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In this paper we prove the existence of solutions of the Uehling–Uhlenbeck equation
that behave like k−7/6 as k → 0. From the physical point of view, such solutions can
be thought as particle distributions in the space of momentum having a sink (or a
source) of particles with zero momentum. Our construction is based on the precise
estimates of the semigroup for the linearized equation around the singular function
k−7/6 that we obtained in an earlier paper.

1. Introduction

We consider the initial-value problem associated with the Uehling–Uhlenbeck (UU)
equation [14]:

∂f

∂t
(t, k) = Q(f)(t, k), (1.1)

f(0, k) = f0(k), (1.2)

where

Q(f)(k1) =
∫

D(k1)
W (k1, k2, k3, k4)q(f) dk3 dk4, (1.3)

q(f) = f3f4(1 + f1)(1 + f2) − f1f2(1 + f3)(1 + f4), (1.4)

D(k1) ≡ {(k3, k4) : k3 + k4 � k1}, (1.5)

W (k1, k2, k3, k4) =
min(

√
k1,

√
k2,

√
k3,

√
k4)√

k1
, (1.6)

k2 = k3 + k4 − k1. (1.7)
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We are interested in solutions which are singular at the origin and, more particularly,
behave like k−7/6 as k → 0. The choice of this specific asymptotic behaviour is due
to the fact that, as proved in [3], Ak−7/6 is a stationary solution of the equation

Q̃(f)(k1) = 0 (1.8)

for all A > 0, where

Q̃(f)(k1) =
∫

D(k1)
W (k1, k2, k3, k4)q̃(f) dk3 dk4, (1.9)

and

q̃(f) = f3f4(f1 + f2) − f1f2(f3 + f4). (1.10)

Note that q̃(f) contains the largest terms of q(f) for large values of f . We therefore
consider the initial data f0, which also behave in this way at the origin.

1.1. Physical motivation

Let us define

ρ0 :=
∫ ∞

0

√
k dk

ek − 1
=

√
π

2
ζ

(
3
2

)
, (1.11)

where ζ is the classical Riemann zeta function.
The UU equation describes a dilute gas of Bose particles. It has a one-parameter

family of steady states Bρ characterized by their total density ρ > 0 as follows:

(i) if 0 < ρ � ρ0, then

Bρ(k) ≡ Fµ(k) :=
1

ek+µ − 1
, where ρ =

∫ ∞

0

√
k dk

eµ+k − 1
, µ � 0; (1.12)

(ii) if ρ > ρ0, then

Bρ(k) ≡ 1
ek − 1

+ (ρ − ρ0)
δ0√
k

. (1.13)

Note that in both cases
∫ ∞
0 Bρ(k)

√
k dk = ρ. The solutions Bρ(k) in (1.12) are the

classical Bose–Einstein equilibrium distributions if µ > 0 and the Planck distribu-
tion if µ = 0. On the other hand, the solutions (1.13) are the classical distributions
that describe the thermal equilibrium of a family of bosons with the Bose–Einstein
condensate of particles having zero momentum.

In this paper we construct solutions of (1.1)–(1.7) that behave like k−7/6 near the
origin. The physical meaning of such asymptotics is that these particle distributions
have a non-zero flux of particles towards the origin (cf. [3,7,8]). More precisely, the
asymptotics

f(t, k) ∼ a(t)k−7/6 as k → 0 (1.14)

means that the rate gain of particles towards the particles with zero momentum is

lim
K→0

d
dt

( ∫
|k1|�K

√
k1f(k1, t) dk1

)
= − (a(t))3

3
U ′

(
7
6

)
, (1.15)
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where

U(ν) :=
∫

D(1)
a(ξ2, ξ3, ξ4) dξ3 dξ4

and

a(ξ2, ξ3, ξ4) := [W (ξ1, ξ2, ξ3, ξ4)q(ξ−ν)]|ξ1=1.

There are several different ways of deriving (1.15). One possibility is to make a
careful count of the number of particles leaving the region {k : |k| � δ} towards
{k : |k| > δ}, as well as the particles entering {k : |k| � δ} from {k : |k| > δ}, under
assumption (1.14). An alternative way, analogous to the method used in [2], is to
approximate the singular behaviour k−7/6 by the less singular behaviour k−7/6+δ,
δ > 0, and compute the rate of change in the number of particles. After deriving
some asymptotics for the arising integrals we obtain

d
dt

( ∫
|k1|�k

√
k1f(k1, t) dk1

)
= − (a(t))3

3
U ′

(
7
6

)
+ O(k1/10) as k → 0,

where the last term is uniform on δ for 0 < δ = 7
6 − ν sufficiently small. Taking the

limit δ → 0, the result follows [2].
The presence of a non-zero flux of particles towards the particles of zero momen-

tum makes it tempting to think that the solutions constructed in this paper could
provide some information about the dynamic growth of Bose–Einstein condensates.
However, this does not seem to be the case, since the zero-momentum particles
would not interact at all with the particles outside the condensate. Actually, a
more careful analysis yields more complicated models (cf. [1,8,12,13]) in which the
condensate interacts with the particles that are not in the condensate. Some of the
models proposed in these papers will be studied more carefully elsewhere.

There exist other kinetic equations describing fluxes of some physical quantity
in some mathematical space (momentum, energy, etc.). One of the most typical
examples is the case of gelation in coagulation processes described by means of
the Smoluchovski equation [9]. The solutions obtained in the current paper have
several analogies with the explicit examples that describe gelation in such processes.
Other physically relevant cases arise in the theory of weak turbulence, which can
be applied to describe the distribution of energy in fields of gravity waves, capillary
waves, Langmuir waves in plasmas, acoustic waves, etc. A detailed description of
these examples can be found in [15]. A particularly simple example of solutions
behaving like those found here has been constructed for the Kompaneets equation,
which describes the energy of photons in plasma physics [5].

In all these cases, there exists a stationary solution to the corresponding kinetic
equation of the form f(k) = k−β , which plays a role analogous to the distribution
k−7/6 in our case. Physically, such solutions describe a flux of some physical quantity
(particles, energy, etc.) from high to low values of the quantity or vice versa, as in
the classical Kolmogorov theory of turbulence.

We are not aware of any situation where the solutions constructed in this paper
could have any clear physical meaning. However, we think that the mathematical
methods employed in their construction can be used to treat some of the physical
examples mentioned above.
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1.2. Mathematical motivation

From the mathematical point of view, this paper is the continuation of the pre-
vious work, [6]. In that paper we studied the linear problem that results linearizing
the leading term in the collision integral Q̃ defined in (1.9) and (1.10). The paper [6]
contains a detailed description of the fundamental solution associated with such a
linear problem. Here we construct singular solutions which behave like k−7/6 near
the origin, estimating carefully the nonlinear parts in equation (2.3) in suitable
functional spaces.

