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Abstract

The aim of the paper, which summarized the two talks given by the authors dur-
ing the summer school ’04 in Santander, is to give an overview of what can be said
about the qualitative properties, such that the conservation quantities, the entropies,
the stationary solutions, the self-similar solutions, the long time asymptotic of generic
solutions, for a family of Boltzmann like equations which do not fulfill any detailed
balance condition and for which a common study strategy applies. More precisely, we
will illustrate our method on the Coagulation equation (C), the Fragmentation equa-
tion (F), the Coagulation-Fragmentation equation (CF), the Growth-Fragmentation
equation (GF), the Inelastic Boltzmann equation (IB) and the Pauli equation (P).

1 Introduction

The aim of this notes is to describe the collective (or statistical) dynamic, we shall say
the mesoscopic dynamic, of a system of many particles for which we know the individ-
ual dynamic (the dynamic law that follows any given particle). The mesoscopic level of
description is an intermediate level between the microscopic level (description of all the
particles in the system) and the macroscopic level of the physical observables.

A common feature of all the microscopic event we will introduce below is that none
of them are (a priori) reversible. That will have several strong consequences in terms
of existence of equilibrium states and existence of a quantity which decreases along time
(Liapunov functional or entropy) on the associated mesoscopic model as we will see.

1.1 The microscopic Level.

We are interested in some situations when the mass (or size, age) of particles (or individual)
or the velocity (or wave function, energy) of particles is pertinent in order to describe the
particles. We then assume that each particle is fully identified by one state variable ξ ∈ Ξ,
with ξ = y ∈ (0,∞) in the case of the mass and with ξ = v ∈ R

3 or T
3 in the case of

the velocity. We consider a system of many such indiscernible particles (but by its state)
which undergo microscopic processes. The first step is thus to present the microscopic
events that may change the state of one particle.
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1.1.1 Coagulation.

It refers to mechanisms by which two (mother) particles encounter and merge into a single
(daughter) particle. This aggration mechanism may be schematically represented by

(y) + (y′)
rate a
−→ (y + y′) coagulation mechanism,(1.1)

where a = a(y, y′) is the rate of occurrence of the aggregation of two particles of mass
y and y′. The physical mechanism which leads to aggregation of particles (and which
may be very complicate) is hidden in the rate a. In any case we which assume that a
is homogeneous, namely a(s y, s y′) = sλ a(y, y′) ∀ s, y, y′ > 0 with λ ∈ [0, 2]. At that
microscopic level, we see that the total mass of particles is conserved during a coagulation
event while its number is decreasing and its mean mass is increasing.

1.1.2 Linear or spontaneous fragmentation.

It is the mechanism by which a single particle splits into two (or more) smaller pieces.
Schematically, we write

(y)
rate b
−→ (y′) + (y − y′) fragmentation mechanism,

where b = b(y, y′) is the rate of occurrence of the breakage of one particle of mass/size
y, given rise to two particles (of mass y ′ and y − y′). Particular cases are: on the one
hand the cell division for which there always holds y ′ = y/2; on the other hand the birth
process (in such a case y must be understood as the age of the individual) for which
there always holds y′ = 0. Most of the time, we assume that b is homogeneous, namely
b(s y, s y′) = sγ−1 b(y, y′) ∀ s, y, y′ > 0 with γ ∈ R. At that microscopic level, we see
that the mass is conserved during a fragmentation event while the number of particles is
increasing and the mean mass is decreasing. In that rough sense, the fragmentation is a
reverse mechanism with respect to the coagulation.

1.1.3 Condensation/evaporation or Growth.

It is the mechanism by which matter is transfered from the surrounding medium towards
the particles or from the particles phase to the medium. That schematically can be
represented by

(y)
rate w
−→ (y + w(y) dy) growth mechanism,

where w = w(y) is the rate of condensation/evaporation of new matter on a particle of
size y. At this microscopical level, we see that the growth mechanism leaves the number of
particles (or individual) constant while the size (or mass) is increasing when w(y) > 0 for
any y > 0 (condensation) and it is decreasing when w(y) < 0 for any y > 0 (evaporation).

1.1.4 Inelastic Collisions.

When the particles are described by their velocity the natural event by which particles
change their velocity is a collision, schematically

(v) + (v∗)
rate B
−→ (v′) + (v′∗) collision mechanism.
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In principle, a collision conserves momentum and energy

v + v∗ = v + v′∗, |v′|2 + |v′∗|
2 = |v|2 + |v∗|

2 elastic collision.

In many situation non elastic collisions are pertinent. It could be because kinetic energy is
transfered to internal energy (heat) which is not taken into account in the (simple) model
considered here (in which the particle is fully describe by its velocity). In that case, a non
elastic collision schematically should write

v + v∗ = v + v′∗, |v′|2 + |v′∗|
2 < |v|2 + |v∗|

2 quadratic inelastic collision.(1.2)

It could also be because the collisions arise between two different kind of particles (light
particles of velocity vL and heavy particles of velocity vH) and we only consider the
dynamic of light particles, the heavy particles being at the rest for instance. Schematically,
we write

(vL) + (vH)
rate σ
−→ (v′L) + (v′H) linear inelastic collision.

1.2 A word about physic and general references.

Growth mechanisms in the largest sense, that is coagulation/aggregation, fragmentation
and evaporation/condensation, are widespread phenomenon in nature. They are met
and play an important role in various fields of physics (aerosol and raindrops formation,
smoke, sprays, ...), chemistry (polymer, ...), astrophysics (formation of galaxies) and bi-
ology (hematology, animal grouping, ...) and then take place at different scales. They
are pertinent as soon as one consider systems of bodies (or clusters, particles, aggregates,
individuals) which mass (or size, age) may change: may increase or decrease. In the sim-
plest situations, the one we consider in that paper, one may consider that these bodies
are fully identified by their mass. One of the main interest of the coagulation equation,
associated to the mechanism of coagulation, and the fragmentation equation, associated
to the mechanism of fragmentation that we introduce in section 1.3, is that they provide
some models of change of phase (which is mathematically observed by the fact that the
particles phase described by the density f loss mass), schematically

dust y = 0 ←→ particles y ∈ (0,∞) ←→ gel y =∞,

thought at the microscopic level, that mechanisms conserve the mass. Let emphasize
that these change of phase phenomena may occur in finite time (when λ > 1, γ < 0) or
asymptotically in large time (when λ ≤ 1, γ ≥ 0). We focus in the present paper on the
second situation, and we refer the interested reader to the first (more singular) situations
to [6, 8, 28, 45] for an analysis of the shattering phenomena (dust phase appear instanta-
neously because the fragmentation mechanism is strongest the particles are smallest, that
is the case γ < 0) and to [38, 32, 21] for an analysis of the gelation phenomena (gel phase
appear in finite time because the coagulation mechanism is strongest the particles are
largest, that is the case λ > 0). More generally, we refer to the books and review papers
of F. Leyvraz [37], P. Laurençot and S. Mischler [34], D.J. Aldous [2], J. H. Seinfeld [52],
S. K. Friedlander [26] and R.L. Drake [16] for a basic physical description and motivations
and an overview of available mathematical results as well as to the references therein for
a more precise physical and mathematical analysis.
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On the other hand, collisional mechanisms is at the root of the physic of kinetic gases.
The use of Boltzmann inelastic like models to describe dilute, rapid flows of granular
media started with the seminal physics paper [29], and a huge physics litterature has
been developed in the last twenty years. Such a models has some application for the
description of the dynamic of particles of macroscopic size moving in a fluid (grains, dust,
spray) or in the void (rings of fragments in a solar system for instance). In these models,
the interactions between grains or particles are dissipative. The study of granular systems
in such regime is motivated by their unexpected physical behavior (with the phenomena
of collapse –or “cooling effect”– at the kinetic level and clustering at the hydrodynamical
level), their use to derive hydrodynamical equations for granular fluids, and their industrial
applications. The main motivation of the paper on that model is to describe the cooling
effect and to valid the Haff Law’s on the decreasing of the energy. We refer to [14] [17] [5]
[10] and the references therein for a physic and mathematical introduction to the field of
granular medium. Finally, the Pauli equation is a simplified model for the dynamics of a
cloud of particles (electrons or ions) in a semiconductor device and we refere to [50] and
the references in [4] for a mathematical introduction of such a model.

1.3 The mesoscopic level.

We now describe the system by the density f = f(t, ξ) ≥ 0 of particles in the state
ξ at times t ≥ 0. The equation giving the collective dynamic is the ”master equation”
associated to a given combination of the ”microscopic events” described before. In any
case, the dynamic of the density is given by the Boltzmann like equation

∂

∂t
f(t, ξ) = A(f(t, .))(ξ) on (0,∞) × Ξ,(1.3)

where A modelizes the change of state of a particles due to some microscopic events, and
then it is an operator which only acts on the variable states. We complement the evolution
equation (1.3) with an initial condition

f(0, ξ) = fin(ξ) on Ξ.

In all the sequel we will use the shorthand notations h = h(t, ξ) or h = h(ξ) and h] =
h(t, ξ]) or h] = h(ξ]) for any function h, any ξ, ξ] ∈ Ξ and any t ≥ 0.

Before describing with details the different models we will deal with, let present the
common questioning that one can have for any of them.

