6} ,

V(M, x0) = {G; G(x) = α δ(x − x0) + H(x), α ∈ R, H ∈ U(M)} , x0 ∈ R.
(2.20)

These spaces, have a natural translation in the k variable by means of (2.10),
(2.11), namely:

Ũ(M) = {h ∈ L∞
loc(0, +∞); |h(k)| ≤ CkM−1, for k ≤ 1,

and |h(k)| ≤ Ck5/6, for k > 1}

Ṽ(M, k0) = {F ; F (k) = α δ(k − k0) + h(k), α ∈ R, h ∈ Ũ(M)}, k0 > 0.
(2.21)
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We finally remark that the Fourier transform of the elements of U(M),
V(M, x0) are analytic in suitable strips of the complex plane. More precisely,
let us define,

Ĝ(ξ) =
1√
2π

∫ +∞

−∞
e−iξxG(x) dx. (2.22)

It is easily checked that for any G ∈ V(M, x0), the function Ĝ is analytic in
the strip

SM = {ξ; ξ = u + iv, M < v < 11/6, u ∈ R} . (2.23)

Moreover, notice that for G ∈ V(M, x0), the corresponding Fourier transform

Ĝ is a uniformly bounded function in such strips.

2.2 The main result.

The scaling properties of (2.3) suggest the following functional dependence:

F (t, k, k0) =
1

k0

F (
t

k
1/3
0

,
k

k0

, 1). (2.24)

Therefore, it is enough to study (2.9) for k0 = 1. Our main result is the
following.

Theorem 2.2 Assume that M ∈ (7/6, 3/2). Then, for all k0 > 0, there
exists a unique solution F (t, ·, k0) of (2.9) in the class of functions Ṽ(M, k0).
Moreover, F (t, ·, k0) ∈ Ṽ(7/6, k0), has the form given in (2.24), where F (t, k, 1)
can be written as:

F (t, k, 1) = e−a tδ(k − 1) + σ(t) k−7/6 + R1(t, k) + R2(t, k),

where σ ∈ C[0, +∞) satisfies:

σ(t) =

{
A t4 + O(t4+ε) as t → 0+,

O(t−(3v0−5/2)) as t → +∞ (2.25)

R1 satisfies,

R1(t, k) ≡ 0 for |k − 1| ≥ 1

2
, (2.26)

|R1(t, k)| ≤ C
e−(a−ε)t

|k − 1|5/6
for |k − 1| ≤ 1

2
, (2.27)
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and finally R2 satisfies:

R2(t, k) ≤


C

t5/2+ε

(
t3

k

)b̃

for 0 ≤ t ≤ 1

C

t3v0−ε

(
t3

k

)b̃

for t > 1

(2.28)

for k ≤ 1,

R2(t, k) ≤


C

t
9
2
+ε

(
t3

k

) 11
6

for 0 ≤ t ≤ 1

C

t1+3v0−ε

(
t3

k

) 11
6

for t > 1,

(2.29)

for k > 1. In these formulae, A is an explicit numerical constant, ε > 0 is
an arbitrarily small number, b̃ is an arbitrary number in the interval (1, 7/6),
and v0 as in (2.14). The constant C depends on ε and b̃ but is independent
on t.

2.3 Carleman’s equation.

In order to solve (2.13) we transform this equation into a Carleman’s equation
taking the Fourier transform in the x variable and the Laplace transform
in the t variable. We define the Fourier transform with respect to the x
variable, G̃(t, ξ), as in (2.22) and the Laplace transform of this last function
with respect to t by means of

G(z, ξ) =

∫ ∞

0

e−ztĜ(t, ξ)dt.

In this manner, (2.13) becomes:

zG(z, ξ) = G(z, ξ − i

3
)Φ(ξ − i

3
) +

1√
2π

, (2.30)

where Φ(ξ) = −a + K̂(ξ) and K̂ is the Fourier transform of K.

Since we are looking for solutions of (2.13) in the class Ṽ(M, 0) with M
as in the statement of Theorem 2.2, it follows that G(z, ·) is analytic in a
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strip SM (cf. (2.23)) whose width is larger that 1/3.
Therefore, the basic problem that we need to solve is the following:

For any z ∈ C, Rez > 0, find a function G(z, ·) analytic in the strip

SM = {ξ; ξ = u + iv, M < v < 11/6, u ∈ R} for some M < 3/2 (2.31)

and satisfying (2.30) on SM .

Problem (2.30) may be solved by means of suitable Wiener-Hopf types ar-
guments as introduced in this context in [3]). The analyticity properties of
the function Φ(ξ) play a crucial role solving (2.31). Therefore, we summarize
the relevant properties of Φ in the Appendix B. Concerning the analyticity
of G with respect to the z variable, it turns out that it is possible to extend
G analytically to z ∈ C \ R

− as it will be explained in the next section.

3 Solving Carleman’s equation using Wiener-

Hopf method.

3.1 Reformulating the Carleman’s equation.

We will prove Theorem 2.2, assuming by definitness that M = 4/3. This
is useful in order to discharge the notation at several points, but the same
arguments could be made for any value of M ∈ (7/6, 3/2). Let us introduce
the following new set of variables:

ζ = T (ξ) ≡ e6π(ξ− 4
3
i) (3.1)

g(z, ζ) = G(z, ξ) (3.2)

ϕ̃(ζ) = Φ(ξ). (3.3)

Notice that the transformation T transforms the complex plane C in the
Riemann surface associated to the logarithmic function that we will denote
from now on as S. The function ϕ̃ is meromorphic in this Riemann surface.
We can characterize uniquely each of the sheets of this Riemann surface
by means of the argument θ of ζ, where ζ = reiθ. Notice in particular
that the strip S4/3, where by assumption the function G(z, ξ) is analytic, is
transformed by means of (3.1), into the portion of S such that θ ∈ (0, 3π).
Therefore, the function g(z, ·) is analytic in that region. Let us denote as D
the following portion of the Riemann surface S:

D = {ζ ∈ S; ζ = reiθ, r > 0, 0 < θ < 2π}. (3.4)
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The definition of the function g(z, ζ) as well as (2.30) imply that g solves the
following problem:

zg(z, x − i0) = ϕ(x) g(z, x + i0) +
1√
2π

for all x ∈ R
+ (3.5)

g is analytic and bounded in D, (3.6)

where, for any x ∈ R
+:

g(z, x + i0) = lim
ε→0

g(z, xeiε), g(z, x − i0) = lim
ε→0

g(z, xei(2π−ε)) (3.7)

ϕ(x) = lim
ε→0

ϕ̃(xeiε). (3.8)

Problem (3.5)-(3.8) is explicitly solvable using the Wiener Hopf method. The
result is the following:

Theorem 3.1 For any z ∈ C \ R
−, there exists a unique bounded function

g = g(z, ·), solving (3.5)-(3.8) given by:

g(z, ζ) =
1

2πi

ζ

z

∫ ∞

0

M(z, λ − i0)

M(z, ζ)

dλ

λ (λ − ζ)
(3.9)

where,

M(z, ζ) = exp

[
1

2πi

∫ ∞

0

ln

(
ϕ(λ)

z

) (
1

λ − ζ
− 1

λ − λ0

)
dλ

]
, (3.10)

λ0 ∈ C \ R
+ is arbitrary, and the logarithmic function is defined in such a

way that:

I m

(
lim

λ→0+
ln

(
ϕ(λ)

z

))
= I m

(
ln

(
−a

z

))
∈ (−2π, 0) (3.11)

and it is extended analitically for λ moving along the positive real line.

Remark 3.2 The possibility of extending analytically the function ln
(

ϕ(λ)
z

)
as indicated in the Theorem 3.1 is not automatic but it will be obtained during
the proof of this result.
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Remark 3.3 At a first glance, the arbitrariness of the number λ0, could
yield several different functions g(z, ζ). Nevertheless, it turns out that the
dependence of λ0 disappears, in (3.9) as it will be seen in the proof of the
Theorem 3.1.

Proof of the Theorem 3.1. During the proof we will use several technical
lemmae that we state and prove in Appendix C in order to avoid breaking
the continuity of the main argument.
Since the function ϕ(λ) does not vanish in a neighborhood of R

+ (cf. (P-2) in
Appendix B), we can define, the function h(λ) ≡ ln (ϕ(λ)/z) in such domain.
Moreover, we can prescribe uniquely this function setting

lim
λ→0

I m (h(λ)) = I m
(
ln(−a

z
)
)
∈ (−2π, 0) (3.12)

Since h is bounded in a neighborhood of R
+, we can define the function M

as in (3.10). A similar argument to the one used in the proof of the Plemej
Sojolstki (as it may be found for example in [13]), yields

1

z
ϕ(x) =

M(z, x + i0)

M(z, x − i0)
(3.13)

where M(x ± i0) are defined as in (3.7).
Plugging (3.13) into (3.5) we obtain

M(z, x− i0) g(z, x− i0) =
1

z
M(z, x+ i0) g(z, x+ i0)+

M(z, x − i0)√
2πz

, (3.14)

for all x ∈ R
+. We now claim that

M(z, x − i0)

z
= W (z, x + i0) − W (z, x − i0), for any x > 0 (3.15)

where:

W (z, ζ) =
1

2πi

∫ ∞

0

M(z, λ − i0)

z

(
1

λ − ζ
− 1

λ − λ0

)
dλ (3.16)

and λ0 is an arbitrary number in D.