The solutions constructed in this paper are, as far as we are aware, the first
example of singular solutions of a nonlinear kinetic equation with precise singular
behaviour for general initial data that has been rigorously obtained. Indeed, the
solutions that we obtain have the precise asymptotic behaviour f ∼ a(t)k−7/6 as
k → 0. There is of course a large literature devoted to the study of bounded
solutions of Boltzmann-type kinetic equations. On the other hand, Lu has recently
proved the global existence of weak solutions for the Uehling–Uhlenbeck equation
[10,11]. Moreover, these papers also describe the long time asymptotics towards the
stationary solutions as t → ∞.

One of the mathematical consequences of our analysis that seems noteworthy
is the presence of some kind of regularizing effects for the problem (1.1), (1.2).
At first glance this could seem surprising, because the structure of this equa-
tion suggests a ‘hyperbolic’ non-regularizing behaviour for its solutions. These
regularizing effects are, however, restricted to the values of f at the particular
point k = 0. Some typical examples of the kind of ‘smoothing effects’ associated
with this equation are theorem 3.2 and lemma 3.21 in § 3.5, below. The estimates
for ∂a(t)/∂t when (1.14) holds bear more resemblance to a typical estimate for
parabolic than for hyperbolic equations. Actually, a large number of the meth-
ods used in the proofs of our results are very similar to the standard semigroup
arguments for parabolic equations. On the other hand, (3.27) indicates that such
regularizing effects do not take place away from the origin. Indeed, the presence of
the Dirac mass term shows that the smoothness of the initial data does not increase
if k �= 0.

Finally, let us note that it is most likely that the solutions obtained in this paper
cannot be extended globally in time. Indeed, the numerical calculations in [7,8,12,
13] suggest that the regular solutions of the UU equation might blow up in finite
time and it would not be surprising to find the same type of behaviour for the
singular solutions derived in this paper.

2. Outline of the paper

Our goal is to obtain an existence and uniqueness theory for singular solutions of
the equation

∂f

∂t
(t, k) = Q(f)(t, k), (2.1)

f(0, k) = f0(k), (2.2)
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where Q(f) is defined as in (1.1)–(1.7). The initial data f0 � 0 are assumed to
satisfy the following conditions:

|f0(k) − Ak−7/6| � B

k7/6−δ
, 0 � k � 1, (2.3)

|f ′
0(k) + 7

6Ak−13/6| � B

k13/6−δ
, 0 � k � 1, (2.4)

f0(k) � B
e−Dk

k7/6 , k � 1, (2.5)

for some positive constants A, B, D and δ. The key assumption on f0(k) is that it
behaves like the stationary solution k−7/6 near the origin.

The main result that we prove in this paper is the following.

Theorem 2.1. For any f0 satisfying (2.3)–(2.5), there exists a unique solution
f ∈ C1,0((0, T ) × (0,∞)) of (2.1), (2.2) as well as a function a(t), satisfying

0 � f(t, k) � L
e−Dk

k7/6 , k > 0, t ∈ (0, T ), (2.6)

|f(t, k) − a(t)k−7/6| � Lk−7/6+δ/2, k � 1, t ∈ (0, T ), (2.7)

|a(t)| � L, t ∈ (0, T ), (2.8)

for some positive constant L and for some T = T (A, B, δ) > 0.

Remark 2.2. The space of functions C1,0((0, T ) × (0,∞)) is the set of functions
that are continuously differentiable with respect to the first variable in (0,∞) and
continuous with respect to the second variable on (0,∞).

In order to construct the desired solution, we will argue as follows. It is convenient
to consider first the problem (2.1), (2.2), replacing the kernel W (k1, k2, k3, k4) by
the truncated kernel

WM,M ′(k1, k2, k3, k4) = W (k1, k2, k3, k4)χ
(

|k3 − k4|
M

)
χ

(
|k1|
M ′

)
, (2.9)

where M and M ′ are large positive constants, χ(z) = 1 if 0 � z � 1, χ(z) = 0
if z > 1. Similar cut-offs are often used in the study of other kinetic equations
(see [4]). The reason for this cut-off in our case is to control the ‘Boltzmann-like’
quadratic terms in f in (1.4), that otherwise would yield divergences in some of
the terms arising later. Using this truncation, the problem (2.1), (2.2) becomes the
truncated problem:

∂f

∂t
(t, k) = QM,M ′(f)(t, k), (2.10)

f(0, k) = f0(k), (2.11)

where

QMM ′(f)(k1) =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)q(f) dk3 dk4. (2.12)
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Note that f also depends on M and M ′ but, for the sake of simplicity, we will not
write this dependence explicitly.

As the next step, we will obtain solutions of (2.10)–(2.12) in the form

f(k, t) = λ(t)f0(k) + g(k, t), (2.13)

where λ(t) will be chosen uniquely by means of the condition

lim
k→0

k7/6g(t, k) = 0 for all t > 0, (2.14)

which means that g is less singular near the origin than k−7/6. Moreover, we will
assume that λ(0) = 1, whence (cf. (2.3)) we obtain

g(0, k) = 0, k � 0. (2.15)

We introduce the notation

q(f0 + g) = q(f0) + 
(f0, g) + n(f0, g), (2.16)

where 
(f0, g) is a linear function on g and n(f0, g) contains the quadratic and
higher-order terms on g. The equation (2.10) might then be written as

∂g

∂t
(t, k1) = Lk(λ(t)f0, g)(k1, t) + R1(t, k1) + R2(t, k1, g) − λ′(t)f0, (2.17)

where, for t > 0, k1 > 0,

Lk(λ(t)f0, g)(k1, t) =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)
(λ(t)f0, g) dk3 dk4, (2.18)

R1(t, k1) =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)q(λ(t)f0) dk3 dk4, (2.19)

R2(t, k1, g) =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)n(λ(t)f0, g) dk3 dk4. (2.20)

It may be convenient to reformulate the problem (2.10)–(2.12) using the new
time variable

τ =
∫ t

0
λ2(s) ds. (2.21)

Then, the problem (2.10)–(2.12) becomes

∂g

∂τ
(τ, k1) = Lk,2(f0, g)(k1, τ) +

1
λ(τ)

Lk,1(f0, g)(k1, τ)

+
1

λ2(τ)
(R1(τ, k1) + R2(τ, k1, g)) − λτf0(k1), (2.22)

g(0, k1) = 0. (2.23)

where, with some abuse of notation, we still set g(τ, k1) ≡ g(t, k1), λ(τ) = λ(t), λτ =
λ′(t)/λ2(t), and Lk,2(f0, g̃1) is quadratic with respect to f0 and Lk,1(f0, g̃1)(k1, t)
is linear with respect to f0. Note that, as long as 0 < c1 � λ(τ) � c2, the two
equations (2.22) and (2.17) are equivalent or, more precisely, a solution of (2.17)
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with the regularity given in theorem 2.1 exists if and only if there exists a solution
of (2.22) with the same regularity.

Our strategy in order to solve the problem (2.14), (2.15), (2.17) is the following.
It turns out that the most relevant terms to describe the asymptotics of g(k, t) as
k → 0 are ∂g/∂τ and Lk(λ(τ)f0, g). If only these terms are kept in the equation, we
obtain a linear problem that can be analysed using the results of [6]. This is made
in § 3. The reason that the term R1 is less relevant than the linear terms in (2.16)
is that f0 behaves like the stationary solution k−7/6 near the origin and this yields
a cancellation in the integral term in (2.19), and as a consequence this term is
smaller than Lk(λ(t)f0, g) as k → 0. On the other hand, the term R2 contains only
quadratic terms in g and, due to (2.14), its contribution is also smaller than that
due to the linear terms.