• Is there any conservation law? Is there any entropy?
****** (or, mathematically speaking, any Liapunov functional)?

• Is there any particular relevant solutions? They may be stationary solutions, self-
similar solutions or first eigenfunction. All of them writes

F (t, ξ) = τ1(t)G(τ2(t) ξ)(1.4)

for a particular profile G and two time rescaling τ1 and τ2.

• Are these solutions stables? attractives? It should mean that the dynamic of any
solution is governed by these particular solutions.
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1.3.1 Coagulation operator and coagulation equation.

The Smoluchowski coagulation equation, denoted by (C), is obtained considering the equa-
tion (1.3) where A takes into account the sole coagulation mecanism. Namely, we take
A = C where C is the coagulation operator associated to the coagulation mechanism
defined by

C(f, f)(y) :=
1

2

∫ y

0
a(y′, y − y′) f(y′) f(y − y′) dy′ −

∫ ∞

0
a(y, y′) f(y) f(y′) dy′.

Under the assumption λ ≤ 1 (and some additionnal assumptions that we do not specify
here) we may show that the coagulation equation has global solutions which preserve the
total mass for all time that is

∫ ∞

0
y f(t, y) dy =

∫ ∞

0
y fin(y) dy =: ρ for all t > 0.(1.5)

It is also known that the typical mass Yt of a particle increases and tends to infinity, or
equivalently,

f(t, y)→ 0 when t→∞.

As a consequence f = 0 is the only steady state for the coagulation equation. One may
look for another type of particular solutions: the self similar solutions, that is solutions
which are invariant by some scaling. Their precise forms depend on the rate of coagulation.
Some explicit example are already well known, see [42, 7, 31] and the references in [34]:

- For a(y, y′) = 1, F (t, y) = 4t−2e−
2x
t is the unique self-similar solution (with mass iden-

tically equal to 1).

- For a(y, y′) = y + y′, F (t, y) = (2π)−1/2e−tx−3/2e−e−2tx/2 is also the unique self-similar
solution (with mass identically equal to 1).

For a general kernel a such an explicit expression for self similar solutions is not known.
We then look for a particular solution F satisfying (1.4) and preserving mass (1.5). We
immediatly obtain that F must have the form

F (t, y) =
1

t2/(1−λ)
G
( y

t1/(1−λ)

)

for a given profile G satisfying the following profile equation

B(G) := (1− λ)C(G,G) +D1G = 0, with D1g := 2g + y
∂g

∂y
.

1.3.2 Fragmentation operator and fragmentation equation.

The (pure linear) fragmentation equation, denoted by (F) below, is defined taking A = L
in (1.3) where L is the fragmentation operator associated to the fragmentation mechanism
and it is defined by

L(f)(y) =

∫ ∞

y
b(y′, y) f(y′) dy′ − f(y)

∫ y

0

y′

y
b(y, y′) dy′.
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When γ ≥ 0, the conservation (1.5) holds again, but now the typical mass Yt decreases
and tends to zero, or equivalently

y f(t, y)→ ρ δy=0 when t→∞.(1.6)

The only steady states are the Dirac masses ”ρ y−1 δy=0”, and we can ask again for a more
accurate description of the above asymptotic behavior thanks to self-similar solutions. We
find that a self-similar solution F must satisfies

F (t, y) = t2/γ G(t1/γ y),

and the profile G must satisfies

BG := γ LG−D1G = 0.

1.3.3 Coagulation-Fragmentation equation.

The coagulation-fragmentation equation, denoted by (CF) below, is obtained as a combi-
nation of the two preceding equations. We take then A := C + L. When γ ≥ 0 and λ ≤ 1
(also when γ > 0 and λ < 1+γ) the mass is conserved (1.5). Moreover, under the detailed
balance condition: there exists M : (0,∞)→ (0,∞) such that (1 + y)M(y) ∈ L1 and

a(y, y′)M(y)M(y′) = b(y + y′, y′)M(y + y′) ∀y, y′ > 0(1.7)

we may show the following.

1. There exists a familly of equilibrium states : Mz(y) := M(y) ez y is a stationary
solution for any z ∈ R.

2. The functionnal

t 7→

∫ ∞

0
(f ln

f

M
− f +M) dy(1.8)

is an entropy.

3. Any solution f to the CF equation satisfies

f(t) −→
t→∞

Mz for some z ∈ R.(1.9)

4. Finally, one may identify z in (1.9) in several particular cases, see [3, 33], and one
may establish a rate of convergence in (1.9), see [1, 30].

Without the detailed balance condition (1.7), the existence of stationary solutions, the
existence of entropy and the long time asymptotic of generic solutions are not clear and
they have to be investigated.

1.3.4 Growth-Fragmentation equation.

For the condensation (or growth) operator, we take

Gw(f)(y) := −w(y) ∂yf(y).

The Growth-Fragmentation equation, denoted by (GF) below, is then defined by (1.3)
with A = L+ Gw.
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In contrast with the case when w(y) = y for which the mass of the solutions of the GF
equation follows an explicit exponential growth, there is no evident law of conservation
for this model when w(y) 6≡ y. Nevertheless, one can solve the dual first eigenvalue-first
eigen function problem associated to the GF equation with the help of the Krein-Rutman
theorem, see [49, 44]. For the sake of simplicity we consider the case

0 < B0 ≤ B(y) ≤ B1 <∞, w(y) ≡ 1.

Theorem 1.1 Under the above assumptions there exists a couple (λ, φ) of first eigenvalue-
first eigen function of the dual problem

L∗φ+ G∗w φ = λφ, φ ≥ 0,

∫ ∞

0
φ(y) dy = 1.

Considering a solution f to the GF equation, we easily see that the rescaled function
g(t, y) := f(t, y) e−λ t satisfies the modified equation

∂g

∂t
= Bg := Lg + Gwg − λ g(1.10)

and the following law of conservation holds:

∀ t ≥ 0

∫ ∞

0
g(t, y)φ(y) dy ≡

∫ ∞

0
fin(y)φ(y) dy.

In order to describe the long time asymptotic of the solutions f to equation (GF) we look
for the first eigensolution F , or equivalently (thanks to the change of variables linking f
and g) for a stationary solution G to (1.10). It is worth mentioning that such a stationary
solution is in fact given in the same time that the existence of the couple (λ, φ) by Theo-
rem 1.1. We choose that presentation in order to bring the problem in a similar form than
for the other models presented in the paper.

1.3.5 Inelastic Boltzmann equation.

We next define the bilinear collision operator Q(f, f) which models the interaction of
hard spheres by means of inelastic binary collisions preserving mass and momentum but
dissipating kinetic energy (1.2). Denoting by e ∈ (0, 1) the normal restitution coefficient,
we define the collision operator in strong form as

Q(g, f)(v) :=

∫ ∫

R3×S2

(

′f ′g∗
e2

− fg∗

)

|u| dσ dv∗.(1.11)

Here u = v−v∗ denotes the relative velocity and ′v, ′v∗ denotes the possible pre-collisional
velocities leading to post-collisional velocities v, v∗. They are defined by

′v =
v + v∗

2
+

′u

2
, ′v∗ =

v + v∗
2
−

′u

2
,

with ′u = (1− β)u+ β|u|σ and β = (e+ 1)/(2e) (β ∈ (1,∞) since e ∈ (0, 1)).
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The Inelastic Boltzmann equation, denoted below by (IB), is obtained taking A = Q in
(1.3). For any solution f of the inelastic Boltzmann equation, the mass and the momentum
are conserved

∫

R3

f(t, v) dv ≡

∫

R3

fin(v) dv,

∫

R3

f(t, v) v dv ≡

∫

R3

fin(v) v dv,

but not the energy, since we have

d

dt
E(t) = −DE(t)

where the energy E and the dissipation of energy DE are defined by

E =

∫

R3

f |v|2 dv, DE = σ0

∫

R3

∫

R3

f f∗ |v − v∗|
3 dvdv∗.

The only steady states are ρ δv=u, ∀ ρ > 0, u ∈ R
3, and for any solution f of mass ρ > 0

and momentum 0, the typical velocity Vt satisfies

Vt → 0 or equivalently f(t, v) ⇀
t→∞

ρ δv=0.

Once again, we look for a more accurate description of the above asymptotic behavior
thanks to self-similar solutions. We find that a self-similar solution F must satisfies

F (t, v) = t3G (t v)

and the profile G must satisfies

BG := Q(G) −D2G = 0, with D2 = 3 + v · ∇v.

1.3.6 Pauli equation.

Finally, the Pauli equation is obtained taking A = P in (1.3) where the Pauli operator P
is defined by

P(f)(v) =

∫

T3

(

σ(v, v′) (1 − f) f ′ − σ(v′, v) (1 − f ′) f
)

dv′.

The nonlinearity of P takes into account the quantum effect due to Pauli exclusion prin-
ciple. We easily see that any solution f to the Pauli equation, preserves the total charge,
that is

∀ t ≥ 0

∫

T3

f(t, v) dv =

∫

T3

fin(v) dv.