Formula (3.15) is a consequence of the Plemej Sojoltski formula if M(z, λ−i0)
had good boundedness properties for λ → 0 and λ → +∞. Such properties,
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in whose proof plays a crucial role property (P-4) in Appendix B, are sum-
marized in Proposition C.1 in Appendix C.

Using (3.15) in (3.14) we deduce:

M(z, x−i0)g(z, x−i0)+W (z, x−i0) = M(z, x+i0)g(z, x+i0)+W (z, x+i0),
(3.17)

for all x ∈ R
+.

It then follows that the function C(z, ·) defined by means of:

C(z, ·) ≡ M(z, ·)g(z, ·) +
W (z, ·)√

2π
(3.18)

is analytic in C \ {0}. Due to the boundedness of g(z, ·) as well as the
estimates in Proposition C.1 and Proposition C.3, the function C(z, ζ) is
bounded in compact sets and growths at most as |ζ|1−δ as |ζ| → +∞, for
some δ > 0. Therefore, by Liouville’s theorem, C(z, ζ) does not depend on ζ
i. e.

∀z ∈ C \ R
− : C(z, ζ) = C(z), (3.19)

whence, by (3.18):

g(z, ζ) =
C(z) − W (z, ζ)√

2π M(z, ζ)
, (3.20)

where,
C(z) = limζ→0,ζ∈DW (z, ζ), (3.21)

as it can be seen taking the limit of both sizes of (3.18) as ζ → 0 and using
the boundedness of g as well as (C.3) in Proposition C.1. Notice that the
limit at the right hand side of (3.21) exists due to (C.3). The analyticity of
g(z, ·) in D follows from the analyticity of W , M as well as the fact that M
does not vanish in D as it can be checked from (3.10). Finally we compute
C(z) − W (z, ζ). Using (3.21) and (3.16),

C(z) − W (z, ζ) =
1

(2πi)3/2

ζ

z

∫ ∞

0

M(z, λ − i0)
dλ

λ(λ − ζ)
.

Plugging this formula into (3.20) we obtain (3.9)
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3.2 The solution of Carleman’s equation.

Using (3.9), we can immediately solve (2.31). The change of variables (3.1)-
(3.3) yields

G(z, ξ) = g(z, T (ξ)). (3.22)

From (3.9) we deduce that G, solution of (2.31), is given by:

G(z, ξ) =
3 i

z
√

2π

∫
Im y= 5

3

(
m(z, y − i0)

m(z, ξ)

)
dy

(e6π(y−ξ) − 1)
,

where

m(z, ξ) = M(z, T (ξ)). (3.23)

The z dependence of the quotient
(

m(z,y−i0)
m(z,ξ)

)
has been computed in Appendix

C, Subsection C.3, cf. (C.25). It then follows that

G(z, ξ) =
3i√
2π z

∫
Im y= 5

3

e6πα(z) (y−ξ) V(y)

V(ξ)

dy

(e6π(y−ξ) − 1)
(3.24)

where V(·) has been defined in (C.23) and α(z) is defined by

α(z) =
1

2πi
ln

(
−z

a

)
, (3.25)

where the branch of the logarithm is determined assuming that Arg(−z) ∈
(0, 2π) and henceforth,

0 < Re (α(z)) < 1 (3.26)

4 Analysis of the fundamental solution to the

Cauchy problem.

4.1 Inverting the Fourier and Laplace transforms.

The function G(z, ξ), in (3.24) provides the Laplace Fourier transform of the
fundamental solution of the problem (2.13). In this section we invert the
Laplace and Fourier transform in order to find G(t, x) solution of (2.13), as
well as deriving its main properties.
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We recall that the inverse Laplace and inverse Fourier transform for regular
functions are given respectively by

L−1(G)(t) = G(t) =
1

2πi

∫ c+∞i

c−∞i

eztG(z)dz (4.1)

and

F−1(Ĝ)(x) = G(x) =
1√
2π

∫ ∞+bi

−∞+bi

eixξĜ(ξ)dξ (4.2)

where in (4.1) c is large enough to have all the singularities of G at the left of
the line Rez = c, and in (4.2) we assume that G ∈ V(M, x0) defined in (2.20)
and we then choose b in order to have the contour of integration contained
on the strip SM defined in (2.23). Since the function G(z, ξ) to which we
apply L−1 and F−1 is just bounded, those operators are defined in the sense
of tempered distributions (cf. [15]). Therefore, the fundamental solution of
the problem (2.13) is given by:

G(t, x) = F−1
(
L−1G

)
(4.3)

4.2 Description of G(t, x) near x = 0.

We will check below that the function G(z, ξ) can be split (roughly) as

G(z, ξ) = G∞(z) + [G(z, ξ) − G∞(z)] (4.4)

where
G∞(z) = lim

|ξ|→+∞
G(z, ξ).

In particular, this implies that G(t, x) can be decomposed as:

G(t, x) = g∞(t)δ(x) + Greg(t, x)

where Greg turns out to be an integrable function. The rest of this section is
devoted to make precise the meaning of this decomposition and to study the
properties of g∞, Greg, in particular the study of their asymptotics as t → 0,
t → +∞ and x → ±∞.

Since G(z, ξ) − G∞(z) does not decay fast enough as |ξ| → +∞, it is conve-
nient, instead of descomposing G as in (4.4), to split G(z, ξ) in the following
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manner. Using the change of variables y − ξ = θ as well as Proposition C.6,
we can rewrite (3.24) as:

G(z, ξ) =
3 i√
2π z

∫
Im θ= 5

3
−Imξ

e[6πα(z) θ]e[3iθ ln(−Φ(ξ)
a )+h(ξ,θ)] dθ

(e6πθ − 1)
. (4.5)

We have shown in formula (B.2), in Appendix B, that the function Φ(ξ)
has the form:

Φ(ξ) = −a +
∑
n∈Z

Bn

ξ − ξn

for suitable Bn, ξn (cf. (B.2)). We then define

Ψ(ξ) = −a +
∑
|n|≥L

Bn

ξ − ξn

+
1

ξ − ξL

∑
|n|≤L

Bn, (4.6)

where L is chosen in order to have∑
|n|≥L

|Bn|
|ξ − ξn|

≤ ε1 in |Im ξ| ≤ 10 (4.7)

for ε1 small to be precised, and ξL satisfies∣∣∣∣∣∣ 1

ξ − ξL

∑
|n|≤L

Bn

∣∣∣∣∣∣ ≤ ε2, in |Im ξ| ≤ 10 (4.8)

for ε2 > 0 small enough to be precised. Notice that choosing L large enough
we can assume that Ψ is analytic in the strip |Imξ| ≤ 10. Moreover, if ε1

and ε2 are small enough and L large enough, we have that

| ln
(

Φ(ξ)

Ψ(ξ)

)
| = O(|ξ|−2) (4.9)

as |ξ| → ∞ and |Imξ| ≤ 10. It then follows that the function h̃ given by

h̃(ξ, θ) = h(ξ, θ) + 3i ln

(
Φ(ξ)

Ψ(ξ)

)
(4.10)

also satisfies the estimates (C.31). Let us decompose G as follows

16



G(z, ξ) = A1 + A2, (4.11)

A1 =
3 i√
2π z

∫
Im θ= 5

3
−Imξ

e[6πα(z) θ] e
[3iθ ln(−Ψ(ξ)

a )]dθ

(e6πθ − 1)
, (4.12)

A2 =
3 i√
2π z

∫
Im θ= 5

3
−Imξ

e[6πα(z) θ]e[3iθ ln(−Ψ(ξ)
a )] (e

h̃(ξ,θ) − 1) dθ

(e6πθ − 1)
, (4.13)

Roughly speaking, A1 is a near constant function that approaches a constant
value as |ξ| → +∞. On the other hand, A2 decays as |ξ| → +∞ faster
than 1/|ξ| (cf. (B.3) and Proposition C.6 ), and as a consequence, its inverse
Fourier transform will be a continuous bounded function.