The solution of (2.15), (2.17) can be written using the results for the linear
semigroups in § 3 by means of the variation-of-constants formula. In particular,
such formula can be used to compute the limit limk→0 k7/6g(t, k). Then, the con-
dition (2.14) becomes an integrodifferential equation for λ that is solved under
suitable regularity assumptions on the initial data f0 (cf. § 4).

Moreover, we obtain uniform estimates on λ and g for M and M ′ sufficiently
large (cf. § 5). Using these estimates, it is not difficult to take the limit as M and
M ′ tend to infinity in order to obtain a solution to (2.1), (2.2). Similar arguments
also provide the uniqueness in the class of functions under consideration.

3. On the linearized equation

3.1. Functional framework and main results

In this section we study the solutions of the Cauchy problem

∂h

∂τ
= Lk,2(f0, h)(k1, τ) +

1
λ(τ)

Lk,1(f0, h)(k1, τ) + ν(k1, τ), (3.1)

h(0, k) = h0(k), (3.2)

for some given function ν. To this end we rewrite (3.1) in a more convenient manner.
We define the functions

q̃(f) = f3f4(f1 + f2) − f1f2(f3 + f4), (3.3)

r(f) = f3f4 − f1f2, (3.4)

as well as

q̃(f0 + g) = q̃(f0) + 
̃(f0, g) + ñ(f0, g), (3.5)
r(f0 + g) = r(f0) + s(f0, g) + r(g), (3.6)

where 
̃ and s contain only linear terms on g. Note that, since q(f) = q̃(f) + r(f),
we have


(f0, g) = 
̃(f0, g) + s(f0, g).

For further reference, it is convenient to define the operator,

L̃k(k−7/6, g)(k1, t) =
∫

D(k1)
W (k1, k2, k3, k4)
̃(k−7/6, g) dk3 dk4. (3.7)
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A detailed (and complicated) expression of 
̃(k−7/6, g) can be found in [6, equa-
tion (2.2) for ql(F )], but we do not use that expression here.

We now introduce some suitable functional spaces,

Xp,q,r(T ) = {ϕ ∈ C([0, T ]), L∞
loc(R

+) ∩ C(R+); t1−r‖ϕ‖p,q < ∞}, (3.8)

endowed with the norm

|||ϕ|||p,q,r = sup
0�t�T

t1−r‖ϕ‖p,q, (3.9)

‖ϕ‖p,q = sup
0�k�1

{kp|ϕ(k)|} + sup
k�1

{kq|ϕ(k)|}. (3.10)

where p, q and r are three arbitrary real numbers. Since we will use these spaces
repeatedly with r = 1, we write them, for convenience, using the particular notation

Yp,q(T ) := Xp,q,1(T ) = {ϕ ∈ C([0, T ]), L∞
loc(R

+) ∩ C(R+); |||ϕ|||p,q < ∞}, (3.11)

where
|||ϕ|||p,q := |||ϕ|||p,q,1 = sup

0�τ�T
‖ϕ(τ, ·)‖p,q.

Using the homogeneity of 
̃ we can rewrite (3.1) as

hτ = L̃k(k−7/6, h)(k1, τ) + U(k; λ, h) + ν(k, τ), (3.12)

where

U(k1; λ, h) = U1(k1; λ, h) + U2(k1; λ, h) + U3(k1; λ, h),

U1(k1; λ, h) =
∫

D(k1)
WM,M ′(
̃(f0, h) − 
̃(k−7/6, h)) dk3 dk4, (3.13)

U2(k1; λ, h) = λ(τ)−1
∫

D(k1)
WM,M ′s(f0, h) dk3 dk4, (3.14)

U3(k; λ, h) =
∫

D(k1)
(WM,M ′ − W )
̃(k−7/6, h) dk3 dk4. (3.15)

We will say that a function h solves equation (3.12) with initial data h(0, k) = h0(k)
in the integral sense if the integral equality

h(τ, k) =
∫ ∞

0
G(τ, k, k0)h0(k0) dk0

+
∫ τ

0
ds

∫ ∞

0
dk0 G(τ − s, k, k0)[U(k, λ(s), h(s)) + ν(k, s)] (3.16)

holds, where G(τ, k, k0) is the Green function associated with the Cauchy problem,

∂h

∂τ
= L̃k(k−7/6, h), (3.17)

h(0, k) = δ(k − k0), (3.18)

which was obtained in [6]; detailed properties of this function are recalled in theo-
rem 3.5, below. The main results proved in this section are the following.
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Theorem 3.1. Suppose that the function λ(τ) satisfies

λ(0) = 1 and 1
2 � λ(τ) � 2 for all τ ∈ [0, 1]. (3.19)

Let us also assume that ‖h0‖7/6,β < ∞ and that ν ∈ Yα,β(T ′) for some T ′ > 0,
where α = 3

2 − δ and β = 11
6 − δ with δ > 0 sufficiently small.

Then, for any M > 1 and M ′ > 1 there exists T > 0 and a unique solution h
of (3.1), (3.2) in the integral sense in the space Y7/6,β(T ). Moreover,

|||h|||7/6,β � CM,M ′(‖h0‖7/6,β + T 3δ|||ν|||α,β). (3.20)

On the other hand, there exists a function a ∈ L∞([0, T ]) such that

‖h − a(τ)k−7/6
1 χ{0�k1�1}‖7/6−δ/2,β � CM,M ′(τ−3δ/2‖h0‖7/6,β + τ3δ/2|||ν|||α,β),

(3.21)

|a(τ)| � CM,M ′(‖h0‖7/6,β + τ3δ|||ν|||α,β). (3.22)

Theorem 3.2. Suppose that (3.19) holds. Suppose that ‖h0‖α,β < ∞ and that
|||ν|||α,β,γ < ∞, where α = 3

2 − δ and β = 11
6 − δ with δ > 0, γ > 0 sufficiently

small.
Then, for any M > 1 and M ′ > 1, there exists T > 0 sufficiently small and a

unique solution h of (3.1), (3.2) in the integral sense for 0 < τ < T such that

‖h(τ, ·)‖7/6,β � C

τ1−3δ
‖h0‖α,β + CM,M ′T γ |||ν|||α,β,γ

τ1−3δ
.

On the other hand, there exists a function a(τ) such that

‖h − a(τ)k−7/6
1 χ{0�k1�1}‖7/6−δ/2,β

� CM,M ′(τ−1+9δ/2‖h0‖α,β + |||ν|||α,β,γτ−1+γ+3δ/2), (3.23)

|a(τ)| � CM,M ′(τ−1+6δ‖h0‖α,β + |||ν|||α,β,γτ−1+γ+3δ). (3.24)

Remark 3.3. The main difference between both theorems is that theorem 3.1
requires stronger boundedness assumptions on the initial data h0 as k → 0.