Moreover, under the following detailed balance condition

∃K σ(v, v′)K(v) = σ(v′, v)K(v′),(1.12)

there exists a familly of equilibrium states (Mz(v) := (z K(v)+1)−1 is a stationary solution
for any z ∈ R+), the following functionnal

t 7→

∫ ∞

0
[f ln(K f) + (1− f) ln(1− f)] dy

is an entropy and the convergence (1.9) holds.

Without the detailed balance condition (1.12), the existence of stationary solutions,
the existence of entropy and the long time asymptotic of generic solutions are not clear
and they have to be investigated.
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1.4 Good variables and good equation.

Let then summarize the different situations and results we have listed above. At this very
rough level, we may differentiate three cases

- Case 1. For the coagulation-fragmentation equation (CF) and the Pauli equation
(P), we find one conservation law and some equilibria under the (appropriate!) detailed
balance hypothesis. For such an equation modeling two opposite mechanisms, the natural
question is then the existence of some stationary solution:

∃G with mass ρ such that B(G) = 0?(1.13)

with B = A an operator which does not fulfill the detailed balance hypothesis.

- Case 2. For the the coagulation equation (C), the fragmentation equation (F)
and the Inelastic Boltzmann equation (IB) we also find one (or two) conservation law(s),
but concentration (for (F) and (IB)) or dispersion (for (C)) occur (due to the one way
mechanism which are involved). For these ”one way mechanisms”, there exists some trivial
equilibria (the 0 function or the Dirac mass). The question is then whether it is possible to
describe one step further these mechanisms. In that situation we look for some self-similar
solutions F or equivalently for a self-similar profile G which satisfies again the stationary
equation (1.13) for B = A+D where D is a sum of a 0th and a 1st order derivative operator
which has been specified above for each particular case.

- Case 3. For the fragmentation-growth equation (FG) there is no trivial conservation
since that the fragmentation mechanism conserves the mass of particles and the growth
mechanism conserves the number of particles. Since the model is linear we may look for
a first eigenvalue and first eigenfunction F . Introducing the solution to the dual eigen
problem, we see that we are leading once more to the question of the existence of a
stationary solution G to the modified problem (1.13) with B := A− λ.

We make now the following fundamental remarks. Introducing the new evolution
equation

∂

∂t
g(t, ξ) = B(g(t, .))(ξ) on (0,∞)× Ξ(1.14)

g(0, ξ) = gin(ξ) ≡ fin(ξ) on Ξ,

with B = A+D and D depending on the model into consideration, we see that a solution
G to the stationary (or profile) equation (1.13) is nothing but a stationary solution to the
equation (1.14). In other words, we have reduced the question of existence of particular
solutions to equation (1.3) to the problem of existence of an equilibrium state for a mod-
ified equation (1.14) as in the case 1. The Boltzmann-like equation (1.14) always enjoys
the following properties. There is one (or two) law(s) of conservation. It does not ful-
fill any detailed balance condition (because it models microscopic mechanisms without a
priori micro-reversibility structure) and therefore there is not evident stationary solution
nor Liapunov functional. That contrasts with the usual Boltzmann equation for which
micro-reversibility implies the existence of explicit stationary solutions (the Maxwellian
functions) and the existence of Liapunov functional (the Boltzmann entropy’s). Neverthe-
less, the solutions does not undergo concentration nor dispersion (which mathematically
can be expressed in term of (weak) compactness on the flow). This fact is important in
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order to insure that we have obtained with equation (1.14) the relevant modification of
equation (1.3).

On the other hand, we may pass from a solution f of the equation (1.3) to a solution g
of the equation (1.14) (and reciprocally) by a mere change of variables. For instance, for
the coagulation equation (C), the fragmentation equation (F) and the inelastic Boltzmann
equation (IB), if g is a solution to (1.14) then the following function f is a solution to
(1.3):

f(t, ξ) = (1 + t)M g(ln(1+)N , (1 + t)P ξ),(1.15)

withM = 1/γ, N = 1/γ, P = 1/γ for (F), M = −2/(1−λ), N = 1/(1−λ), P = −1/(1−λ)
for (C) and M = 3, N = P = 1 for (IB). An immediate and useful consequence is the
following relation between the power moments of f and g:

Mk(f(t, .)) = (1 + t)P (d−k)Mk

(

g
(

ln(1+)N , .
))

,(1.16)

where the moment Mk is defined in (2.1) below and where d = 1 for (F) and (C), d = 0 for
(IB). Reciprocally, if f satisfies equation (1.3), we obtain a solution g to (1.14) defining

g(t, ξ) = e−M t/Nf
(

et/N − 1, ξ e−P t/N
)

.(1.17)

In other words, equation (1.14) is just equivalent to equation (1.3). But, as we will see
below, in order to establish properties on the long time asymptotic of solutions to equation
(1.3) it is often more convenient to work on the modified equation (1.14) than directly on
the equation (1.3).

Let make now more precise the question we want to answer for any of these models.

Question A. Is there any stationary solution for (1.14) and what can be said about it ?

Question A1. Existence of stationary solution?

⇒ The answer is always positive. The proof is based on a rough infinity version of the
Poincaré-Bendixson Theorem. This one can be applied directly, on the flow generated by
the equation: it is necessary to obtain a priori bounds on the solutions to the time evolution
equation (1.14). This one can also be applied on the flow generated by a ”truncated
version” of equation (1.14), and then it is ”only” necessary to obtain a priori bounds on
the solutions of the stationary (or profile) equation (1.13).

Question A2. Uniqueness of the profile?

⇒ In general, we do not know how to answer. Nevertheless, for the fragmentation
equation (F), the growth-fragmentation equation (GF) and the Pauli equation (P) we are
able to prove that the solution of (1.13) is unique, making use the (almost) linearity of
these models in order to obtain a (familly of) Liapunov functional(s).

Question A3. More qualitative properties on the profile G: symmetry, smoothness, tails
behavior, stability?

⇒ Working on the stationary equation (1.13) and using boot-strap arguments we are
able to establish some qualitative properties on the stationary solution G such as L∞

weight estimates by above and below, smoothness (from continuity to C∞ depending of
the model). Asymptotic stability or mere stability of the profile is still an open problem.

Question B. What can be said about ”generic” solutions of the equation (1.14)
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Question B1. Sharp uniform (in time) bounds?

=⇒ We are able to prove the existence of invariant sets and attractive sets for the
generic solutions g to the modified equation (1.14). These properties on g may be trans-
lated automatically thanks to (1.15) to the associated solution f to the primal equation
(1.3). We establish in particular that the long time behavior of the generic solutions f
is the same that the long time behavior of the self-similar solutions in the rough sense of
moments decay.

Question B2. Entropy and convergence of g(t) to the equilibrium G.

=⇒When entropies are available (see the answer to question A2) we are able to prove
the long time convergence of the generic solutions g to the profile G.

2 Main results

For any k ∈ R, and any measurable function f : Ξ → R+ we define the moment of f of
order k by

Mk(f) :=

∫

Ξ
f(ξ) |ξ|k dξ(2.1)

and the associated Lebesgue spaces for p ∈ [1,∞) by

L̇p
k :=

{

f ∈ L1
loc(Ξ), Mk p(|f |

p) <∞
}

, Lp
k := L̇p

0 ∩ L̇
p
k.

We also introduce Ṁ1
k andM1

k the spaces of Radon measures associated to these L1 spaces.

2.1 Fragmentation equation, the case γ ≥ 0.

For the fragmentation rate we assume that

b(y, y′) = B(y)β(y, y′),

where B(y) measure the frequency with which a particle of size y breaks and β(y, y ′) is the

repartition probability of the daughter particles in the segment [0, y] so that

∫ y

0
β(y, y′)

y′ dy′ = y. For the sake of simplify, we will assume that

B(y) = yγ , γ ≥ 0, β(y, y′) =
1

y
θ

(

y′

y

)

,

where θ is a measurable function on [0, 1] satisfying

∫ 1

0
z θ(z) dz = 1,

∫ 1

0
zm θ(z) dz <∞, m < 1, θ > 0 a.e. on (0, 1).

Theorem 2.1 1. For any ρ > 0, there exists a unique self-similar solution Fρ of mass ρ
to (F), that is

Fρ(t, y) = t2/γ Gρ(t
1/γ y), G ∈

⋂

k≥m

L̇1
k, M1(G) = ρ.

Moreover, G ∈W 1,∞
loc (0,∞), ykG ∈ L∞ ∀ k ≥ 1 +m and G > 0 on (0,∞).
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2. For any 0 ≤ fin ∈ L̇1
1 there exists a unique weak solution f ∈ C([0,∞); L̇1

1) ∩
L1(0,∞;L1

1+γ) to the fragmentation equation (F). This one is mass conserving and satis-
fies

g(t, y) := e−2 t f(eγ t − 1, e−t y) −→
t→∞

G strongly in L̇1
1.(2.2)

Theorem 2.1 gives then an accurate description of the convergence (1.6). For more
details we refer to [22, 44, 45] for an analytical approach and to [6, 8] for a probabilistic
approach.

2.2 Coagulation equation, the case λ ∈ [0, 1).

For the coagulation rate, we assume

a(y, y′) = yα (y′)β + yβ (y′)α, −1 < α ≤ β < 1, λ := α+ β ∈ [0, 1).