We remark that A1 may be explicitly computed by using residues. To this
end, it is enough to replace the integral defining A1 by the limit of integra-
tions in a sequence of contours ΓR. These contours are squares with basis
Imθ = d, Reθ ∈ (−R, R), with d ∈ (δ, δ + 1/3) and the remaining sides are
contained in the half plane Imθ ≤ 0. On these sides, the integrand in (4.12)
can be estimated as:∣∣∣∣∣e[6πα(z) θ] e

[3iθ ln(−Ψ(ξ)
a )]

(e6πθ − 1)

∣∣∣∣∣ ≤ e[−3R ln( |z|
Ψ(ξ)|)] e

[3Reθ(arg(− z
a
)−arg(−Ψ(ξ)

a
))]

|e6πθ − 1| . (4.14)

Choosing ε1 and ε2 in (4.7), (4.8) small enough, it follows that ln(|z|/|Ψ(ξ)|) >
0 if |z| > 2. On the other hand, arg(−z/a) ∈ (0, 2π) and lim|ξ|→+∞(arg(−Ψ(ξ)/a) =
0, it then follows

lim
R→+∞

∫
ΓR\{Imθ=d}

e[6πα(z) θ] e
[3iθ ln(−Ψ(ξ)

a )]

(e6πθ − 1)
dθ = 0. (4.15)

Therefore A1 can be computed adding the residues of the integrand in (4.12):

A1 =
1√
2π z

+∞∑
n=0

e−2iπnα(z)en ln(−Ψ(ξ)
a ) =

1√
2π z

(
1 +

Ψ(ξ)

z

)−1

, (4.16)

for |z| > 2. The validity of (4.16) for |z| ≤ 2 follows by analytic continuation.
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Proposition 4.1 The fundamental solution G(t, x) defined by (3.24) and
(4.3) might be decomposed in the following manner:

G(t, x) = Gsing(t, x) + Greg(t, x) (4.17)

where

Gsing(t, x) := F−1
(
L−1A1

)
, Greg(t, x) := F−1

(
L−1A2

)
. (4.18)

The term Gsing can be written as

Gsing(t, x) = e−atδ(x) +
5∑

k=1

αk(t)

|x| 6−k
6

+ α6(t) sign(x) + H(t, x) (4.19)

where H is a Hölder continuous function in x in a neighbourhood of x =
0. The functions αk might be computed explicitly. The function Greg is a
continuous function in a neighbourhood of x = 0. The functions αk and
the hölderianity constants of the function H(t, ·) are uniformly bounded in
bounded intervals of t.
Moreover, the following global estimate holds:

|Gsing(t, x) − e−atδ(x)| ≤ Ce−(a−ε)t ϕ(x) (4.20)

where

|ϕ(x)| ≤


1

|x|5/6
for |x| ≤ 1

e−10|x| for |x| ≥ 1.
(4.21)

Proof. Using (4.16) and (4.18), we obtain:

Gsing(t, x) = F−1

(
e−Ψ(·)t
√

2π

)
(x).

Then, for t bounded, using the Taylor expansion for the exponential function
as well as (4.9) and (B.3), we obtain:

F−1

(
e−Ψ(·)t
√

2π

)
(x) = e−atδ(x) + e−at

5∑
k=1

βk(t)

|x| 6−k
6

+β6sign(x) +H(t, x) (4.22)

where H is a Hölder continuous function in x in a neighborhood of x = 0,
and β1, · · ·β6, are polynomials in the t variable.
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On the other hand, in order to derive bounds for large t we argue as follows.
Let us introduce a regular cut off function χ, χ(s) = 1 for |s| ≤ 1, and
χ(s) = 0 for s ≥ 2. We rewrite Gsing(t, x) as

Gsing(t, x) = e−at

{
F−1(1) + F−1

(
e−(Ψ(ξ)−a)t

[
1 − χ

( |ξ|
t6

)]
− 1

)
+F−1

(
e−(Ψ(ξ)−a)tχ

( |ξ|
t6

))}
(4.23)

The first term in the right hand side of (4.23) gives the Dirac mass. In
the second term, since Ψ(ξ) t is bounded, it is possible to linearise in the
exponential. Therefore, arguing as in the derivation of (4.22) we obtain:

|e−atF−1

(
e−(Ψ(ξ)−a)t(1 − χ

( |ξ|
t6

)
) − 1

)
| ≤ Ce−(a−ε)t ϕ1(x)

where ε > 0 is arbitrarily small and ϕ1 satisfies,

ϕ1(x) ∼ 1

|x|5/6
as x → 0, ϕ1(x) ∼ e−10|x| as |x| → ∞.

Finally, for the last term in the right hand side of (4.23) we obtain the
estimate

|e−atF−1

(
e−(Ψ(ξ)−a)tχ

( |ξ|
t6

))
| ≤ Ce−(a−ε)t e−10|x|.

This yields (4.20) and (4.21).
We now proceed to derive the hölderianity of Greg near the origin. To this
end we compute first the inverse of the Laplace transform. Using (4.1), and
classical contour deformation arguments, we obtain

L−1

(
e[6πα(z) θ]

z

)
=

1

2πi

∫ c+∞i

c−∞i

e[6πα(z) θ] ezt dz

z

= (at)3iθ(e6πθ − 1)Γ(−3iθ), (4.24)

where Γ is the usual Gamma function. Plugging (4.24) into (4.13) (4.18) we
arrive at

Greg(x, t) = F−1

(
3 i√
2π

∫
Im θ= 5

3
−Imξ

Γ(−3iθ)e3iθ ln(−Ψ(ξ)
a )(eh̃(ξ,θ) − 1) (at)3iθdθ

)
.

(4.25)
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Due to (4.6)-(4.8), |e3iθ ln(−Ψ(ξ)
a )| ≤ eε2|θ| with ε2 > 0 small. On the other

hand, Stirling formula for the Gamma function implies, |Γ(−3iθ)| ≤ Ce−|θ|/2

for Im θ = 5
3
− Imξ and Imξ ∈ (4/3, 5/3) and |θ| large. These estimates

yield the convergence of the integral in (4.25).

The hölderianity of Greg follows combining (4.25) and (C.31). More pre-
cisely we split the integral in (4.25), in the two regions |θ| ≥ |ξ| and |θ| ≤ |ξ|.
It follows from (C.31) that eh̃(ξ,θ) − 1 is bounded by C|ξ|−7/6 when |θ| ≤ |ξ|.
Due to the fact that the rest of the integrand decays exponentially in |θ|
the resulting contribution to the integral may be bounded as C|ξ|−7/6. In
order to estimate the contribution to the integral due to the region |θ| ≥ |ξ|
we take into account that |h̃(ξ, θ)| ≤ ε3|θ| as |θ| → +∞, where ε3 may be
chosen as small as we wish provided |ξ| is large enough. Using again the
exponential decay of the remaining terms it follows that the contribution
of this part of the integral is exponentially small as |ξ| → +∞. Therefore,
|A2(t, ξ)| = O(|ξ|−7/6) as |ξ| → +∞ and the hölderianity of Greg follows by
classical Fourier analysis results.

Proposition 4.1 provides a description of the fundamental solution for x near
the origin. The proof of this results actually shows that Greg is bounded for
(t, x) in compact subsets of (0, +∞) × R.
We now proceed to describe the asymptotic behaviour of this fundamental
solution for x → ±∞.

4.3 Asymptotics of G as x → −∞.

Our starting point for this analysis is the formula (4.5). Notice that

G̃(z, x) = F−1(G(z, ·) =
1√
2π

∫
Im ξ=b

eixξ G(z, ξ)dξ (4.26)

where, for x �= 0, this integral is defined in the sense of oscillatory integrals
(cf. for example [18]). The main contribution of G̃(z, x) as x → −∞ is due
to the closest pole of G(z, ·) to the line Imξ = b below this line.
Notice that the expression (3.24) shows that G(z, ξ) is analytic in the strip
Imξ ∈ (4/3, 5/3). Moreover, deforming the contour of integration, we can
extend G(z, ·) meromorphically to the strip Imξ ∈ (−2/3, 5/3) with poles
at the points (1 + 2k) i/6, k = 0, 1, 2, 3. Moreover, for d ∈ (1/3, 5/3) and
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d − 1/3 < Imξ < d, G(z, ξ) can be computed by means of

G(z, ξ) =
3i√
2π z

∫
Im y=d

e6πα(z) (y−ξ) V(y)

V(ξ)

dy

(e6π(y−ξ) − 1)
(4.27)

The residue of G(z, ·) at the pole 7i/6 is given by:

Res

(
G(z, ·), ξ =

7i

6

)
=

3ia e−7πα(z)i

z
√

2π Φ′(7i/6)V(3i/2)

∫
Im y=d

e6πα(z) yV(y)

(e6π(y−7i/6) + 1)
dy

Choosing d in (4.27) close to 4/3 and moving down the contour of integration
in (4.26) we obtain, using residues:

G̃(z, x) =
3 a e−

7x
6 e−7πα(z)i

zΦ′(7i/6)V(3i/2)

∫
Im y=d

e6πα(z) yV(y)

(e6πy + 1)
dy (4.28)

+
1√
2π

∫
Im ξ=b̃

eixξ G(z, ξ)dξ.

where b̃ is an arbitrary complex number satisfying Imb̃ ∈ (1, 7/6).
Taking the inverse of the Laplace transform we obtain:

G(t, x) = L−1(G̃)(t, x) = σ(t)e−
7
6
x + R1(t, x). (4.29)

Using (4.24) and (4.28):

σ(t) ≡ − 3 a

Φ′(7i/6)V(3i/2)

∫
Im y=d

(at)3iy+ 7
2 V(y)Γ(−3iy − 7

2
)dy. (4.30)

and

R1(t, x) =
1√
2π

L−1

(∫
Im ξ=b̃

eixξ G(z, ξ)dξ

)
. (4.31)

We now proceed to derive estimates for σ and R1.