Remark 3.4. The existence time T in the theorems above could depend, in prin-
ciple, on M and M ′. It will be shown in § 5 that it is possible to derive uniform
lower estimates for T if M and M ′ are large enough.

The key ingredient in the proof of theorem 3.1 is the description of the solution
of the linear problem (3.17), (3.18) that we recall here for the reader’s convenience.

Theorem 3.5 (Escobedo et al . [6]). For each k0 > 0 there exists a unique solution
of (3.17), (3.18) in the class of measures of the form

G(τ, k, k0) = α(τ)δ(k − k0) + H(τ, k, k0),
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where
H(τ, ·, k0) ∈ L∞

loc(R
+),

|H(τ, k, k0)| � C

k7/6 , k � 1
2k0,

|H(τ, k, k0)| � C

k11/6 , k � 2k0,

|H(τ, k, k0)| � C

|k − k0|5/6 , |k − k0| � 1
2k0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.25)

Moreover, G(τ, k, k0) has the self-similar form

G(τ, k, k0) =
1
k0

G

(
τ

k
1/3
0

,
k

k0
, 1

)
(3.26)

and the function G(τ, k, 1) satisfies the following estimates. For k ∈ (0, 2) we have

G(τ, k, 1) = e−aτδ(k − 1) + σ(τ)k−7/6 + R1(τ, k) + R2(τ, k), (3.27)

where σ ∈ C[0,∞) satisfies

σ(τ) =

{
Aτ4 + O(τ4+ε) as τ → 0+,

O(τ−(3v0−5/2)) as τ → ∞,
(3.28)

where R1, R2 can be estimated as

R1(τ, k) ≡ 0 for |k − 1| � 1
2 ,

|R1(τ, k)| � C
e−(a−ε)τ

|k − 1|5/6 for |k − 1| � 1
2 , (3.29)

R2(τ, k) � Cψ1(τ)
(

τ3

k

)̃b

(3.30)

with

ψ1(τ) =

⎧⎪⎪⎨⎪⎪⎩
1

τ (5/2)+ε
for 0 � τ � 1,

1
τ3v0−ε

for τ > 1.

(3.31)

On the other hand, for k > 2 we have

G(τ, k, 1) � Cψ2(τ)
(

τ3

k

)11/6

, (3.32)

ψ2(τ) =

⎧⎪⎪⎨⎪⎪⎩
1

τ (9/2)+ε
for 0 � τ � 1,

1
τ1+3v0−ε

for τ > 1.

(3.33)

In these formulae, A ∈ R, ε > 0 is an arbitrarily small number, b̃ is an arbitrary
number in the interval (1, 7

6 ) and v0 = 1.84020 · · · . The constant C depends on ε
and b̃ but is independent of k0 and τ .
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Remark 3.6. The constants b̃, v0 and ε will have the same meaning throughout
the rest of the paper.

Remark 3.7. Note that, since the right-hand sides of (3.31) and (3.33) are mono-
tonically decreasing, we can assume without loss of generality that the functions
ψ1 and ψ2 are globally decreasing in τ ; this assumption will be made from now on.

Remark 3.8. Although not explicitly stated among the results in [6], the function
G(t, k, k0) is differentiable with respect to t, for k > 0, k0 > 0 and t > 0, as can be
seen using the explicit representation formula of G obtained in [6, (4.17), (4.19) and
(4.25)]. Moreover, the function τ |∂G/∂τ | satisfies the estimates that are obtained
by differentiating formally and multiplying the resulting formulae by τ .

3.2. Some estimates for the semigroup generated by L̃k

The two lemmas in this subsection provide some estimates for the semigroup
generated by L̃k with initial data bounded near the origin or at infinity by power
laws.

Lemma 3.9. Suppose that ϕ is the solution to

∂ϕ

∂τ
= L̃k(k−7/6, ϕ),

ϕ(0, k) = ϕ0(k),

where
|ϕ0(k)| � k−αχ{k�1}, (3.34)

with α ∈ [ 76 , 3
2 ). Then, there exists a function a ∈ L∞([0, 1]) such that, for any

τ ∈ [0, 1],

|ϕ(τ, k) − a(τ)k−7/6| � Cτ−3αΦ(y) for 0 � k � 2, (3.35)

|a(τ)| � Cτ7/2−3α, (3.36)

where y = kτ−3 and
Φ(y) = min{y−b̃, y−7/6}. (3.37)

On the other hand

|ϕ(τ, k)| � Cy−11/6τ−9/2−ε for k > 2, (3.38)

for any τ ∈ [0, 1] and where ε is as in theorem 3.5.

Proof. We assume in the rest of the proof that 0 � τ � 1. Using the fundamental
solution G described in theorem 3.5 as well as remark 3.8, we can write

ϕ(τ, k) =
∫ 1

0

1
k0

G

(
τ

k
1/3
0

,
k

k0
, 1

)
ϕ0(k0) dk0,

=
∫ min(k/2,1)

0
· · · dk0 +

∫ 1

min(k/2,1)
· · · dk0 ≡ I1 + I2.
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We first estimate I1. Using (3.32) we have

|I1| � C

(
τ3

k

)11/6 ∫ min(k/2,1)

0
ψ2

(
τ

k
1/3
0

)
k

−(α+1)
0 dk0

= C

(
τ3

k

)11/6

τ−3α

∫ min(k/2,1)τ−3

0
ψ2

(
1

ξ1/3

)
ξ−(α+1) dξ.

Using the fact that ψ2 is monotonically decreasing, we deduce that

|I1| � C

(
τ3

k

)11/6

ψ2

(
τ

min(k/2, 1)1/3

)
min( 1

2k, 1)−α. (3.39)

Combining (3.39) and (3.33) we obtain

|I1| � Cτ−3α min{yv0−3/2−α−ε/3, y−α−1/3+ε/3}, 0 < k � 2,

|I1| � Cτ−9/2−εy−11/6, k � 2.

}
(3.40)

We now estimate the term I2. By definition, I2 = 0 for k > 2. On the other hand,
using (3.27) we can rewrite I2 for 0 � k � 2 as

I2 = a(τ)k−7/6 + ϕ0(k) exp
(

− aτ

k1/3

)
χ{k�1} +

∫ k/2

0
σ

(
τ

k
1/3
0

)(
k0

k

)7/6

ϕ0(k0)
dk0

k0

+
∫ 1

k/2
R1

(
τ

k
1/3
0

,
k

k0

)
ϕ0(k0)

dk0

k0
+

∫ 1

k/2
R2

(
τ

k
1/3
0

,
k

k0

)
ϕ0(k0)

dk0

k0

≡ a(τ)k−7/6 + I2,1 + I2,2 + I2,3 + I2,4, (3.41)

where

a(τ) =
∫ 1

0
σ

(
τ

k
1/3
0

)
k

7/6
0 ϕ0(k0)

dk0

k0
.