Our results are still valid for linear combinations of several such rates

a(y, y′) = (yν + (y′)ν) (yσ + (y′)σ), ν + σ ∈ [0, 2),

which includes the important particular case of Smoluchowski’s rate aS introduced in [53]
which is defined choosing ν = 1/3 and σ = −1/3. In order to obtain our results in that
case one has to take α = −1/3, β = 1/3 in the statement of the theorem below.

Theorem 2.2 1. For any ρ > 0, there exists at least one self-similar solution Fρ of mass
ρ to the coagulation equation (C), that is

Fρ(t, y) = t−
2

1−λ Gρ(t
− 1

1−λ y), G ∈
⋂

k∈Ia

L̇1
k, M1(G) = ρ,

with Ia := R if α < 0, Ia := [λ,∞) if α = 0, Ia := (λ,∞) if α > 0. Let emphasize that
Fρ describe the dynamic of the coagulation process when starting from a pure dust intial
condition, since

y Fρ(t, y) ⇀ ρδy=0 when t→ 0.

2. The self-similar profile G satisfies the additional properties:
2.1. G ∈ C∞ if α < 0, G ∈ C1 if α = 0, G ∈ C1−λ,0

loc if α > 0.
2.2. ∀ ε ∈ (0, 1), ∃ bε, Bε such that e−bε y ≤ G(y) ≤ e−Bε y for all y ∈ (ε,∞).
2.3. ∃ a,A such that e−a yα

≤ G(y) ≤ e−A yα
for all y ∈ (0, 1) if α < 0,

lim
y→0

yτ G(y) = L0, τ := 2− (1− λ)Mλ(G) if α = 0,

and Gyk ∈ L∞(0, 1) for any k > 1 + λ, Gyk /∈ L∞(0, 1) for any k < 1 + λ if α > 0.

3. For any 0 ≤ fin ∈ L̇
1
1 there exists at least one weak solution f ∈ C(]0,∞[; L̇1

k) for
any k ∈ Ia ∩ (−∞, 1] to the coagulation equation (C) which conserves the mass. Moreover
assuming that fin ∈ L̇

1
1 ∩ L̇

1
M for some M > 1, that solution can be built in such a way

that
Mk(t) ≤ Ck t

−1 ∀t ∈ (0, 1], ∀ k ∈ Ia ∩ [λ, 1]

C1,k t
k−1

1−λ ≤Mk(t) ≤ C2,k t
k−1

1−λ ∀t ∈ [1,∞), ∀ k ∈ Ia.(2.3)

12



Estimate (2.3) means that f(t, y) behaves in the large time asymptotic as a self-similar
solution in the rough sense of moments.

4. For any 0 ≤ fin ∈ Ṁ
1
1 ∩ Ṁ

1
M , M > 1 and 0 ≤ s ∈ L∞(0,∞; Ṁ1

1 ∩ Ṁ
1
M), there exists

at least a weak solution f ∈ C([0,∞); Ṁ1
1 −weak) to the coagulation equation with source

term
∂f

∂t
= C(f) + s, f(0, .) = fin.

Moreover, this one conserves the mass

M1(f(t)) = M1(fin) +

∫ t

0
M1(s(τ, .)) dτ

and all the matter contained in the system is in the particles phase, since that

M 1+λ
2

(t) ∈ L∞
loc(0,∞).

Theorem 2.2 is one step in the way of the description of short time asymptotic (for
small masses) and the long time asymptotic (for large masses) of solution to the coagulation
equation (C). For more details we refer to [22, 20, 23, 24] and the references therein.

2.3 Inelastic Boltzmann equation.

Theorem 2.3 1. For any mass ρ > 0, there exists one self-similar profil G with mass ρ
and momentum 0 to the Inelastic Boltzmann equation:

0 ≤ G ∈ L1
2, Q(G,G) = ∇v · (v G),

∫

RN

G

(

1
v

)

dv =

(

ρ
0

)

,

which moreover can be built in such a way that G is radially symmetric, G ∈ C∞ and

∀ v ∈ R
N , a1e

−a2 |v| ≤ G(v) ≤ A1e
−A2|v|

for some explicit constants a1, a2, A1, A2 > 0.
2. For an initial datum

0 ≤ fin ∈ L
1
2

∫

RN

fin

(

1
v

)

dv =

(

ρ
0

)

,(2.4)

the associated solution of the Inelastic Boltzmann equation (IB) satisfies the Haff’s law in
the sense:

∀ t ≥ 0, m (1 + t)−2 ≤ E(t) ≤M (1 + t)−2(2.5)

for some explicit constants m,M > 0.

3. More precisely, the rescaled variables function g(t, v) := e−3 t f(et−1, e−t v) satisfies:

(i) There exists λ > 0 such that the solution g can be written g = gS + gR in such a way
that gS ≥ 0 and

sup
t≥0

∥

∥gS
t

∥

∥

Hs
q
< +∞, ∀ s ≥ 0, q ≥ 0,

∥

∥gR
t

∥

∥

L1
2

= O
(

e−λt
)

.
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(ii) For any τ > 0 and s ∈ [0, 1/2), there are some explicit constants a1, a2, A1, A2 > 0
such that

∀ v ∈ R
N , lim inf

t→∞
g(t, v) ≥ a1e

−a2 |v|

and

∀ t ≥ τ,

∫

RN

g(t, v) e−A1 |v|s dv ≤ A2.

We refer to [11, 46] and the references therein for more details.

2.4 Other models and perspectives.

Coagulation-Fragmentation equation. For the equation (CF) we refer to [22] and [35]
where existence of stationary solutions are proved under the assumptions we have made
on a and b and the condition γ ≥ 0 and 0 ≤ λ ≤ γ + 1.

Growth-Fragmentation equation. For the equation (GF) we refer to [49], [44] and
[43] where existence of first eigen solution-first eigen value for the primal and the dual
equation is proved under quite general assumption on the fragmentation kernel by the
mean of the Krein-Rutman theorem. Existence of a family of Liapunov functionals and
application to the uniqueness and to the large time asymptotic is obtained in the same
that for the pure fragmentation equation, see Theorem 2.1 and Theorem 5.1.

Pauli equation. For the equation (P) we refer to [4] and the references therein where
existence of stationary solution is proved under the assumption 0 ≤ σ ∈ L1(T3 × T

3)
following the same strategy that the one explained in section 3. Under some positivity
assumption on σ and making use of the almost linear structure of the equation, it is shown
that the flow generated by the equation is ”strictly” contracting in L1, a property that it
is used in order to prove the uniqueness of the stationary solution and the convergence of
generic solutions to the stationary solution in the large time.

We then list some possible extensions of the above theorems.

Open problem 1. For any ρ > 0, is the self-similar profile Gρ of mass ρ unique?

Open problem 2. For any initial datum fin of mass ρ (and momentum 0), does the
associated rescaled function g satisfy

g(t) −→
t→∞

Gρ or, equivalently, f(t) ∼
t→∞

Fρ?

We may weaken the conjecture 2 in the following way.

Open problem 3. Does the associated rescaled function g split

g(t) = g1(t) + g2(t) with g1(t) ∈ Z, g2(t)→ 0 in L1,

where Z is smaller as possible (for instance it the space in which it has been proved that
the profile G belongs)? Moreover, is the (or any) profile G locally asymptotically stable?

3 Existence of self-similar solution.

We present in this section the strategy used in order to get existence of stationary solution
for the (modified) equation (1.14), giving first an abstract result and illustrating next the
method on the different models in order to get theorems 2.1, 2.2 and 2.3.
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3.1 An infinity dimensional Poincaré-Bendixson Theorem.

We start presenting a first strategy based on the following abstract theorem.

Theorem 3.1 Let Y be a Banach space and let consider (St)t≥0 a continuous semigroup
on Y such that

(i) St is weakly (sequentialy) continuous as an operator acting on Y for any t > 0,
(ii) there exists Z 6= ∅ a convex and (weakly sequentialy) compact subset of Y invariant

under the action of St (that is Stz ∈ Z, ∀ z ∈ Z, t ≥ 0).
Therefore, there exists z0 ∈ Z a stationary point under the action of St (that is Stz0 = z0,
∀ t ≥ 0).

Proof of Theorem 3.1. Thanks to the Tykonov fixed point Theorem :

∀t > 0 ∃ zt ∈ Z such that Stzt = zt,

in other words, zt is a t-periodic solution. Choosing t = 2−n and using the semi-group
property of St there holds

Si 2−mz2−n = z2−n ∀ i, n,m ∈ N, m ≤ n.(3.1)

By the (weak) compactness of Z: ∃z0 ∈ Z, ∃ a subsequence (z2−nk )k such that

z2−nk ⇀ z0 (weakly) in Y.

By the (weak) continuity of St: we may pass to the limit nk →∞ in (3.1)

St z0 = z0 for any dyadic time t ≥ 0.