Proposition 4.2 The following estimates hold:

σ(t) = At4 + O(t4+ε) as t → 0+, (4.32)

|σ(t)| = O(t−(3v0−5/2)) = O(t−3,0206) as t → +∞, (4.33)

where A is a given constant, ε is an arbitrary number in (0, 1/2).
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Proof. As a first step we prove (4.32). To this end we use again contour
deformation moving down the line Imy = d.
The poles of the function Γ(−3iy−7/2) are placed at y = (7i/6)−(ni/3), n =
0, 1, · · ·. On the other hand, by Proposition (C.5) V has zeros at y = (7i/6)−
(ni/3), for n = 0, 1, 2, 3 . We deduce that V(y)Γ(−3iy − 7/2) is analytic in
the strip Imy ∈ (−1/6, v0 + 1/3), meromorphic in C, and has simple poles
at −i/6 (coming from the Gamma function) and at ±u0 + i(v0 + 1/3) (cf.
(P-2) in Appendix B).
Therefore, the Residues Theorem implies:

σ(t) = At4 + r(t)

where,

A =
a4 V(−1/6) πi

12Φ′(7i/6)V(3i/2)
,

r(t) = − 3 a

Φ′(7i/6)V(3i/2)

∫
Im y=d̃

(at)3iy+ 7
2 V(y)Γ(−3iy − 7

2
)dy

where d̃ is an arbitrary number such that d̃ ∈ (−1/3,−1/6).
Combining (C.26), (C.33) and (P-3) in Appendix B, as well as Stirling for-
mula it follows that V(y)Γ(−3iy − 7

2
) decays exponentially as |y| → +∞

along the contour of integration. On the other hand, in the same contour of
integration, |(at)3iy| ≤ Cεt

4+ε, with ε ∈ (0, 1/2), whence (4.32) follows.

In order to prove (4.33) we increase the value of d in (4.30) using contour
deformation. In this process we do not meet any singularity of the integrand
until d = v0 +1/3 due to the Proposition C.5 as well as the analyticity prop-
erties of the Gamma function. Arguing as in the proof of (4.32), formula
(4.33) follows.

We now derive the estimates for the remainder term (4.31).

Proposition 4.3 The following estimates hold:

|R1(t, x)| ≤ Ce−b̃x(at)3(b̃−d̃) for x < 0, 0 < t < 1, (4.34)

|R1(t, x)| ≤ Ce−b̃ x(at)−3(r−b̃), for x < 0, t ≥ 1, (4.35)

where b̃ is an arbitrary real number in (1, 7/6), d̃ is an arbitrary real number
in (5/6, 1) and r is an arbitrary number less than v0 = 1.84....
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Proof of Proposition 4.3. We use again the splitting (4.11) into (4.31):

R1(t, x) = R1,1(t, x) + R1,2(t, x), (4.36)

where,

R1,1(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ L−1 (A1(z, ξ)) dξ (4.37)

R1,2(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ L−1 (A2(z, ξ)) dξ (4.38)

We begin estimating R1,1. Using (4.16) it follows that

R1,1(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ e−Ψ(ξ) tdξ,

where from now on this integral has to be understood in the sense of oscilla-
tory integrals. Since Ψ is analytic in the strip |Imξ| < 10, we can decrease
the value of b̃ by means of contour deformation, to any b̃ > −10. Therefore,
using (4.6)- (4.10) it follows that

|R1,1(t, x)| ≤ Ce−(a−ε)te10 x, for x < 0. (4.39)

Moreover, computing |R1,1(t, x) − R1,1(0, x)| we arrive at:

|R1,1(t, x)| ≤ C t e10 x, for x < 0, 0 ≤ t ≤ 1. (4.40)

We now estimate R1,2.

R1,2(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ 1

2πi

∫ c+∞i

c−∞i

eztA2(z, ξ) dz dξ

where A2 is as in (4.13). Using (4.24) we then obtain

R1,2(t, x) =
3i√
2π

∫
Im ξ=b̃

eixξ

∫
Im η= 4

3

(
eh̃(ξ,η−ξ) − 1

)
e3i(η−ξ) ln(−Ψ(ξ)

a ) ×

× (at)3i(η−ξ) Γ(3i(ξ − η)) dηdξ.

We begin estimating R1,2 as t → 0 and x < 0 . Notice that, due to (C.29)
we may write R1,2 as

R1,2 =
3i

2π

∫
Im ξ=b̃

eixξR̂1,2(t, ξ) dξ (4.41)
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where,

R̂1,2(t, ξ) =
1√
2π

∫
Im η= 4

3

(at)3i(η−ξ) Γ(3i(ξ − η))

[V(η)

V(ξ)
− e(3i(η−ξ) ln(−Ψ(ξ)

a )
]

dη

(4.42)
We move down the contour of integration in (4.42) as usual. Notice that
Γ(3i(ξ − η)) has a pole for η = ξ but this singularity cancels out with the
zero of the term between brackets. Using again Proposition C.5, we can
rewrite (4.42) as:

R̂1,2(t, ξ) =
1√
2π

∫
Im η=d

(at)3i(η−ξ) Γ(3i(ξ − η))

[V(η)

V(ξ)
− e(3i(η−ξ) ln(−Ψ(ξ)

a )
]

dη(4.43)

where d is any real number in (5/6, 1). This restriction in d comes from the
fact that the function Γ(3i(ξ − η)) has a pole at η = ξ − i/3 and that we are
in the region where Imξ ∈ (1, 7/6).
Using (C.29), we estimate (4.43) as

e−b̃x(at)−3(d̃−b̃)

∫
Imξ=b̃

|dξ|
∫
Imη=d̃

|dη|e−π|ξ−η||h̃(ξ, η − ξ)|. (4.44)

Using (C.31) it follows that the integral term in (4.44) is bounded whence
(4.34) follows.
Finally we estimate R1(t, x) for x < 0 and t > 0 large. To this end we take as
starting point formula (4.42). Moving up the contour of integration, we do
not meet any singularity until Imη = v0 (cf. Proposition C.5). Therefore,
using Proposition C.6, and (4.42)

|R1,2(t, ξ)| ≤ Ce−b̃ x(at)−3(r−b̃) ×∫
Imξ=b̃

|dξ|
∫
Imη=d̃

|dη||Γ(3i(ξ − η))|
∣∣∣e3i(η−ξ) ln(−Ψ(ξ)

a
)
∣∣∣ |h̃(ξ, η − ξ)|.

where r is an arbitrary number less than v0. Using Stirling formula as well
as (4.6)- (4.10), (4.37) and (C.31) we arrive at (4.35).

4.4 Asymptotics of G as x → +∞.

Proposition 4.4 The following estimates hold,

|G(t, x)| ≤ Ce−
11
6

xt1−ε for x > 0, 0 ≤ t ≤ 1, (4.45)
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|G(t, x)| ≤ Ce−
11
6

xt−(1+3(v0−11/6))+ε for x > 0, t ≥ 1, (4.46)

where ε > 0 is arbitrarily small. Notice that (1+3(v0 −11/6)) = 1.0206 > 1.

Proof of Proposition 4.4. Arguing as in the derivation of (4.36)-(4.38)
and using

G(t, x) = R2,1(t, x) + R2,2(t, x),

where,using (4.16)

R2,1(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ e−Ψ(ξ) tdξ

R2,2(t, x) =
1√
2π

∫
Im ξ=b̃

eixξ L−1 (A2(z, ξ)) dξ

Using the analyticity of Φ we can deform the contour of integration and
choose b̃ = 10. Therefore as in the proof of (4.39) and (4.40),

|R2,1(t, x)| ≤ Ce−(a−ε)te−10 x, for x > 0. (4.47)

|R2,1(t, x)| ≤ C t e−10 x, for x > 0, 0 ≤ t ≤ 1. (4.48)

On the other hand, we may write,

R2,2(t, x) =
3i

2π

∫
Im ξ=b̃

eixξ

∫
Im η=d

(
eh̃(ξ,η−ξ) − 1

)
e3i(η−ξ) ln(−Ψ(ξ)

a ) ×

× (at)3i(η−ξ) Γ(3i(ξ − η)) dηdξ.

where first, we have deformed the contour deformation in the ξ variable to
make b̃ > d. This is possible because the singularity of the Gamma function

at η = ξ cancels out with the zero of the term
(
eh̃(ξ,η−ξ) − 1

)
.

R2,2(t, x) =
3i√
2π

∫
Im ξ=b̃

eixξR̂2,2(t, ξ) dξ (4.49)

where,

R̂2,2(t, ξ) =
1√
2π

∫
Im η=d

(at)3i(η−ξ) Γ(3i(ξ − η))

[V(η)

V(ξ)
− e(3i(η−ξ) ln(−Ψ(ξ)

a )
]

dη

(4.50)
We now try to move up the contour deformation on ξ as much as possible,
but in this deformation, we must also deform the contour on the η variable, in
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order to avoid the singularity of Γ(3i(ξ−η)) at ξ−η = i/3. The function V(ξ)
has a zero at ξ = 11i/6 since Φ has a pole at 3i/2 due to (C.26). Therefore,
the integral in (4.50) has a pole at ξ = 11 i/6 whose corresponding residue
yields a contribution σ̃(t) e−11 x/6, similarly as in the derivation of (4.29),
(4.30). In order to obtain estimates of the time dependence of these terms,
we make contour deformation in the η variable, having in mind the following
ideas. First to deduce estimates for t → 0, Imη should be taken as small as
possible. To obtain estimates for t → +∞, Imη as large as possible. Finally,
Im(ξ − η) shoud be larger that 1/3 in order to avoid the singularities of the
Gamma function. Deforming the contours as it was made in the previous
subsection we obtain (4.45), (4.46).