Therefore, using (3.34) and (3.28),

|a(τ)| � τ7/2−3α

∫ 1/τ3

0
σ(ξ−1/3)ξ1/6−α dξ � Cτ7/2−3α for 0 � τ � 1. (3.42)

Again using (3.34), we can estimate the second term on the right-hand side of (3.41)
as

|I2,1| � τ−3αy−α exp(−ay−1/3). (3.43)

A similar argument yields

|I2,2| � τ−3αy−7/6
∫ y/2

0
σ(ξ−1/3)ξ1/6−α dξ, (3.44)

|I2,3| � Cτ−3α

∫ 3y/2

y/2

exp(−(a − ε)/ξ1/3)
|y − ξ|5/6 ξ−1/6−α dξ, (3.45)

|I2,4| � Cτ−3αy−b̃

∫ ∞

y/2
ψ1

(
1

ξ1/3

)
dξ

ξ1+α
. (3.46)
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The right-hand sides of the formulae (3.43)–(3.46) have a self-similar structure of
the form τ−3αΘ(y), y ≡ k/τ3. Therefore, it only remains to estimate the different
functions Θ for y → 0 and y → ∞. The corresponding functions Θ in (3.43) and
(3.45) have an exponential decay as y → 0. Using (3.28) and (3.31), it follows that
the contributions of the functions Θ in (3.44) and (3.46) behave like yv0−5/6−α

and y−b̃, respectively, as y → 0. Since v0 − 5
6 − α > −b̃, and b̃ > 1 it follows that

all the terms in (3.43)–(3.46) might be bounded as Cτ−3αy−b̃ when y → 0. On
the other hand, the functions Θ might be estimated in an analogous manner for
y → ∞. In particular, the functions Θ in (3.43) and (3.45) are bounded like Cy−α as
y → ∞. The corresponding function Θ in (3.44) and (3.46) are bounded by Cy−7/6

and y5/6−b̃+ε/3y−α, respectively, as y → ∞. Since α � 7
6 and 5

6 − b̃ + 1
3ε < 0,

all the terms in (3.43)–(3.46) are bounded as Cy−7/6 as y → ∞. Combining the
estimates obtained for the different functions Θ for large and small values of y
we obtain (3.35). Finally, (3.36) follows from (3.42) and (3.38) is a consequence
of (3.40).

Lemma 3.10. Suppose that ϕ solves

ϕτ = L̃k(k−7/6, ϕ),
ϕ(0, k) = ϕ0(k),

where
|ϕ0(k)| � k−βχ{k�1}, (3.47)

with β = 11
6 − δ and δ > 0 small enough. Then, for τ ∈ [0, 1], the following

inequalities hold

|ϕ(τ, k) − β(τ)k−7/6| � Ck−βχ{k�1} + Cτ−5/2−εy−b̃, 0 � k � 2, (3.48)

where y = kτ−3 and

|β(τ)| � Cτ4. (3.49)

Moreover,

|ϕ(τ, k)| � Ck−β , k � 2. (3.50)

Proof. Using the fundamental solution G described in theorem 3.5 as well as in
remark 3.8, we can write

ϕ(τ, k) =
∫ ∞

1

1
k0

G

(
τ

k
1/3
0

,
k

k0
, 1

)
ϕ0(k0) dk0

=
∫ max(k/2,1)

1
· · · dk0 +

∫ ∞

max(k/2,1)
· · · dk0 ≡ J1 + J2.

We first estimate J1. Using (3.26), (3.32) and (3.47), we obtain

|J1| � Cχ{k�2}y
−11/6

∫ k/2

1
ψ2

(
τ

k
1/3
0

)
dk0

k1+β
0

� Cτ−3βχ{k�2}y
−11/6

∫ y/2

0
ψ2(ξ−1/3)

dξ

ξ1+β
. (3.51)

On the other hand, J1 = 0 for k < 2.
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We now estimate J2. Using (3.27), we can rewrite J2 for 0 � k � 2 as

J2 − β(τ)k−7/6 = ϕ0(k)e−aτ/k1/3
χ{k�1}

+
∫ ∞

1
R1

(
τ

k
1/3
0

,
k

k0

)
ϕ0(k0)

dk0

k0

+
∫ ∞

1
R2

(
τ

k
1/3
0

,
k

k0

)
ϕ0(k0)

dk0

k0
,

≡ J2,1 + J2,2 + J2,3,

where

β(τ) =
∫ ∞

1
σ

(
τ

k
1/3
0

)
k

7/6
0 ϕ0(k0)

dk0

k0
.

Taking into account (3.28) and (3.47), we obtain

|β(τ)| � Cτ4. (3.52)

On the other hand, again using (3.47) as well as (3.29) and (3.30), we obtain

|J2,1| � Cτ−3βy−β exp(−ay−1/3)χ{k�1},

|J2,2| � C

∫ 2k

2k/3
χ{k0�1}

exp(−(a − ε)τ/k
1/3
0 )

|k/k0 − 1|5/6

dk0

k1+β
0

,

which vanish for k small enough. For k � 2, the term with R2 gives

|J2,3| � Cy−b̃

∫ ∞

1
ψ1

(
τ

k
1/3
0

)
dk0

k1+β
0

� Cτ−5/2−εy−b̃. (3.53)

Combining (3.52) and (3.53) yields (3.48).
We now estimate J2 for k � 2. To this end we rewrite J2 as

J2 = ϕ0(k) exp
(

− aτ

k1/3

)
+

∫ ∞

k/2
σ

(
τ

k
1/3
0

)(
k0

k

)7/6

ϕ0(k0)
dk0

k0

+
∫ ∞

k/2

(
R1

(
τ

k
1/3
0

,
k

k0

)
+ R2

(
τ

k
1/3
0

,
k

k0

))
ϕ0(k0)

dk0

k0
.

Using (3.28), (3.29) and (3.30) we deduce that

|J2| � Ck−β + Ck−7/6
∫ ∞

k/2
σ

(
τ

k
1/3
0

)
k

7/6−β−1
0 dk0

+
(

τ3

k

)̃b ∫ ∞

k/2
ψ1

(
τ

k
1/3
0

)
k−β−1
0 dk0 + C

∫ 2k

2k/3

k
−β−1/6
0

|k − k0|5/6 dk0.

Using a rescaling argument, the last integral term can be estimated as k−β . There-
fore,

|J2| � Cτ−3βΘ(y), y = kτ−3, (3.54)
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where

Θ(y) := y−β + y−7/6
∫ ∞

y/2
σ(ξ−1/3)ξ7/6−β−1 dξ

+ y−b̃

∫ 3y/2

y/2
ψ1

(
1

ξ1/3

)
ξ−β−1/6

|y − ξ|5/6 dξ. (3.55)

Using (3.28), (3.31) and (3.33), it follows that, for large values of y, the second
term on the right-hand side of (3.55) can be bounded as Cy−4/3−β , and the third
one can be bounded as Cy−b̃+5/6+ε/3y−β . Therefore, Θ(y) � Cy−β for y > 1. On
the other hand, combining (3.33) and (3.51), it follows that |J1| � τ−3βy−11/6 for
y > 1. Then using (3.54) as well as the fact that we have y � 2 for k � 2 and
0 � τ � 1, the estimate (3.50) follows.