By the (strong) continuity of the trajectories of St and by density of the dyadic real
numbers in the real line we finally get St z0 = z0 for any t ≥ 0. ut

The first strategy in order to get a solution G to (1.13) is therefore to exhibit a
Banach space Y and a convex and (weakly sequentialy) compact set Z ⊂ Y such that :

(a) for any gin ∈ Y there is a solution g ∈ C([0,∞);Y ) to the equation (1.14) such
that g(0) = gin and gin ∈ Z implies g(t) ∈ Z for any t ≥ 0;

(b) Z ⊂ {G, mass of G = ρ} with (weakly sequentialy) compact embedding;

(c) the following (weakly sequentialy) stability principle holds: for any sequence (gn) of
solutions to (1.14) in C([0,∞);Y ) satisfying gn(t) ∈ Z ∀ t ≥ 0, there exists a subsequence
(gn′) and g ∈ C([0,∞);Y ) such that gn′(t, .) ⇀ g(t, .) in Y and g is a solution to (1.14);

(d) the solution g is unique in C([0,∞);Y );

and to define the semi-group S by setting ∀ gin ∈ Y , S(t) gin := g(t), to which we may
apply theorem 3.1.

There is some situations in which that first strategy fails, roughly speaking because we
are not able to prove (d). We may circumvent that difficulty using a second strategy
applying first the first strategy to a regularized problem (a regularized equation (1.14)
associated to a regularized operator B for which we may prove (d)) and then removing the
regularization. Theorem 3.1 is then just one possible, but elegant, way to approximate
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the problem of the existence of a solution to (1.13) by building a sequence of 2−n-periodic
solutions to (1.14). As a conclusion, because the point (c) is very standard since the
DiPerna-Lions existence theory for Boltzmann like equation (although it may be quite
technical) the fundamental point is to exhibit a convex set Z such that

{

gin ∈ Z =⇒ g(t) ∈ Z ∀ t ≥ 0
Z ⊂ {G, mass of G = ρ} with compact embedding.

(3.2)

Let finally emphasize that a third strategy in order to tackle the problem of the ex-
istence of a solution G to the equation (1.13) should be to find a Banach space X with
compact unbending in {G, mass of G = ρ} such that the following a priori estimate holds

∃R = R(ρ) B(G) = 0, mass(G) = ρ implies ‖G‖X ≤ R,(3.3)

in which space X we may prove a DiPerna-Lions stability principle, and to conclude again
thanks to a regularization argument. Here, the equivalent to the invariant set Z in the
two first strategies should be Z := {G ∈ X, mass of G = ρ, ‖G‖X ≤ R(ρ)}. With regard
to the problem of the existence of a solution G to the equation (1.13) it does not seem
that this last strategy is more efficient that the second one. Nevertheless, with regard
to the problem of the regularity of the the solution G, that third strategy is very much
more efficient that the preceding ones since we know how to exhibit some space X of quite
smooth functions for which (3.3) holds but for which we are not able to prove that the
associated set Z is invariant under the flow of the equation (1.14). We refer to section 4
for more details.

3.2 Existence of self-similar profile for the fragmentation equation

3.2.1 Existence of solutions for the evolution equation

We start with some elementary properties of the fragmentation operator that one may
obtain by straightforward change of variables and which proof is leaved to the reader.

Lemma 3.2 For any functions f and φ there holds

〈Lf, φ〉 =

∫ ∞

0
f B `∗φdy, (`∗φ)(y) =

∫ 1

0
θ(z) (φ(z y)− z φ(y)) dz

As a consequence, for any function f and any k ∈ R there holds

〈Lf, yk〉 = ck

∫ ∞

0
f(y)B(y) yk dy, 〈Lf, yk signf〉 ≤ ck

∫ ∞

0
|f(y)|B(y) yk dy,(3.4)

with ck > 0 if k < 1, c1 = 0 and ck < 0 if k > 1.

We next present some a priori estimates for solutions g to the fragmentation equation
in self-similar variables (1.14) associated to an initial datum gin ∈ L̇

1
k ∩ L̇

1
K , k < 1 < K.

We assume that B(y) = yγ or that 0 ≤ B ∈ L∞, B 6≡ 0 which corresponds to the case
γ = 0 in the following computations.

• From 〈Lg, y〉 = 0 and 〈D1g, y〉 = 0 we deduce M1(t) ≡M1(0) =: ρ.
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• For K > 1 we have

d

dt
MK = 〈γ Lg, yK〉 − 〈D1g, y

K〉 = −γ |cK |MK+γ + (K − 1)MK .(3.5)

Integrating in time the equation (3.5), we get for any time T > 0 that there exists CK,T

depending on MK(gin) such that

sup
[0,T ]

MK(t) + |cK |

∫ T

0
MK+γ(s) ds ≤ CK,T .(3.6)

• For m ≤ k < 1 we have, using the inequality yγ+k ≤ εγ yk + ε−(K−k) yγ+K ∀ y > 0 with
ε > 0 small enough (for instance ε = ((1− k)/ck)1/γ),

d

dt
Mk = ck Mk+γ − (1− k)Mk ≤ Ak,K MK+γ ,(3.7)

for some constant Ak,K . Using the previous estimate (3.6), we deduce again that for any
time T > 0 there exists Ck,T such that

sup
[0,T ]

Mk(t) ≤ Ck,T .(3.8)

Lemma 3.3 For any gin ∈ L̇
1
k ∩ L̇

1
K with m ≤ k < 1 < K there exists a unique solution

g ∈ C([0, T ); L̇1
k ∩ L̇

1
K) ∩ L1(0, T ;L1

K+γ), ∀T > 0, to the fragmentation equation (in self-
similar variables).

Sketch of the proof of Lemma 3.3. Step 1. For any two given solutions gi to the frag-
mentation equation in self-similar variables (1.14) there holds, setting φ := y sign(g2−g1),

d

dt
‖g2 − g1‖L̇1

1

= 〈γL(g2 − g1), φ〉 − 〈D1(g2 − g1), φ〉

≤ 〈γL|g2 − gn|, y〉 − 〈D1|g2 − g1|, y〉 = 0,

from which we deduce

‖g2 − g1‖L̇1
1

≤ ‖gin,1 − gin,2‖L̇1
1

∀ t ≥ 0.(3.9)

We conclude to the uniqueness of the solution.

Step 2. We assume that B ∈ L∞ and we verify that L is a linear continuous operator
on any L̇1

k, k ≥ m. We define the map Φ : E → E, E := {g ∈ C([0, T ]; L̇1
k ∩ L̇

1
K); g ≥

0, M1(g) = ρ}, g 7→ Φ(g) := h, where h is the solution to the equation

∂th+D1 h+ ‖B‖∞ h =

∫ ∞

y
b(y′, y) g′ dy′ + (‖B‖∞ −B(y)) g.

We may apply the contraction Banach fixed point theorem to Φ and we obtain a solution
to the fragmentation equation in self-similar variables (1.14) which preserve the mass.

Step 3. We next assume B(y) = yγ and we argue by approximation. We introduce
Bn(y) = (y∧n)γ and Ln the associated fragmentation operator. Thanks to the step 2, there
exists a solution gn to the fragmentation equation associated to Bn for any n ∈ N. The
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sequence (gn) satisfies (3.6) with MK+γ replaced by ‖f yk (y ∧n)γ‖L1 and (3.8) uniformly
in n. Moreover, for n′ ≥ n and setting φ = y sign(fn′ − fn), we have, following the proof
of the uniqueness of solutions in step 1,

d

dt
‖gn′ − gn‖L̇1

1

= 〈(γ Ln −D1)(gn′ − gn), φ〉 +

∫ ∞

0
(Bn′ −Bn) gn′ `∗φdy

≤

∫ ∞

0
(n′ ∧ y)γ 1y≥n gn′ (`∗φ) dy ≤ n1−K ‖gn′ yk (y ∧ n′)γ‖L1 .

We deduce that (gn) is a Cauchy sequence and then converges in the space E. Its limit
g is the unique solution to the modified fragmentation equation (1.14) associated to B
which moreover preserve the mass. ut

3.2.2 Existence of self-similar profile when θ ∈ L∞
comp

Let state an elementary maximum principle that we use many times in the sequel.

Lemma 3.4 Let 0 ≤ u ∈ C([0,∞)) satisfy u′ + k1 u
θ1 ≤ k2 u

θ2 + k3 with θ1 ≥ 1, θ2 ≥ 0,
θ2/θ1 < 1, k1 > 0 and k2, k3 ≥ 0. There exists C0 = C0(ki, θi) ≥ 0 such that

u0 ≤ C0 =⇒ u(t) ≤ C0 ∀ t ≥ 0.(3.10)

In order to define the Banach space Y and the invariant set Z we must improve the
estimates already established in the preceding section.

• For K > 1 and gin ∈ L̇
1
1∩ L̇

1
K , coming back to the differential equation (3.5) and making

use of the Holder inequality MK ≤ ρ
−γ/(K−1)M

(K+γ−1)/(K−1)
K+γ , we obtain

d

dt
MK + γ |cK | ρ

− γ
K−1 M

K+γ−1

K−1

K ≤ (K − 1)MK .(3.11)

We conclude thanks to Lemma 3.4 that there exists C = C1(ρ,K) such that the following
estimate holds with ‖.‖ = MK(.)

‖gin‖ ≤ C =⇒ sup
t≥0
‖(g(t, .)‖ ≤ C.(3.12)

• For k ∈ [m, 1) and gin ∈ L̇
1
k ∩ L̇

1
1+γ , coming back to the differential equation (3.7) and

making use of the Holder inequality in order to bound Mk+γ , we obtain

d

dt
Mk ≤

(

γ ck M
γ/(1−k+γ)
1+γ

)

M
(1−k)/(1−k+γ)
k − (1− k)Mk.(3.13)

We conclude again thanks to Lemma 3.4 and the estimate on M1+γ previously established
that (3.12) holds with ‖.‖ = Mk(.) and some constant C2.