4.5 The proof of Theorem 2.2.

At this stage, theorem 2.2 is just a reformulation of Proposition 4.1, Propo-
sition 4.2, Proposition 4.3, by means of formulas (2.24)-(2.12)

26



A Properties of the kernel K.

A.1 Proof of Proposition 2.1.

Using (1.7) and (2.2) it follows, after elementary integrals, that

I3 = − 72

k
1/3
1

+

∫
D1(k1)

√
k2√
k1

dk3 dk4

k
7/6
3 k

7/6
4

− 2

∫
D2(k2)

√
k4√
k1

dk3 dk4

k
7/6
2 k

7/6
3

, (A.51)

where

D1(k1) = {(k3, k4); 0 < k3 < k1, 0 < k4 < k1, k1 < k3 + k4} (A.52)

D2(k1) = {(k3, k4); k3 > 1, k4 > 1} (A.53)

In order to estimate the two last terms of (A.51) we use one of the coordinate
transformations introduced by V. E. Zakharov in [20]:

ε3 =
k2

1

k3

, ε4 =
(k3 + k4 − k1)k1

k3

.

Therefore ∫
D2(k1)

√
k4√
k1

dk3 dk4

k
7/6
2 k

7/6
3

=
1√
k1

∫
D1(k1)

√
k2 dk3 dk4

k
7/6
3 k

7/6
4

Whence, using (A.51), gives:

I3 = − a

k1/3
≡ − 1

k
1/3
1

(
72 +

∫
D1(1)

√
k3 + k4 − 1

k
7/6
3 k

7/6
4

dk3 dk4

)
. (A.54)

The last integral can be transformed into a more symmetric form using an-
other of the transformations introduced in [20], namely:

ε3 =
k4 k1

k3 + k4 − k1

, ε4 =
k3 k1

k3 + k4 − k1

,

whence

a = 72 +

∫ ∞

1

∫ ∞

1

dρ1 dρ2

(ρ2 + ρ1 − 1)7/6 ρ
7/6
1 ρ

7/6
2

. (A.55)
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The last integral can be computed numerically. One gets:

a = 72.80964399...

Standard calculus computations yield:

I1 =
1

k
4/3
1

{
∫ k1

0

dk3 F3 K11(
k3

k1

) +

∫ ∞

k1

dk3 F3 K21(
k3

k1

)} (A.56)

where

K11(θ3) = 2

∫ 1

1−θ3

dθ4

(
θ

1/2
2

θ
7/6
4

(1 + θ
−7/6
2 ) − θ

−2/3
2

)
+

+2

∫ ∞

1

dθ4

(
θ

1/2
3

θ
7/6
4

(1 + θ
−7/6
2 ) − θ

1/2
3

θ
7/6
2

)
(A.57)

K21(θ3) = 2

∫ 1

0

dθ4

(
θ
−2/3
4 (1 + θ

−7/6
2 ) − θ

1/2
4

θ
7/6
2

)

)
+

+2

∫ ∞

1

dθ4

(
θ
−7/6
4 (1 + θ

−7/6
2 ) − θ

−7/6
2

)
, (A.58)

with θ� = k�/k1, for � = 2, 3, 4. Notice that, θ2 = θ3 +θ4−1. In an analogous
manner,

I2 =
1

k
4/3
1

{
∫ k1

0

dk2 F2 K12(
k2

k1

) +

∫ ∞

k1

dk2 F2 K22(
k2

k1

)}, (A.59)

K12 =

∫ 1+θ2

1

dθ3(θ2 + 1 − θ3)
1/2

(
θ
−7/6
3 (1 + θ2 − θ3)

−7/6 − 2θ
−7/6
3

)
+

+

∫ θ2

0

dθ3

(
θ
−2/3
3 (θ2 + 1 − θ3)

−7/6 − 2θ
−2/3
3

)
+

θ
1/2
2

∫ 1

θ2

dθ3

(
θ
−7/6
3 (θ2 + 1 − θ3)

−7/6 − 2θ
−7/6
3

)
+

K22 =

∫ θ2

1

dθ3

(
θ
−7/6
3 (1 + θ2 − θ3)

−7/6 − 2θ
−7/6
3

)
+
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+

∫ 1+θ2

θ2

dθ3(θ2 + 1 − θ3)
1/2

(
θ
−7/6
3 (1 + θ2 − θ3)

−7/6 − 2θ
−7/6
3

)
∫ 1

0

dθ3

(
θ
−2/3
3 (θ2 + 1 − θ3)

−7/6 − 2θ
−2/3
3

)
(A.60)

On the other hand, using repeatedly the formulae (cf. [1]):

F (a, b; c; z) =
Γ(c)

Γ(b) Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − tz)−a dt,

F (a, b; c; z) =
Γ(c)

Γ(b) Γ(c − b)

∫ ∞

1

t1−b(t − 1)c−b−1(t − z)−a dt,

that are valid for Re(c) > Re(b) > 0, we can write the integrals K11, · · ·K22

in terms of the Gauss hypergeometric functions F (a, b; c; z). Therefore, equa-
tion (2.8) reads:

Ft = − a

k1/3
F (k) +

1

k4/3

∫ ∞

0

K(
r

k
) F (r) dr (A.61)

where a is as in (A.54) and

K(r) =

{
K1(r) if 0 ≤ r < 1
K2(r) if 1 < r,

(A.62)

K1(x) : =
4

3
x3/2F (1, 7/6; 5/2; x) + 6x1/3F (1, 7/6; 4/3; x) − 18x1/3

+ 24x1/2 − 8x1/2Γ(5/6)2 31/2

Γ(2/3)(1 − x)4/3
+

84

5
x4/3F (13/6, 1; 11/6; x)

− 6x−2/3 − 42

5
x4/3F (13/6, 1; 11/6;−x) − 12x1/2Γ(5/6)2

Γ(2/3)(x + 1)4/3

+ 6x−2/3F (1, 1/6; 11/6;−x) +
72

11
x1/3F (2, 7/6; 17/6;−x)

− 3024

935
x4/3F (13/6, 3; 23/6;−x) + 6x1/3F (1, 7/6; 4/3;−x)

− 4

3
x3/2F (1, 7/6; 5/2;−x), (A.63)
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K2(x) : = 6x−7/6F (1, 7/6; 4/3; 1/x) − 4

3
x−7/6F (1, 7/6; 5/2; 1/x) + 24x−7/6

− 8Γ(5/6)2 31/2

Γ(2/3)
(x − 1)−4/3 +

84

5
x−13/6F (1, 13/6; 11/6; 1/x)

− 12
Γ(5/6)2

Γ(2/3)
(x + 1)−4/3 − 42

5
x−13/6F (1, 1/6; 11/6;−1/x)

+
504

55
x−19/6F (2, 7/6; 17/6;−1/x) −

− 3024

935
x−25/6F (3, 13/6; 23/6;−1/x) − 42

5
x−13/6F (1, 13/6; 11/6;−1/x)

+ 6x−7/6F (1, 7/6; 4/3;−1/x) − 4

3
x−7/6F (1, 7/6; 5/2;−1/x). (A.64)

Formulae (2.4)-(2.7) are a consequence of the classical asymptotic expansions
for the hypergeometric functions (cf. [1]), as well as the expressions for the
kernels K11 · · ·K22. The numerical constants in these formulae are given by:

a1 = − 3

π
(3 22/3Γ(2/3)3 + 25/3Γ(2/3)3 31/2 − 8π), a2 =

100

3

and

a3 = a5 = 2

∫ ∞

0

dx

x2/3(1 + x)7/6
≡ 2B(1/3, 5/6).

B The Fourier transform of the Kernel.