We now derive similar results for the non-homogeneous equation.

Proposition 3.11. Let us define

θ ≡ sup
0�τ�T

(
sup

0�k�1
{kα|µ(τ, k)|} + sup

k�1
{kβ |µ(τ, k)|}

)
, (3.56)

where α = 3
2 − δ, β = 11

6 − δ with δ > 0 arbitrarily small. Suppose that 0 � T � 1.
Then, there exists a function y ∈ L∞([0, T ]) and a constant C > 0 independent of
θ and T such that the solution in the integral sense of

∂h

∂τ
= L̃k(k−7/6, h) + µ(τ, k1),

h(0, k1) = 0.

satisfies

|h(τ, k1) − y(τ)k−7/6
1 | � Cθτ3δ/2k

−7/6+δ/2
1 for 0 � k � 1, (3.57)

|h(τ, k1)| � Cθτk−β
1 for k > 1, (3.58)

where
|y(τ)| � Cθτ3δ, (3.59)

for 0 � τ � T .

Proof. The idea is to use the estimates derived in lemma 3.9 with α = 3
2 − δ and

lemma 3.10. Combining (3.36) and (3.49) and the variation-of-constants formula,
we obtain (3.59). On the other hand,

|h(τ, k1) − y(τ)k−7/6
1 | � CM

∫ τ

0
(τ − s)−3αΦ

(
k

(τ − s)3

)
ds

+
C

kb̃
1

∫ τ

0
(τ − s)3b̃−5/2−ε ds + Cθτk−βχ{k � 1}

= Ck
1/3−α
1

∫ τ/k
1/3
1

0
u−3αΦ(u−3) du + Ck−b̃

1 τ3b̃−3/2−ε

+ Cθτk−βχ{k � 1}. (3.60)
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Then, using (3.37), we deduce that∫ τ/k
1/3
1

0
u−3αΦ(u−3) du

is convergent as k1 → 0 and it behaves like (k1/τ3)−δ as τ3/k1 → 0. Therefore,
(3.58) follows.

To obtain (3.57), we use (3.56) as well as the estimates (3.35), (3.50) in lemmas 3.9
and 3.10.

3.3. Estimates for the higher-order terms

For convenience, let us rewrite equation (3.12) in the form

hτ = L̃k(k−7/6, h)(k1, τ) + U(k; λ, h) + ν(k1, τ). (3.61)

In this subsection we obtain some technical estimates for the terms U that are linear
on h but less singular near the origin than L̃k(k−7/6, h)(k1, τ). These estimates are
written in terms of suitable functional norms of the function h itself. The results in
this subsection will allow us to prove theorem 3.1 by means of a standard fixed-point
argument.

We rewrite q̃ and r in (3.3), (3.4) as

q̃(f) = f1q̃1(f) + q̃2(f),
r(f) = r1(f) − f1f2,

}
(3.62)

where

q̃1(f) = f3f4 − f2f3 − f2f4, (3.63)
q̃2(f) = f2f3f4, (3.64)
r1(f) = f3f4.

Note that the functions q̃1(f), q̃2(f), r(f) do not depend on f1. On the other hand,
we introduce the linearizations of these functions by means of

q̃i(f0 + g) = q̃i(f0) + 
̃i(f0, g) + ñi(f0, g), i = 1, 2, (3.65)
r1(f0 + g) = r1(f0) + s1(f0, g) + r1(g), (3.66)

where 
̃i and s1 contain only linear terms on g. Combining (3.5), (3.6) and (3.65),
(3.66), we obtain


̃(f0, g) = q̃1(f0)g1 + [f0,1
̃1(f0, g) + 
̃2(f0, g)], (3.67)
s(f0, g) = −g1f0,2 + s1(f0, g) − f0,1g2 (3.68)

(f0,i ≡ f0(ki)). Using (3.67) and (3.68), we can rewrite U1, U2 and U3 in (3.13),
(3.14) as

U1 = h1U1,1 + U1,2,

U2 = h1U2,1 + U2,2,

U3 = h1U3,1 + U3,2,



Singular solutions for the Uehling–Uhlenbeck equation 83

where

U1,1 =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)(q̃1(f0) − q̃1(k−7/6)) dk3 dk4,

U1,2 =
∫

D(k1)
WM,M ′(k1, k2, k3, k4)

× (f0,1
̃1(f0, h) − k
−7/6
1 
̃1(k−7/6, h) + 
̃2(f0, h) − 
̃2(k−7/6, h)) dk3 dk4,

U2,1 = −λ(τ)−1
∫

D(k1)
WM,M ′(k1, k2, k3, k4)f0,2 dk3 dk4,

U2,2 = λ(τ)−1
∫

D(k1)
WM,M ′(k1, k2, k3, k4)(s1(f0, h) − f0,1h2) dk3 dk4,

U3,1 =
∫

D(k1)
(WM,M ′ − W )(k1, k2, k3, k4)q̃1(k−7/6) dk3 dk4

U3,2 =
∫

D(k1)
(WM,M ′ − W )(k−7/6

1 
̃1(k−7/6, h) + 
̃2(k−7/6, h)) dk3 dk4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.69)

The dependence of the functions Ui,j on their arguments will not be written
explicitly unless necessary. As a general rule, we will only note the dependent vari-
ables that are relevant to the argument.

Lemma 3.12. There exists a positive constant C, depending only on A, B, D, δ
in (2.3)–(2.5) such that, for all (k1, k2, k3, k4) satisfying k2 = k3 + k4 − k1, the
following formula holds:

|q̃1(f0) − q̃1(Ak−7/6)| � C

(
kδ
3 + kδ

4

k
7/6
3 k

7/6
4

+
kδ
2 + kδ

4

k
7/6
2 k

7/6
4

+
kδ
2 + kδ

3

k
7/6
2 k

7/6
3

)
.

Proof. Note that

|q̃1(f0) − q̃1(Ak−7/6)| �
4∑

i,j=2;i<j

|f0,if0,j − k
−7/6
i k

−7/6
j |

and, since

|f0,j −Ak
−7/6
j ||f0,i| � Ck

−7/6+δ
j k

−7/6
i , |f0,i−Ak

−7/6
i ||k−7/6

j | � Ck
−7/6+δ
i k

−7/6
j ,

the result follows.

Lemma 3.13. There exists a positive constant C as in lemma 3.12 such that

|U1,1| � C

k
1/3−δ
1

.

Proof. The result follows using lemma 3.12, rescaling the variables of integration
as k3 = k1ξ3, k4 = k1ξ4 and using the expression for W .
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Lemma 3.14. There exists a positive constant C as in lemma 3.12 such that

|f0,1
̃1(f0, h) − Ak
−7/6
1 
̃1(Ak−7/6,, h)|

� C

[
k

−7/6+δ
1

4∑
i,j=2;i �=j

k
−7/6
i ζ(kj) + k

−7/6
1

4∑
i,j=2;i �=j

k
−7/6+δ
i ζ(kj)

]
|||h|||7/6,β ,

(3.70)

where ζ(k) = k−7/6 if 0 � k � 1 and ζ(k) = k−11/6+δ if k � 1.