• We get now estimate on the L2 norm for gin ∈ L
1 ∩L1

1+γ ∩L
2
1/2 observing that we may

take k = 0 > m = −∞ because supp θ ⊂ (0, 1]. We have

d

dt

∫ ∞

0

g2

2
y dy = γ

∫ ∞

0
g y

∫ ∞

y
(y′)γ−1θ(y/y′) g′ dy′ dt− γ

∫ ∞

0
yγ+1 g2 dy − 〈D1g, y g〉

≤ γ‖z θ(z)‖L∞ M0Mγ −

∫ ∞

0
g2 y dy,
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and we conclude thanks to the two preceding uniform estimates on M1+γ and M0 and
thanks to lemma 3.4 that (3.12) holds with ‖.‖ = ‖.‖L2

1/2
and some constant C3.

We present now a sketch of the proof of the existence of self-similar profile for the
fragmentation using the first strategy presented in section 3.1. We define Y = L1∩L1

1+γ ∩

L2
1/2. Thanks (to a variant of) the existence result presented in section 3.2.1 we know that

for any gin ∈ Y there exists a unique solution g ∈ C([0,∞);Y ) which preserve the mass.
We thus define S(t) gin = g(t) for any gin ∈ Y . Moreover, thanks to the estimates just
obtained above, we have that

Z1 := {g ∈ Y ; g ≥ 0, M1(g) = ρ, MK(g) ≤ C1, Mk(g) ≤ C2, ‖g‖L2
1/2
≤ C3},

with k = 0 and K = 1 + γ, is an invariant set for S. Finally, we classicaly prove the
following stability result, which is one of the fundamental principle of the DiPerna-Lions
existence theory for Boltzmann like equations.

Lemma 3.5 Let (gn) be a sequence of solution associated to equation (1.14) and bounded
in L∞(0, T ;Z). Then, up to a subsequence, (gn) is weakly converging (in L1) to a function
g and g is a solution to the equation (1.14).

The first strategy then applies without difficulty.

3.2.3 Existence of self-similar profile without restriction on θ.

Taking Y := L̇1
m ∩ L̇

1
K with K > 1 arbitrary large, we observe that

Z0 := {g ∈ Y ; g ≥ 0, M1(g) = ρ, MK(g) ≤ C1, Mm(g) ≤ C2},(3.14)

is an invariant set under the flow generated by the fragmentation equation in self-similiar
variables. We may then use the second strategy. We introduce the sequence of truncated
repartition probability of daughter particles θn := θ 1(1/n,1). Thanks to the preceding
section we get the existence of a sequence of self-similar profile (Gn) associated to (θn)
and such that Gn ∈ Z0 for any n ≥ 1. By a compactness argument, we obtain a self-similar
profile G ∈ Ṁ1

m ∩ Ṁ
1
K with M1(G) = ρ.

3.3 Existence of self-similar profile for the inelastic Boltzmann equation

In this section we just prove the existence of an invariant set Z for the equation (1.14)
associated to the inelastic Boltzmann equation for which (3.2) holds. Existence of self-
similar profile can then be obtained following the first strategy presented in section 3.1.
We refer to [46] for details. We will consider the Banach space Y = L1

2(R
3) ∩ L2(R3).

We begin with some moment estimates for which we use the following weak formulation
of the Inelastic Boltzmann operator

〈Q(g, f), ψ〉 =

∫

R3

∫

R3

∫

S2

fg∗
[

ψ′ + ψ′
∗ − ψ − ψ∗

]

|u| dσ dv∗,

with

v′ =
v + v∗

2
+
z

2
, v′∗ =

v + v∗
2
−
z

2
, z =

1− e

2
u+

1 + e

2
|u|σ.
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• Mass conservation: assuming that gin has mass one, we get

d

dt

∫

R3

g dv = 0 =⇒

∫

R3

g dv ≡ 1.

• Momentum conservation: assuming that the momentum of gin is zero, we get

d

dt

∫

R3

v g dv = 3

∫

R3

v g dv =⇒

∫

R3

v g dv ≡ 0.

• Energy estimate: the energy equation is

d

dt
E = 〈Q(g, g), |v|2〉 −

∫

R3

|v|2 divv(v g) dv.

On the one hand

−

∫

R3

|v|2 divv(v g) dv = 2

∫

R3

|v|2 g dv.

On the other hand

〈Q(g, g), |v|2〉 = −σ0

∫

R3

∫

R3

g g∗ |v − v∗|
3 dvdv∗

with σ0 := 1−e2

4

∫

S2(1− û · σ) dσ where û stands for u/|u|. First, the Jensen inequality

j

(
∫

R3

ϕ∗ dµ∗

)

≤

∫

R3

j (ϕ∗) dµ∗

with j(s) = |s|3, dµ∗ = g∗ dv∗ and ϕ(v∗) = v − v∗ gives

|v|3 =

∣

∣

∣

∣

∫

R3

g∗ (v − v∗) dv∗

∣

∣

∣

∣

3

≤

∫

R3

g∗ |v − v∗|
3 dv∗.(3.15)

Next, the Hölder inequality writes

∫

g |v|2 dv ≤

(
∫

g dv

)1/3 (∫

g|v|3 dv

)2/3

=

(
∫

g|v|3 dv

)2/3

.(3.16)

Gathering (3.15) and (3.16), we get

〈Q(g, g), |v|2〉 ≤ −σ0

∫

g |v|3 dv ≤ −σ0

(
∫

g|v|2 dv

)3/2

,

and then the following differential inequality on the energy

d

dt
E ≤ 2 E − σ0 E

3/2.

We get, thanks to Lemma 3.4, that the set

Z0 :=

{

g ∈ L1
2,

∫

R3

g

(

1
v

)

dv =

(

1
0

)

,

∫

R3

g |v|2 dv ≤

(

2

σ0

)2
}
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is invariant under the flow generated by (1.14).

• Lp estimate, p ∈ (1,∞). We first recall that the collision term splits into two terms
Q(g, g) = Q+(g, g) − Q−(g, g), namely the gain term and the loss term. The loss term
may be expressed in the following way

Q−(g, g)(v) = g L(g), L(g) =

∫

R3

g∗ |v − v∗| dv∗,

and the gain term enjoys some regularity properties which has been investigated in [39, 54,
12, 40] for the elastic Boltzmann equation and in [46] for the inelastic Boltzmann equation.

Lemma 3.6 There exits θ ∈ (0, 1) such that for any ε > 0

∫

Q+(g, g)gp−1 dv ≤ Cε ‖g‖
1+pθ
L1

2

‖g‖
p(1−θ)
Lp + ε ‖g‖L1

2

∫

gp(1 + |v|).(3.17)

The evolution of the Lp norm writes

d

dt

∫

gp dv =

∫

Q+(g, g) gp−1 dv −

∫

gp L(g) dv −

∫

gp−1∇v(v g) dv.(3.18)

First, the Jensen inequality L(g) ≥ |v| gives

−

∫

gp L(g) dv ≤ −

∫

gp |v| dv.(3.19)

Next,

−

∫

gp−1∇v(v g) dv =

∫

∇v(g
p−1) v g = cp

∫

∇v(g
p) v = −cp

∫

gp(3.20)

Estimating the Q+ term thanks to (3.17) and taking ε small enough (remind that the
energy is yet bounded), we obtain gathering (3.18), (3.19) and (3.20)

d

dt

∫

gp dv ≤ Cε ‖g‖
1+pθ
L1

2

‖g‖
p(1−θ)
Lp −

cp
2

∫

gp dv.

Thanks to lemma 3.4, we get a new convex and weak compact invariant set Z := {g ∈
Z0; ‖g‖L2 ≤ C3}. We are able to conclude because Z satisfies the properties listed in (3.2).

3.4 Existence of self-similar profile for the coagulation equation

In this section we show how to get uniform estimates on a solution g to the coagulation
equation (1.14) written in self-similar variables. As explained in the preceding sections we
may deduce of it the existence of a self-similar profile.

Lemma 3.7 For any k ∈ (λ, 1), there exists wk = wk(λ) ∈ (0,∞) such that

∀ t ≥ 0 Nk(t) ≤ max (Nk(0), wk) , with Nk(t) :=

∫ ∞

0
g(t, y) (y ∧ 1)k dy.(3.21)
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Here and below we define a∧ b = min(a, b) for a, b ∈ R. The lemma is based on a trick
introduced in [21] in order to investigate the gelation phenomenon.