In this Section we list some properties of the function

Φ = −a + K̂

used in the analysis of the solutions of (2.30). Due to (A.62), we can write

K̂ in terms of suitable Mellin transforms of the functions K1 and K2:

K̂(ξ) =
1√
2π

∫ 1

0

ρiξ K1(ρ) dρ +
1√
2π

∫ ∞

1

ρiξ K2(ρ) dρ. (B.1)

The Mellin transform K̂ might be computed using formulae (A.64), (A.63) in
terms of generalized hypergeometric functions, but the resulting expression
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is not particularly illuminating. Nevertheless, using the series expansions for
those functions we arrive to the following formula:

Φ̂(ξ) = −a +
∞∑

j=0

A1(j)

(1 − 6iξ + 12j)
+

∞∑
j=0

A2(j)

(1 − 3iξ + 3j)
+

∞∑
j=0

A3(j)

(3 + 2iξ + 2j)
+

+
∞∑

j=0

A4(j)

(10 + 3iξ + 6j)
(B.2)

where the coefficients Ai(j), i = 1 · · · 4, j = 0, 1, . . . are:

A1(j) =
18(2)1/3Γ(7/6 + 2j)Γ(2/3)

Γ(5/6 + 2j)π5/2Γ(5/2 + 2j)Γ(4/3 + 2j)
·{

−31/2Γ(2/3)π3/2Γ(4/3 + 2j)Γ(5/6 + 2j)+

+4π2Γ(5/2 + 2j)Γ(5/6 + 2j)+

+18(2)1/3Γ(2/3)3Γ(5/2 + 2j)π1/2Γ(4/3 + 2j)
}

,

A2(j) := −54(31/2(−1)j + 2)Γ(5/6)2 Γ(4/3 + j)

πΓ(1 + j)
,

A3(j) := −36(31/2(−1)j + 2)Γ(5/6)2Γ(4/3 + j)

πΓ(1 + j)
+

6(1 + (−1)j)Γ(5/6)Γ(1/6 + j)

π1/2Γ(3/2 + j)
,

A4(j) :=
18Γ(2/3)Γ(19/6 + 2j)21/3(2π2Γ(17/6 + 2j) + 9(2)1/3Γ(2/3)3Γ(10/3 + 2j)π1/2)

Γ(10/3 + 2j)π5/2Γ(17/6 + 2j)
.

We can now list the main properties of the function Φ.

• (P-1) The function Φ(ξ) is meromorphic in the complex plane C with
poles at the points:

ξ = (
3

2
+ j) i, j = 0, 1, 2, · · ·

ξ = (
10

3
+ 2j) i, j = 0, 1, 2, · · ·

ξ = −(
1

3
+ j) i, j = 0, 1, 2, · · ·

ξ = −(
1

6
+ 2j) i, j = 0, 1, 2, · · ·
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• (P-2) The function Φ has a simple zero at the point ξ = 7i/6. This is the
only zero of Φ in the strip Imξ ∈ (−1/6, 5/3). Moreover, it also has a simple
zero at ξ = 13i/6 and two simple zeros at ξ = ±u0 + iv0 with:

u0 = 0.331..., v0 = 1.84020...

These are the only zeros of Φ in the strip Imξ ∈ (−1/3, 5/2). In Figure 1
we have plot the zeros and poles of the function Φ which play a role in the
arguments used in this paper.

• (P-3) The function Φ satisfies:

|Φ(ξ) − Φ∞(ξ)| + |ξ||Φ′(ξ) − Φ′
∞(ξ)| = O(|ξ|−α−1) as |ξ| → +∞ (B.3)

with α > 0.

Φ∞(ξ) ≡ −a +
b1

ξ1/6
+

b2

ξ
(B.4)

uniformly on strips of the form:

Sα,β = {ξ ∈ C; ξ = u + iv, α < v < β}.

• (P-4) Argument property: The function Φ(λ) does not make any complete
turn around the origin when λ moves along any curve connecting the two
extremes of the strip S7/6,3/2 and entirely contained there. Notice that for
any horizontal line, contained in this strip the number of turns is constant
due to the argument principle. More precisely, since the function Φ does
not vanish in the strip S7/6,3/2, it is possible to define an analytic function
ln Φ(λ) on that strip (in general in a not unique way due to the multiplicity
of branches of the logarithmic function). It turns out that:

arg(Φ(−∞ + ib)) = limx→−∞Im (ln(Φ(−∞ + ib))) = (B.5)

limx→∞I m (ln(Φ(+∞ + ib))) = arg(Φ(+∞ + ib))

for any b ∈ (7/6, 3/2). In Figure 2, we show a drawing of the image by Φ of
the line R + 4i/3.

Property (P-1) is just a consequence of the representation formula (B.1).
The presence of a zero of Φ at ξ = 7i/6 follows from the fact that the func-
tion f(k) = k−7/6 cancels the collision kernel Q(f) as was shown by Zakharov
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[20].
The property (P-3) follows from (2.6),(2.7) using standard methods for study-
ing the asymptotics of the Fourier transform.

Concerning (P-2) and (P-4). We have numerically checked (P-2), combin-
ing the Argument Principle with a numerical computation using MAPLE
V. Similar computations have been used to numerically check (P-4). Notice
that due to the asymptotics (B.3) and (B.4), it is enough in order to check
(P-2), (P-4), to count the numbers of rotations of Φ around the origin, when
ξ moves along horizontal lines ξ = ib + R for suitable values of b ∈ R. We
show in the enclosed pictures the motion of Φ(ξ) for different values of b that
in particular imply (P-2), (P-4).

Concerning the positions of the zeros of Φ some remarks are in order. The
presence of a zero at ξ = 7i/6 is just a consequence of the fact that the non-
linear equation (1.1)-(1.4) has a family of steady states of the form Ck−7/6

for any value of C. It turns out that the function Φ has a second zero at
ξ = 13i/6. This is a consequence of the fact that the linearized operator in
the right hand side of (2.3), cancels out the power k−7/6 as it has been shown
in [6]. The presence of this zero is a general fact that has been shown for a
very general class of homogeneous kernels in [5, 6]. In general, the existence
of stationary homogeneous solutions for the linearizations near equilibria of
(1.1) is related to the existence of conserved quantities like energy, momen-
tum or number of particles. In particular the existence of a homogeneous,
radially symmetric solution for a linearized operator (2.3) is related to the
conservation of the number of particles by the equation (1.1).
Finally the zeros at ξ = ±u0 + iv0 does not seem to be related to any of
the symmetries of the problem. Their position is determined by the whole
structure of the kernel K. We have only been able to determine them using
numerical methods.

C Auxiliary results.

In this appendix we collect several properties of the different functions used
to prove the results of the paper.
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C.1 Properties of the function M(z, ζ).

Proposition C.1 Let M(z, ζ) be defined by (3.10) for ζ ∈ D ⊂ S, where
D is defined in (3.4). Then, for ε0 > 0 small enough, M(z, ·) admits an
analytic extension to the domain D(ε0) where,

D(ε0) =
{
ζ ∈ S; ζ = |ζ|eiθ, θ ∈ (−ε0, 2π + ε0)

}
(C.1)

Moreover, for any ε > 0, there exists δ > 0 such that, for any z in the region

Zε ≡ {z ∈ C; Arg z ∈ (π − ε, π + ε)} , (C.2)

there holds,

|M(z, ζ)| + |ζ| | d

dζ
M(z, ζ)| ≤ C(z)|ζ|δ for |ζ| < 2, ζ ∈ D(ε0), (C.3)

|M(z, ζ)| ≤ C(z)|ζ|1−δ for |ζ| > 2, ζ ∈ D(ε0),(C.4)

where C(z) is a positive constant, which depends on z.

The proof of Proposition C.1 is based in the following technical Lemma.

Lemma C.2 Suppose that f is analytic in the cone

C(2ε0) ≡ {ζ ∈ C; ζ = |ζ|eiθ, θ ∈ (−2ε0, 2ε0)}
for some ε0 > 0. Let us also assume that:∫ ∞

0

|f(reiθ)|
1 + r2

dr < +∞, for any θ ∈ (−2ε0, 2ε0) (C.5)

lim
λ→0λ∈C(2ε0)

f(λ) = L1, lim
λ→∞, λ∈C(2ε0)

f(λ) = L2, Li ∈ C, i = 1, 2.(C.6)

|f ′(λ)| = o(
1

λ
), as λ → 0, λ → +∞, λ ∈ C(2ε0). (C.7)

Then, for any λ0 ∈ C \ C(2ε0), the function

F (ζ) =
1

2πi

∫ ∞

0

f(λ)

(
1

λ − ζ
− 1

λ − λ0

)
dλ (C.8)

is analytic in the domain D(ε0) ⊂ S defined in (C.1). Moreover:

F (ζ) = − L1

2πi
ln ζ + o (ln |ζ|) , as ζ → 0, ζ ∈ D(ε0). (C.9)
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F (ζ) = − L2

2πi
ln ζ + o (ln |ζ|) , as ζ → +∞, ζ ∈ D(ε0). (C.10)

Proof. The analyticity of F in D(ε0) follows from standard complex variable
theory combined with deformation of the contour of integration from R

+ to
the rays eiθ

R
+ with |θ| ≤ ε0. These deformations can be performed due to

the analyticity properties of f and (C.5).

We now proceed to prove (C.9). We describe in detail the proof only for
those values of ζ ∈ D. For arbitrary values of ζ ∈ D(ε0) it is possible to
argue in a similar manner, after deformation of the contour of integration
from R

+ to eiθ
R

+, |θ| ≤ ε0. Let us define,

S(λ, ζ, λ0) =
1

2πi

(
1

λ − ζ
− 1

λ − λ0

)
.