Proof. We write

f0,1
̃1(f0, h) − Ak
−7/6
1 
̃1(Ak−7/6, h)

= (f0,1 − Ak
−7/6
1 )
̃1(f0, h) + k

−7/6
1 (
̃1(f0, h) − 
̃1(Ak−7/6, h)).

The first term is estimated using

|(f0,1 − Ak
−7/6
1 )
̃1(f0, h)| � Ck

−7/6+δ
1 |||h|||7/6,β

4∑
i,j=2;i �=j

k
−7/6
i ζ(kj).

The second term is estimated as in lemma 3.12.

Lemma 3.15. There exists a positive constant C = C(A, B, D, δ) such that

|
̃2(f0, h) − 
̃2(Ak−7/6, h)| � C|||h|||7/6,β

4∑
i,j,�=2;i �=j,i �=�,j �=�

k
−7/6
i k

−7/6
j (kδ

i + kδ
j )ζ(k�).

(3.71)

Proof. Formula (3.71) is a consequence of the definition of 
̃2 as well as of (2.3)–
(2.5).

Lemma 3.16. There exists a positive constant CM ≡ C(A, B, D, δ, M), independent
of M ′, such that the following estimates hold:

|U1,2(h) − U1,2(h̃)| � CM

k
3/2−δ
1

|||h − h̃|||7/6,β for 0 � k1 � 1, (3.72)

|U1,2(h) − U1,2(h̃)| � CM

k
17/6−δ
1

|||h − h̃|||7/6,β for k1 > 1. (3.73)

Proof. Let us suppose by simplicity that h̃ ≡ 0, since the argument in the general
case is similar. Using (3.70), (3.71) in (3.69) we deduce

|U1,2| � C

∫
D(k1)

WM,M ′

{ 4∑
i,j=1;i �=j

4∑
�=2;� �=i,� �=j

k
−7/6
i k

−7/6
j (kδ

i + kδ
j )ζ(k�)

}
dk3 dk4.

(3.74)
In order to obtain (3.72), we bound ζ(k�) by k

−7/6
� in (3.70) and (3.71). Using the

rescaling kj = k1ξj for j = 2, 3, 4 yields the result. For k1 > 1, the largest contribu-
tion to the integral in (3.74) is due to the terms where 
 = 2. On the other hand, due
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to the cut-off in WM,M ′ , k3 and k4 are of order k1 for k1 large. Because of this, the
corresponding integral can be estimated by k

−1/2
1 k

−7/3+δ
1 and this yields (3.73).

Lemma 3.17. For all ε > 0 arbitrarily small, there exists a positive constant CM

with the same dependencies as in lemma 3.16 and depending also on ε such that

|U2,1| � CM

k
1/2
1

for all k1 > 1.

Proof. Using the fact that W �
√

k2/
√

k1 and that the kernel WM,M ′ is not zero
only if |k3 − k4| � M , the result follows.

Lemma 3.18. There exists a positive constant CM as in lemma 3.17 such that

|U2,2(h)| � CM

k
5/3
1

|||h|||7/6,β for 0 � k1 � 1 (3.75)

and

|U2,2(h)| � CM

k
β+1/2
1

|||h|||7/6,β for k1 > 1. (3.76)

Proof. When 0 � k1 � 1, the term due to s1(f0, h) may be estimated as

|s1(f0, h)| �
4∑

i,j=2,i �=j

k
−7/6
i k

−7/6
j .

The corresponding estimate follows using the rescaling kj = k1ξj , j = 2, 3, 4. Alter-
natively, the term in U2,2 containing f0,1h2 can be estimated, after integrating in
k3, k4, as CMk

−7/6
1 k

−1/2
1 for k1 � 1. In order to make this integration, it is conve-

nient to change the integral variables from k3, k4 to k2, k3 − k4. Then the function
WM,M ′ can be bounded by 1 for k2 � k1 and by

√
k2/

√
k1 for k2 � k1, whence esti-

mate (3.75) follows. On the other hand, in order to derive the estimate for k1 > 1,
we use the fact that, due to the cut-off, k3 and k4 are of order k1. The contribution
to U2,2 due to the term f0,1h2 may be estimated by CMe−Dk1 after integration in
k3, k4. To estimate the remaining terms in U2,2 we use the fact that

|s1(f0, h)| �
4∑

i,j=3;i �=j

f0,ihj .

For k1 > 1, the largest contribution to U2,2 is due to the terms with i = 2. The
resulting contribution can be bounded as k

−β−1/2
1 , whence (3.76) follows.

Lemma 3.19. There exists a positive constant CM as in lemma 3.17 such that

|U3,1(h)| � CM for 0 � k1 � 1 (3.77)

and

|U3,1(h)| � CM

k
1/3
1

for k1 � 1.
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Proof. The estimate (3.77) for 0 � k1 � 1 follows using the fact that, due to the
cut-off, the domain of integration is contained in a fixed domain independent of k1.
For k1 � 1, we estimate |WM,M ′ − W | by 2W and use in the resulting integral the
rescaling kj = k1ξj , j = 2, 3, 4.

Lemma 3.20. There exists a positive constant CM as in lemma 3.17 such that

|U3,2(h)| � CM

k
7/6
1

|||h|||7/6,β for 0 � k1 � 1

and

|U3,2(h)| � CM

k
1/3+β
1

|||h − h̃|||7/6,β for k1 � 1.

Proof. The proof is essentially similar to that of the previous lemma.

3.4. Proof of theorems 3.1 and 3.2

We can reformulate the original problem (3.1), (3.2) as a fixed-point problem. To
this end we use the variation-of-constants formula in (3.2), (3.61) to obtain

h(τ, k1) =
∫ ∞

0
G(τ, k1, ξ)h0(ξ) +

∫ τ

0
ds

∫ ∞

0
dξG(τ − s, k1, ξ)U(ξ; λ(s), h(s, ξ))

+
∫ τ

0
ds

∫ d

0
ξG(τ − s, k1, ξ)ν(s, ξ)

≡ T (h)(τ, k1), (3.78)

where G(τ, k1, ξ) is the fundamental solution of the problem (3.17), (3.18) described
in theorem 3.5.

Proof of theorem 3.1. The theorem will follow by proving that the operator T
defined in (3.78) is contractive in the space Y7/6,β(T ) for T > 0 small enough.