Proof of Lemma 3.7. First, we define φA(y) = (y ∧A)m for m ∈ (0, 1] and A > 0, and we
compute

−∆φA
(y, y′) := φA(y) + φA(y′)− φA(y + y′) ≥ Am 1y,y′≥A(3.22)

and
D∗φA := φA − y ∂yφA ≤ φA.(3.23)

Multiplying the coagulation equation in self-similar variables (1.14) by φ and integrating
in the mass variables, we easily get

d

dt

∫ ∞

0
g φ dy =

1

2

∫ ∞

0

∫ ∞

0
a∆φ g g

′ dydy′ +

∫ ∞

0
g D∗φdy.(3.24)

We then deduce from (3.24), (3.22), (3.23) and the lower estimate a(y, y ′) ≥ (y y′)λ/2

d

dt

∫ ∞

0
g φA dy +

Am

2

(
∫ ∞

A
g yλ/2 dy

)2

≤

∫ ∞

0
g φA dy ∀A > 0.(3.25)

Next, for a given function Φ : [0,∞) → [0,∞) such that Φ(0) = 0 and a given ` ∈ R, we
have, using Fubini’s Theorem, Cauchy-Schwarz inequality and (3.25),

(
∫ ∞

0
g(y) yλ/2 Φ(y) dy

)2

=

(
∫ ∞

0
Φ′(A)

∫ ∞

A
g(y) yλ/2 dy dA

)2

≤ K0

∫ ∞

0
Φ′(A)A`

(
∫ ∞

A
g(y) yλ/2 dy

)2

dA

≤ 2K0

∫ ∞

0
Φ′(A)A`−m

(
∫ ∞

0
g φA dy −

d

dt

∫ ∞

0
g φA dy

)

dA

≤ 2K0

(
∫ ∞

0
gΨ dy −

d

dt

∫ ∞

0
gΨ dy

)

,

where we have set

K0 :=

∫ ∞

0
Φ′(A)A−` dA and Ψ(y) :=

∫ ∞

0
Φ′(A)A`−m φA(y) dA.(3.26)

In other words, we have obtained the following differential inequality

d

dt

∫ ∞

0
gΨ dy +

1

2K0

(
∫ ∞

0
g(y) yλ/2 Φ(y) dy

)2

≤

∫ ∞

0
gΨ dy.(3.27)

Finally, we make the choices

Φ(y) := min(yλ/2+δ , 1), ` := λ/2, m := λ+ 2δ,(3.28)

with δ ∈ (0, (1 − λ)/2] and we easily compute

K0 = (
λ

2
+ δ)

∫ 1

0
Aδ−1 dA <∞, Ψ(y) = (

λ

2
+ δ)

(

(y ∧ 1)λ+δ

λ+ δ
+
yλ+2δ

δ
(y−δ − 1)1y≤1

)

.
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As a consequence, setting k = λ+ δ ∈ (λ, 1), there holds for some constant C ∈ (0,∞)

1

C
(y ∧ 1)k ≤ Ψ(y) ≤ C (y ∧ 1)k and Φ(y) yλ/2 ≥ (y ∧ 1)k.(3.29)

Gathering (3.27) and (3.29) we obtain, for some constant K1 ∈ (0,∞), the differential
inequality

d

dt

∫ ∞

0
gΨ dy +K1

(
∫ ∞

0
gΨ dy

)2

≤

∫ ∞

0
gΨ dy,

and we conclude thanks to Lemma 3.4. ut
We define a first invariant set

Z0 := {0 ≤ g ∈ L̇1
1, M1(g) = ρ, Nk(g) ≤ wk ∀ k ∈ (λ, 1)}.

Lemma 3.8 For any k > 1, there exists a constant Ak such that gin ∈ Z0 implies

sup
[0,∞)

Mk(t) ≤ max(Ak,Mk(0)).(3.30)

Proof of Lemma 3.8. For a given k > 1, let us define

Λk(y, y
′) := (yα (y′)β + yβ (y′)α) ((y + y′)k − yk − (y′)k) ≥ 0.(3.31)

For y > y′, denoting z = y′/y ∈ (0, 1]. we have for any µ ≤ 1

Λk(y, y
′) = yλ+k (zα + zβ) ((1 + z)k − zk − 1)

≤ yλ+k (2 zα) (Ck z) ≤ 2Ck y
λ+k zµ+α

≤ 2Ck [yβ−µ+k (y′)µ+α + (y′)β−µ+k yµ+α] =: Λ̄k(y, y
′).

for a constant Ck > 0. Therefore, since Λk and Λ̄k are symmetric functions, the inequality
Λk(y, y

′) ≤ Λ̄k(y, y
′) holds for any y, y′ ≥ 0. We then deduce from (3.24) with φ = yk, the

following differential inequality

d

dt
Mk ≤ CkMk+β−µMα+µ − (k − 1)Mk for any µ ≤ 1.

Making the choice µ := β + min( k−1
2 , 1−λ

2 , 1− β) ∈ (0, 1], we obtain

d

dt
Mk ≤ CkMk1

Mk2
− (k − 1)Mk,

with k1 := k+β−µ = k−min( k−1
2 , 1−λ

2 , 1−β) ∈ (1, k), k2 := α+µ = λ+min(k−1
2 , 1−λ

2 , 1−

β) ∈ (λ, 1]. Finally, using the Hölder inequality Mk1
≤ M1−θ

1 M θ
k , with θ ∈ (0, 1), we

deduce
d

dt
Mk ≤ C1M

θ
k Mk2

− C2Mk.(3.32)

Since gin ∈ Z0, we deduce that Mk2
is bounded and we may apply Lemma 3.4 in order to

conclude. ut
Wet define a second weak compact invariant set Z1 := {g ∈ Z0, Mk(g) ≤ Ak ∀ k > 1}
which satisfies the properties listed in (3.2) and with the help of which we are able to use
the second strategy in order to conclude.
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4 Qualitative properties of G.

4.1 The fragmentation equation.

We yet know that G ∈ Ṁ1
k for any k ≥ m and then LG ∈ Ṁ1

k . Writing for k ≥ 1 +m

∂

∂y
(yk G) =

∂

∂y
(yk−2 y2G) = (k − 2) yk−1G+ yk−1 LG(4.1)

we deduce that yk G ∈ L∞ for any k ≥ 1+m. Furthermore, gathering (4.1) withBG ∈ L∞
loc

and

(L+G)(x) :=

∫ ∞

x
(y)γ−1θ(x/y)G(y) dy ≤ ‖Gx2+γ‖L∞

∫ ∞

x
(y)−3 θ(x/y) dy

≤ ‖Gx2+γ‖L∞

∫ 1

0

z3

x3
θ(z)x

dz

z2
= ‖Gx2+γ‖L∞ x−2 ∈ L∞

loc,

we obtain that y2G ∈W 1,∞
loc . That concludes the proof of the regularity estimate. Finally,

there holds
∂

∂y

(

y2G(y) ey
γ/γ
)

= y (L+G)(y) eyγ /γ .(4.2)

Since G 6≡ 0 there exists x0, x1 ∈ (0,∞), x0 < x1 such that G > 0 on [x0, x1]. On the one
hand, integrating (4.2) between 0 and x, for any x ∈ (0, x0), we have

x2G(x) ex
γ/γ ≥

∫ x1

x0

G(y) yγ ey
γ/γ

∫ x/x1

0
θ(z) z ezγ/γ dz dy > 0.

On the other hand, for any x > x0, integrating (4.2) between x0 and x and using the fact
that L+G ≥ 0, we find

G(x) ≥ C(x0)x
−2 e−xγ/γ > 0 on (x0,∞),

and that conclude the proof of the positivity of G. ut

4.2 L∞ exponential weight bound for the inelastic Boltzmann equation

First, because the inelastic Boltzmann equation is invariant under rotations, we may prove
that G is radially symmetric. Next, using a trick introduced in Bobylev paper’s [9] for
the Boltzmann equation, Bobylev, Gamba and Panferov have proved in [11] the following
exponential moment bound for self-similar profiles to the inelastic Boltzmann equation:

C0 :=

∫ ∞

0
G(r) eA r r2 dr =

∫

R3

G(v) eA |v| dv <∞.

The stationary equation (1.13) in radial variable r = |v| reads

Q(G,G) − 3G− r G′(r) = 0.

For any R ≥ 1, we have

G(R) = −

∫ ∞

R
G′(r) dr ≤

∫ ∞

R
3
G(r)

r
+
Q−(G,G)

r
dr ≤ C1

∫ ∞

R
G(r) r2 dr,
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where we have used L(G) ≤ C r, r ≥ 1. As a consequence, we get

∀R ≥ 1 G(R) eA R ≤ C1

∫ ∞

R
G(r) eA r r2 dr ≤ C1 C0,

which conclude the L∞ exponential weight estimate.
On the other hand, for the L∞ lower bound in theorem 2.3 we use the spreading effect

of positivity of the gain term and of the drift operator as introduced in [13] and next
developped in [51, 27, 46].

5 Long time behavior for generic solutions

We present in this section some results which are available for generic solutions. On
the one hand, for the inelastic Boltzmann equation and the coagulation equation rough
moment estimates can be proved, and we just present the proof of the first one, referring
to [20] for the second one. On the other hand, quite complete description of the long time
asymptotic can be obtained in the case of the fragmentation equation.

5.1 Haff’s law for the inelastic Boltzmann equation

On the one hand, we have yet proved

∀ t ≥ 0

∫

R3

g(t, v) |v|2 dv ≤ C1.

On the other hand

∀ t ≥ 0

∫

R3

g(t, v) |v|2 dv ≥ r2
0

∫

|v|≥r0

g dv ≥ r2
0

(

1−

∫

|v|≤r0

g dv

)

≥ r20

(

1− r
1/2
0 ‖g‖L2

)

≥
r20
2

for r0 > 0 small enough. We conclude that the Haff’s law (2.5) holds using the change of
functions (1.15).