Then,

F (ζ) = L

∫ 1

0

S(λ, ζ, λ0) dλ +

∫ 1

0

(f(λ) − L) S(λ, ζ, λ0) dλ

+

∫ ∞

1

f(λ)S(λ, ζ, λ0) dλ (C.11)

≡ J1(ζ) + J2(ζ) + J3(ζ). (C.12)

The term J1(ζ) can be explicitly computed and it readily follows that

J1(ζ) = − L

2πi
ln ζ + O(1), as ζ → 0, ζ ∈ D. (C.13)

On the other hand,

J3(ζ) = O(1), as ζ → 0, ζ ∈ D. (C.14)

Finally, we estimate J2. To this end we rewrite it as:

J2(ζ) =
1

2πi

∫ |ζ|/2

0

(f(λ) − L)
dλ

λ − ζ
+

1

2πi

∫ 2|ζ|

|ζ|/2

(f(λ) − L)
dλ

λ − ζ

+
1

2πi

∫ 1

2|ζ|
(f(λ) − L)

dλ

λ − ζ
+ O(1), as ζ → 0, ζ ∈ D. (C.15)
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Splitting the region of integration of the third integral in two parts (2|ζ|, δ)
and (δ, 1), with δ > 0 small, we obtain .

I ≡ |
∫ 1

2|ζ|
(f(λ) − L)

dλ

λ − ζ
| + |

∫ |ζ|/2

0

(f(λ) − L)
dλ

λ − ζ
|

≤ sup
λ∈(0,δ)

|f(λ) − L|| ln ζ| + C

δ
sup

λ∈(0,1)

|f(λ)| as ζ → 0, ζ ∈ D.

Therefore, by (C.6), we deduce:

I = o(| ln ζ|), as ζ → 0, ζ ∈ D. (C.16)

In order to estimate the second term in the right hand side of (C.15), after
integrating by parts,

|
∫ 2|ζ|

|ζ|/2

(f(λ) − L)
dλ

λ − ζ
| ≤ |

∫ 2|ζ|

|ζ|/2

f ′(λ) ln(λ − ζ)dλ| + C sup
(0,2|ζ|)

|f(λ) − L|| ln ζ|.

Using now (C.7) it follows that

|
∫ 2|ζ|

|ζ|/2

f ′(λ) ln(λ − ζ)dλ| = o(ln |ζ|) as |ζ| → 0

henceforth:

|
∫ 2|ζ|

|ζ|/2

(f(λ) − L)
dλ

λ − ζ
| = o(ln |ζ|) as |ζ| → 0 (C.17)

Combining (C.13)-(C.17) we arrive at (C.9). The proof of (C.10) can be
made along similar lines.

Proof of Proposition C.1. Since the function h satisfies all the assump-
tions of the function f in Lemma C.2, it follows, that M(z, ·) is well defined
and analytic in D(3ε0/2).
On the other hand, Lemma C.2 also implies that

M(z, ζ) = exp { − 1

2πi

(
ln

(
−a

z

))
ln |ζ| + o(ln |ζ|)},
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as |ζ| → 0. Using (3.11), we obtain that:

|M(z, ζ)| ≤ C(z)|ζ|δ for |ζ| < 2, ζ ∈ D(ε0)

for z ∈ Zε and some δ = δ(ε) > 0. Since the function M(z, ·) is analytic in
D(ε0), (C.3) follows using Cauchy estimates.

It only remains to prove (C.4). To this end, notice that by (C.10) ,

M(z, ζ) = exp { − 1

2πi
lim

ζ→+∞

(
ln

(
−ϕ(ζ)

z

))
ln |ζ| + o(ln |ζ|)},

as ζ → +∞. Notice that, due to (P-4) of Appendix B,

lim
ζ→+∞

(
ln

(
−ϕ(ζ)

z

))
= lim

ζ→0

(
ln

(
−ϕ(ζ)

z

))
= ln

(
−a

z

)
where,

Im
(
ln

(
−a

z

))
∈ (−2π, 0).

Therefore, for z ∈ Zε, and some δ = δ(ε) > 0.

|M(z, ζ)| ≤ C(z)|ζ|1−δ for |ζ| > 2, ζ ∈ D(ε0).

C.2 Properties of the function W (z, ζ).

Proposition C.3 The function W (z, ·) defined in (3.16) is analytic in the
region D defined by (3.4). Moreover, for any z ∈ Zε there exists δ > 0 such
that:

|W (z, ζ)| ≤ C(z) if |ζ| ≤ 1, ζ ∈ D (C.18)

|W (z, ζ)| ≤ C(z)|ζ|1−δ if |ζ| ≥ 1, ζ ∈ D (C.19)

where C(z) depends on z.

Proof. The integral defining W (z, ζ) converges due to (C.3) and (C.4). We
begin proving (C.18). The only difficulty is to estimate W (z, ζ) for ζ → 0.
We give the argument for A rg(ζ) ∈ (ε0, 2π− ε0), since for arbitrary ζ ∈ D a
similar argument can be made after suitable contours deformations that use
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the analyticity of M(z, ·) in D(ε0).
We write:

W (z, ζ) =

∫ 2|ζ|

0

(· · ·) dλ +

∫ 1

2|ζ|
(· · ·) dλ +

∫ ∞

1

(· · ·) dλ. (C.20)

The last integral in (C.20) is trivially bounded as ζ → 0. In order to esti-
mate the first integral in the right hand side of (C.20), we use the fact that
|λ − ζ| ≥ ε0/2 |ζ|, for A rg(ζ) ∈ (ε0, 2π − ε0). Using (C.3) we can estimate
that term as C|ζ|δ. Finally, to estimate the second term of the right hand
side of (C.20) we use for λ ∈ (2|ζ|, 1), |λ − ζ| ≥ |λ|/2. Henceforth, that
integral is bounded as ζ → 0. From all these estimates, (C.18) follows.

To prove (C.19) we split the integral defining W as:

W (z, ζ) =

∫ 1

0

(· · ·) dλ +

∫ ∞

1

(· · ·) dλ. (C.21)

The first integral in the right hand side of (C.21) is uniformly bounded for
large ζ. On the other hand the second one, might be estimated as

|
∫ ∞

1

(· · ·) dλ| ≤ C

∫ ∞

1

|λ|1−δ 1

|λ|
|ζ|

|λ − ζ| dλ ≤ C

ε0

|ζ|1−δ

for A rg(ζ) ∈ (ε0, 2π − ε0). Henceforth, (C.19) and Proposition C.3 follow.

C.3 Computation of m(z, y − i0)/m(z, ξ).

As a first step we explicitely compute the z dependence of the function m.
Using (3.23), (3.1) and (3.10) we can rewrite m as

m(z, ξ) = V(ξ) exp[3i

∫
Im y=( 4

3
−δ)

ln

(
z

−a

)
×

e6πy

(
1

e6πy − e6πξ
− 1

e6πy − ae6πδi

)
dy] (C.22)

V(ξ) = exp[−3i

∫
Im y= 4

3

ln

(
Φ(y + i0)

−a

)
× (C.23)

e6πy

(
1

e6πy − e6πξ
− 1

e6πy − ae6πδi

)
dy].
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The function V(ξ) is analytic in the region Imξ ∈ (4/3, 5/3). Moreover,
we can extend V(·) analytically to the strip (4/3, 5/3 + ε) with 0 < ε < δ
deforming the contour of the integral in (C.23 ), in order to avoid singularities.
For instance for Imξ ∈ (4/3 + ε, 5/3 + ε), 0 < ε < δ the analytic extension
of V is given by:

V(ξ) = exp[−3i

∫
Im y=( 4

3
+ε)

ln

(
−Φ(y)

a

)
×

e6πy

(
1

e6πy − e6πξ
− 1

e6πy − ae6πδi

)
dy](C.24)

It will be assumed in the following that the function V has been extended in
this manner wherever it is needed.
Using (C.22) we have, for Im y = 5/3, and Im ξ ∈ (4/3 + ε, 5/3 + ε):

m(z, y − i0)

m(z, ξ)
= E(z, y, ξ)

V(y)

V(ξ)

where, E(z, y, ξ) = exp[3i

∫
Im η=( 4

3
+ε)

ln
(
−z

a

)
×

e6πη

(
1

e6πη − e6πy
− 1

e6πη − e6πξ

)
dη].

The integral E may be computed using residues. Therefore,

m(z, y − i0)

m(z, ξ)
= exp [6πα(z) (y − ξ)]

V(y)

V(ξ)
(C.25)

where α(z) is as in (3.25).

C.4 Properties of the function V.

In this subsection we study several properties of the function V that are
needed in the following.

Proposition C.4 The function V, defined by means of (C.23) (C.24) in
Imη ∈ (4/3 − δ, 5/3) for some δ > 0, satisfies

V(η − i

3
) = −V(η)

Φ(η − i/3)

a
. (C.26)
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for all η ∈ C such that Im η ∈ (4/3−δ, 5/3). The function V can be extended
analytically to the strip Imη ∈ (−1/3, 11/6) and meromorphically to C using
(C.26)

Proof. The analyticity properties of V would follow from (C.26) in the strip
Im η ∈ (4/3 − δ, 5/3) deforming slightly the contour of integration. Indeed,
Φ is a meromorphic function in C, without poles in the strip Imη ∈ (1, 4/3)
and with a zero in η = 7i/6. We then restrict our attention to the proof of
(C.26).
Using (C.23),

V(η − i

3
) = exp[−3i

∫
Im y= 4

3

ln

(
−Φ(y + i0)

a

)
e6πy

(
1

e6πy − e6πη
− 1

e6πy − ae6πδi

)
dy](C.27)

Deforming the contour of integration to Im y = 4
3
−δ+ε with 5/3+δ−Imη <

ε < δ, we pass through the pole y = η − i/3 of the integrand. Then, using
residues:∫

Im y= 4
3

ln

(
−Φ(y + i0)

a

)
e6πy

(
1

e6πy − e6πη
− 1

e6πy − ae6πδi

)
dy

=

∫
Im y=( 4

3
−δ+ε)

ln

(
−Φ(y)

a

)
e6πy

(
1

e6πy − e6πη
− 1

e6πy − ae6πδi

)
dy

+
i

3
ln

(
−Φ(η − i/3)

a

)
.

Plugging this formula into (C.27) we obtain (C.26) and Proposition C.4 fol-
lows.

Proposition C.5 The only zeros of the function V in the strip Imη ∈
(−1/3, 11/6) are located at η = i (1+2k)

6
, k = 0, 1, 2, 3. These zeros are simple

and

lim
η→ 7i

6

V(η)

(η − 7i/6)
= −V(3i/2) Φ′(7i/6)

a
�= 0 (C.28)

Moreover the only pole of the function V in Imη ∈ (−1/3, 2) is η = 11i/6.
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Proof. The results concerning the poles are just a consequence of formula
(C.26) and properties (P-1), (P-2) in Appendix B. The fact the only zeros of
V in that strip are i 1+k

6
for k = 0, 1, 2, 3 is a consequence of (C.26) as well

as property (P-2) of the function Φ in Appendix B. Formula (C.28) follows
from (C.26), the fact that V(3i/2) �= 0 is a consequence of (C.22). Finally,
by (P-2) in Appendix B, Φ′(7i/6) �= 0.

In order to describe the asymptotic behaviour of the function G(z, ξ) as
|ξ| → ∞ we will use the following

Proposition C.6 For any ξ ∈ C such that Imξ ∈ (4/3, 5/3) and η ∈ C

such that Imη = 5/3,

V(η)

V(ξ)
= e[3i(η−ξ) ln(−Φ(ξ)

a )]e[h(ξ,η−ξ)] (C.29)

where the function

h(ξ, η − ξ) := −3i

∫
Im y=( 4

3
+ε)

ln

(
Φ(y)

Φ(ξ)

) (
e6π(η−y) − e6π(ξ−y)

)
dy

(1 − e6π(η−y)) (1 − e6π(ξ−y))
(C.30)

satisfies:

|h(ξ, η − ξ)| ≤ C
{
min{|ξ − η|2|ξ|−7/6, |ξ − η||ξ|−1/6} + |ξ|−7/6

}
. (C.31)

Moreover, there exist α > 0 and C > 0 such that

C−1e−α|ξ|5/6 ≤ |V(ξ)| ≤ Ceα|ξ|5/6

, (C.32)

Proof. Using (C.24),

V(η)

V(ξ)
= exp[−3i

∫
Im y=( 4

3
+ε)

ln

(
−Φ(y)

a

)
e6πy

(
1

e6πy − e6πη
− 1

e6πy − e6πξ

)
dy]

where ε > 0 has been chosen such that 4/3 + ε < Imξ. We write now:

V(η)

V(ξ)
= exp[−3i ln

(
−Φ(ξ)

a

) ∫
Im y=( 4

3
+ε)

(
e6π(η−y) − e6π(ξ−y)

)
dy

(1 − e6π(η−y)) (1 − e6π(ξ−y))
]eh(ξ,η).

Elementary calculus yields∫
Im y=( 4

3
+ε)

(
e6π(η−y) − e6π(ξ−y)

)
dy

(1 − e6π(η−y)) (1 − e6π(ξ−y))
= η − ξ,
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and (C.29) follows.
In order to finish the proof of Proposition C.6 it only remains to prove that
h satisfies (C.31). To this end we need the following Lemma.

Lemma C.7 There exists a constant C > 0 such that, for all ξ and y in C

satisfying Imξ ∈ (4/3, 5/3), Imy ∈ (4/3, 5/3) there holds:

| ln
(

Φ(y)

Φ(ξ)

)
| ≤ C

|y − ξ|
|ξ|7/6 + |y|7/6

.

Proof. We distinguish the two following cases |ξ−y| ≥ 2|ξ| and |ξ−y| ≤ 2|ξ|.
In the first case, |y| ≥ |ξ| and

|Φ(ξ) − Φ(y)| ≤ |Φ(ξ) − 1| + |Φ(y) − 1| ≤ C

|ξ|1/6
≤ C |ξ − y|

|ξ|7/6

where in the second inequality we use the property (P-3) in the Appendix B.
On the other hand, if |ξ − y| ≤ 2|ξ|, we use that

Φ(y) − Φ(ξ) =

∫ y

ξ

Φ′(λ) dλ,

where the contour of integration is a segment connecting ξ and y. Using
again (P-3) we obtain

|Φ(ξ) − Φ(y)| ≤ C

∫ y

ξ

dλ

|λ|7/6
≤ C |ξ − y|

|ξ|7/6
.

Using that | ln(Φ(y)/Φ(ξ))| ≤ C|Φ(y) − Φ(ξ)|/|Φ(ξ)| as well as the fact that
|Φ(ξ)| is bounded from below for Imξ ∈ (4/3, 5/3) we deduce

| ln
(

Φ(y)

Φ(ξ)

)
| ≤ C

|y − ξ|
|ξ|7/6

.

Exchanging the role of the variables ξ and y, Lemma (C.7) follows.

End of the proof of Proposition C.6. Using Lemma C.7 it follows that,

|h(ξ, η − ξ)| ≤ C

∫
Im y=( 4

3
+ε)

|y − ξ|
|ξ|7/6 + |y|7/6

∣∣e6π(η−y) − e6π(ξ−y)
∣∣ |dy|

|1 − e6π(η−y)| |1 − e6π(ξ−y)| .
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Suppose that Reξ ≥ Reη. Then,

|h(ξ, η − ξ)| ≤ C

∫
Im y=( 4

3
+ε)

|y − ξ|
|ξ|7/6 + |y|7/6

∣∣e6π(ξ−y)
∣∣ |dy|

|1 − e6π(η−y)| |1 − e6π(ξ−y)| .

The terms |1−e6π(η−y)| and |1−e6π(ξ−y)| in the denominator do not vanish due
to the choice of the contour of integration. Moreover they can be estimated
from below independently of ε, by means of a suitable choice of ε. Therefore,

|h(ξ, η − ξ)| ≤ C

∫
Im y=( 4

3
+ε),Rey≤Reξ

|y − ξ|
|ξ|7/6 + |y|7/6

|dy|
|1 − e6π(η−y)|

+ C

∫
Im y=( 4

3
+ε),Rey≥Reξ

|y − ξ| e6πRe(ξ−y)

|ξ|7/6 + |y|7/6
|dy|

Then,

|h(ξ, η − ξ)| ≤ C

∫
Im y=( 4

3
+ε),Rey≤Reη

|y − ξ|
|ξ|7/6

|dy|
|1 − e6π(η−y)|

+ C

∫
Im y=( 4

3
+ε),Reη≤Rey≤Reξ

|y − ξ|
|ξ|7/6 + |y|7/6

|dy|

+
C

1 + |ξ|7/6
. (C.33)

Using |y− ξ| ≤ |y−η|+ |η− ξ|, the first term in the right hand side of (C.33)
can be estimated as C(1 + |η − ξ|)/|ξ|7/6.
In order to estimate the second integral, we use first that |y − ξ| ≤ C|η − ξ|.
The remaining integral may then be estimated as C|ξ − η||ξ|−1/6. On the
other hand, this second term might be also bounded as C|ξ − η|2/|ξ|7/6.
Therefore, combining the two inequalities we obtain:

|h(ξ, η − ξ)| ≤ C
{
min{|ξ − η|2/|ξ|7/6, |ξ − η||ξ|−1/6} + |ξ|−7/6

}
.

The argument for Reη ≥ Reξ is similar using the symmetry of the integrand.
Finally, (C.33) is an immediate consequence of (C.29), (C.31) and (P-3) in
Appendix B.
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Figure 1: Some of the zeros and poles of the function Φ.
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Figure 2: b=-1/4.
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Figure 3: b=1.
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Figure 4: b=4/3.
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Figure 5: b=5/3, r runs from -5 to 5.
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Figure 6: b=21/12=1.75, r runs from -5 to 5.
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Figure 7: b=23/12=1.9166666667, r runs from -5 to 5.
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Figure 8: b=1.8402088125,r runs from -0.331301 to -0.331269 and from
0.331269 to 0.331301.
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Figure 9: b=1.840205625, r runs from -0.33131 to -0.33126 and from
0.33126 to 0.33131..
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