5.2 More about the fragmentation equation.

5.2.1 A family of Liapunov functional.

We consider in this section the modified fragmentation equation (1.14) with B = L−γ−1D1

for the pure fragmentation equation and B = L − w ∂y − λ for the growth-fragmentation
equation and (where w is defined in section 1.3.4) and λ is the first eigen value defined
in theorem 1.1. Let consider a solution ψ to the dual equation of the modified equation
(1.14) associated to the fragmentation equation or to the growth-fragmentation equation

D∗ ψ = L∗ψ,(5.1)

with

D∗ ψ = −w
∂ψ

∂y
+ σ ψ, (L∗ψ)(y) =

∫ y

0
b(y, y′)ψ(y′)dy′ −B(y)ψ(y).(5.2)
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where w = γ−1 y, σ = γ−1 for the fragmentation equation and σ = ∂yw + λ for the
growth-fragmentation equation.

We start establishing a general relative entropy principle which is based on the following
elementary computation that we lead to the reader.

Theorem 5.1 For any solution g and any solution G > 0 to equation (1.14) associated
to the fragmentation equation or to the growth-fragmentation equation, any solution ψ ≥ 0
to the dual equation (5.1) and any function j : R→ R there holds

∂

∂t

[

ψ(x) G(t, x) j(
g(t, x)

G(t, x)
)

]

+
∂

∂x

[

w(x)ψ(x)G(t, x) j

(

n(t, x)

G(t, , x)

)]

+

∫ ∞

0

[

b(x, y)ψ(y)G(t, x) j(
g(t, x)

G(t, x)
)− b(y, x)ψ(x)G(t, y) j(

g(t, y)

G(t, y)
)

]

dy

=

∫ ∞

0
b(y, x)ψ(x)G(t, y)

[

j(
g(t, x)

G(t, x)
)− j(

g(t, y)

G(t, y)
) + j′(

g(t, x)

G(t, x)
)[
g(t, y)

G(t, y)
−
g(t, x)

G(t, x)
]

]

dy.

Considering now the case when j is convex, we integrate in the x-variable the preceding
identity. Since the second and third terms vanish, we get

d

dt
J(g(t, .)|G(t, .)) = −J (g(t, .)|G(t, .)) ≤ 0,(5.3)

with

J(g|G) :=

∫ ∞

0
ψ(x) G(x) j(

g(x)

G(x)
) dx

and

J (g|G) :=

∫ ∞

0

∫ ∞

0
b(y, x)ψ(x)G(y)

[

j(
g(x)

G(x)
)− j(

g(y)

G(y)
) + j′(

g(x)

G(x)
)
( g(y)

G(y)
−
g(x)

G(x)

)

]

dxdy.

5.2.2 Uniqueness of the self-similar profile for the fragmentation equation.

Let consider two solutions Gi of (1.13) associated to the fragmentation equation. From
the above entropy principle with ψ = y and j(s) = |s−1| or equivalently (3.4) there holds,
since G := G2 −G1 is a solution to equation (1.14) with mass 0:

0 = J1(G) := J (G2|G1) = 〈LG, y sign(G)〉

=

∫ ∞

0

∫ y

0
b(y, y′) y′ (G sign(G′)− |G|) dy′dy.

By positivity of b we get

G sign(G′) = |G| for any y, y′ ∈ (0,∞),

and then signG is constant on (0,∞). Gathering this last result with the fact that
M1(G) = 0 we get G ≡ 0 and we conclude of the uniqueness of the self-similar profile
for the fragmentation equation.
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5.2.3 Long time behavior.

We prove (2.2). We split the proof in three steps.

Step 1. Let us first assume that y 7→ y g2
in(y)G−1(y) ∈ L1, where G stands for the self-

similar profile with same mass than gin, or equivalently, defining by J2 and J2 the entropy
term and the entropy dissipation term associated to j(s) = (s− 1)2, that J2(gin|G) <∞.
Thanks to (5.3) and using a variant of the existence result established in section 3.2.1,
there exists a unique solution g associated to the initial data gin such that

∀ t ≥ 0 J2(g(t, .)|G) =

∫ ∞

0
g(t, y)2 G(y)−1 y dy ≤ J2(gin|G),(5.4)

and, using the fact that for any ξ, ξ ′ ≥ 0 there holds j(ξ)− j(ξ ′)+ j′(ξ′) (ξ′− ξ) = (ξ− ξ′)2,

J2(g(t, .)|G) :=

∫ ∞

0

∫ ∞

0
b(x, y)G(x) y

(

g(t, x)

G(x)
−
g(t, y)

G(y)

)2

dxdy ∈ L1
t (0,∞).(5.5)

Consider now a sequence (tn) such that tn → ∞, a time T > 0 and define gn(t, y) :=
g(t + tn, y). From 0 < G ∈ W 1,∞

loc and (5.4), we know that the sequence (gn) is bounded
in L2

loc([0, T ] × (0,∞)) and we may extract a subsequence still denoted by (tn) such that
gn ⇀ ḡ weakly in L2

loc([0, T ]× (0,∞)). On the one hand, for any function ϕ ∈ C 1
c (]0,∞[),

using the equation (1.14) and the estimates induced by the fact that the set Z defined in
(3.14) is invariant we have

d

dt

∫ ∞

0
gn ϕdx is bounded in L1(0, T ).

We deduce that
∫ ∞

0
gn ϕdx −→

n→∞

∫ ∞

0
ḡ ϕ dx in L1(0, T ) ∀ϕ ∈ C1

c (]0,∞[).(5.6)

On the other hand, we introduce for any ε ∈ (0, 1) the truncated dissipation entropy

J2,ε(g|G) :=

∫ 1/ε

ε

∫ 1/ε

ε
b(x, y)G(x) y

(

g(x)

G(x)
−
g(y)

G(y)

)2

dxdy.(5.7)

Thanks to standard convexity arguments (see [15]), we see that g 7→ J2,ε(g|G) is l.s.c. for
the above sense of convergence (5.6) for (gn) and therefore using (5.5) for any ε > 0:

∫ T

0
J2,ε(ḡ|G) dt ≤ lim inf

n→∞

∫ T

0
J2,ε(gn|G) dt ≤ lim inf

n→∞

∫ ∞

tn

J2,ε(g|G) ds = 0.(5.8)

Gathering (5.7) and (5.8) and letting ε→ 0, we get

ḡ(t, x)/G(x) = ḡ(t, y)/G(y) for a.e. t, x, y.(5.9)

We have then prove that for some α = α(t) ∈ [0,∞) there holds g(t, y) = α(t)G(y) for
a.e. (t, y) ∈ (0, T ) × (0,∞), and the mass condition implies α(t) ≡ 1. In other words, we
have yet proved

gn(t, .) ⇀ G weakly in L̇1
1 ∩ L

2
loc,(5.10)
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Step 2 We prove that the convergence holds in fact in the strong sense. Let fix ε0 ∈ (0, 1)
such that

∫ 1/ε0

ε0

z θ(z) dz ≥ 1/2.

For any ε ∈ (0, ε0) because of the positivity of G, there exists ηε > 0 such that

ηε

∫ T

0

∫ 1/ε

ε
(gn(t, x) −G(x))2 dxdt ≤

≤

∫ T

0

∫ 1/ε

ε

∫ 1/ε

ε
b(x, y)G(x) y

[

(

g(t, x)

G(x)
− 1

)2

+

(

1−
g(t, y)

G(y)

)2
]

dxdydt

=

∫ T

0
J2,ε(g|G) dt

+2

∫ T

0

∫ 1/ε

ε

∫ 1/ε

ε
b(x, y)G(x) y

[

g(t, x)

G(x)

g(t, y)

G(y)
+ 1−

g(t, x)

G(x)
−
g(t, y)

G(y)

]

dxdydt.

Thanks to (5.10), (5.6) and (5.8) we easily deduce that

ηε

∫ T

0

∫ 1/ε

ε
(gn(t, x) −G(x))2 dxdt→ 0 ∀ ε > 0.

We conclude that (2.2) holds using the contraction principle (3.9) applied to g1 = G and
g2 = g(tn + τ, .) for some τ ∈ (0, T ).

Step 3. For gin ∈ L̇1
k ∩ L̇

1
K with k < 1 < K, we consider a sequence (gin,n) such

that J2(gin,n|G) < ∞, the mass associated to gin,n is ρ and gin,n → gin in L̇1
m ∩ L̇

1
M .

On the one hand, thanks to the preceding analysis, the solution gn associated to gin,n

satisfies ‖gn −G‖L̇1
1

→ 0. On the other hand, the contraction principle (3.9) implies that

‖g(t, .)− gn(t, .)‖L̇1
1

≤ ‖gin− gin,n)‖L̇1
1

. As a conclusion g satisfies the asymptotic property

(2.2). For a general initial datum gin ∈ L̇
1
1 we argue as above using ”generalized” moments

rather than ”power” moments. ut
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[33] Laurençot, Ph., Mischler, S.: Convergence to equilibrium for the continuous coagulation-
fragmentation equation. Bull. Sci. Math., 127, 179–190 (2003)

29
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