To this end, note that, using lemma 3.13 as well as lemmas 3.16–3.20, we obtain∣∣∣∣ 3∑
j=1

(h1Uj,1 + Uj,2)(ξ; λ(s), h(s, ξ)) + ν(s, ξ)
∣∣∣∣

� CMξ−3/2+δ(|||h|||7/6,β + |||ν|||α,β) for 0 � ξ � 1, (3.79)∣∣∣∣ 3∑
j=1

(h1Uj,1 + Uj,2)(ξ; λ(s), h(s, ξ)) + ν(s, ξ)
∣∣∣∣

� CMξ−β−1/3+δ(|||h|||7/6,β + |||ν|||α,β) for ξ > 1. (3.80)

Combining these estimates with proposition 3.11, we obtain

|||T (h − h̃)|||7/6,β � CMT 3δ/2|||h − h̃|||7/6,β ,

where CM is a positive constant as in lemma 3.16. The existence and uniqueness
parts for small T in theorem 3.1 follow by means of a standard fixed-point argument.
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On the other hand, combining (3.79) and (3.80) with proposition 3.11, we obtain

|||T (h)|||7/6,β � CM (‖h0‖7/6,β + T 3δ/2|||h|||7/6,β) + T 3δ/2|||ν|||7/6,β , (3.81)

which yields the estimate (3.20).
The proof of (3.21), (3.22) follows from proposition 3.11, which yields an estimate

for the contribution due to the term ν, as well as from lemma 3.9 with α = 7
6 , which

provides bounds for the contribution due to h0.

Proof of theorem 3.2. This is very similar to that of theorem 3.1, although we must
use the functional space X7/6,β,3δ(T ). We first rewrite the equation as

hτ = Lk(λ(τ)Ak−7/6, h) + µ(k1, τ) + ν, (3.82)

where
µ(τ, k1) = Lk(λ(τ)f0, h) − Lk(λ(τ)Ak−7/6, h). (3.83)

Then, arguing as in the proofs of formulae (3.79) and (3.80), we obtain

‖µ(τ, ·)‖3/2−δ,β � C

τ1−3δ
|||h|||7/6,β,3δ, 0 � τ � T.

We use now the usual fixed-point argument. Given h in X7/6,β,3δ(T ), we define µ
as in (3.83) and then solve (3.82) with h(0, k1) = h0(k1). This defines an operator
T (h). Using the variation-of-constants formula as well as lemmas 3.9 and 3.10, we
obtain

‖T (h)(τ, ·)‖7/6,β � C‖h0‖7/6,β + C

∫ τ

0

ds

(τ − s)1−3δ

{ |||h|||7/6,β,3δ

s1−3δ
+

|||ν|||α,β,γ

s1−γ

}
� C‖h0‖7/6,β + CT 3δ |||h|||7/6,β,3δ

τ1−3δ
+ CT γ |||ν|||α,β,γ

τ1−3δ

and, similarly,

|||T (h1 − h2)|||7/6,β,3δ � CT 3δ|||h1 − h2|||7/6,β,3δ.

The existence and uniqueness of solution of (3.1), (3.2) in the space X7/6,β,3δ(T )
follow for T > 0 sufficiently small by the usual contraction argument. Finally,
(3.23) and (3.24) follow by a small modification of the proof of proposition 3.11.
More precisely, if h̃ is a solution of (3.82) with initial data h̃0(k) = 0, then, arguing
as in the derivation of (3.60), we have

|h̃(τ, k1) − y(τ)k−7/6
1 | � CM

∫ τ

0
(τ − s)−3αΦ

(
k

(τ − s)3

)
j(s) ds

+
C

kb̃
1

∫ τ

0
(τ − s)3b̃−5/2−εj(s) ds, (3.84)

where

j(s) ≡
{

‖h‖α,β,δ

s1−3δ
+

|||ν|||α,β,γ

s1−γ

}
and b̃ = 7

6 − 1
2δ.
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We can now estimate the first term on the right-hand side of this inequality by
splitting the integral into the intervals (0, 1

2τ) and (1
2τ, τ). In the second term, we

can bound s−1+3δ and s−1+γ by Cτ−1+3δ and Cτ−1+γ , respectively, and estimate
the remaining integral as in (3.81). Eventually, for 0 � τ � T and 0 � k1 � 1, this
gives∫ τ

τ/2
(τ − s)−3αΦ

(
k

(τ − s)3

)
j(s) ds

� C(‖h‖α,β,δτ
−1+9δ/2 + |||ν|||α,β,γτ−1+γ+3δ/2)k−7/6+δ/2

1 .

On the other hand, the contribution due to the integral for 0 � s � 1
2τ is

estimated using the monotonicity of the function Φ defined in (3.37). Then∫ τ/2

0
(τ − s)−3αΦ

(
k

(τ − s)3

)
j(s) ds

� C
1

τ3α
Φ

(
k

τ3

) ∫ τ/2

0
j(s) ds

� C(‖h0‖τ−1+9δ/2 + |||ν|||α,β,γτ−1+γ+3δ/2)k−7/6+δ/2
1 .

The second integral on the right-hand side of (3.84) is estimated using similar argu-
ments. Finally, the bound (3.22) for a(τ) follows as in proposition 3.11, using (3.36)
and (3.49).

3.5. Some regularity results for the time derivatives

We now prove some regularity properties with respect to the initial time for the
function a(τ) (whose existence is asserted in (3.21)), which will be needed later.

Lemma 3.21. Let us suppose that f0 satisfies (2.3), (2.4), (2.5) and 1
2 � λ(τ) � 1

for τ̄ � τ � T . Let us denote by H the unique solution of the problem

∂H

∂τ
(τ, τ̄ , k) = Lk,2(f0, H(τ, τ̄)) +

1
λ(τ)

Lk,1(f0, H(τ, τ̄)) for τ̄ � τ � T, (3.85)

H(τ̄ , τ̄) = f0 (3.86)

in Y7/6,β(T ). Suppose also that

|λ′(τ)| � C, 0 � τ � T. (3.87)

Then, the function a(τ, τ̄), defined as

a(τ, τ̄) = lim
k1→0

k
7/6
1 H(τ, τ̄ , k1), (3.88)

satisfies

a(τ̄+, τ̄) = A, (3.89)∣∣∣∣ ∂

∂τ̄
a(τ, τ̄)

∣∣∣∣ � C(τ − τ̄)−1+3δ, τ̄ � t � T, (3.90)
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∂τ̄

∥∥∥∥
7/6,β

�
C sup0�τ�T |λ(τ)|

(τ − τ̄)1−3δ
, (3.91)

∥∥∥∥∂H

∂τ

∥∥∥∥
7/6,β

� C

(τ − τ̄)1−3δ

{
sup

0�τ�T
|λ(τ)| + sup

0�τ�T
|λ′(τ)|

}
, (3.92)

and ∣∣∣∣∂a

∂τ
(τ, τ̄)

∣∣∣∣ � C

(τ − τ̄)1−3δ

{
sup

0�τ�T
|λ(τ)| + sup

0�τ�T
|λ′(τ)|

}
(3.93)

for τ̄ � τ � T .
Finally, under the same assumptions,

‖H(τ, τ̄) − a(τ, τ̄)k−7/6‖7/6−δ/2,β � C, (3.94)∥∥∥∥∂H

∂τ
(τ, τ̄) − ∂a

∂τ
(τ, τ̄)k−7/6‖7/6−δ/2,β � C

(τ − τ̄)1−3δ/2 (3.95)

for τ̄ � τ � T .

Proof of lemma 3.21. The existence and uniqueness of the solution H follows from
theorem 3.1 with ν = 0. Now using (3.78) we obtain

H(τ, τ̄ , k1) =
∫ ∞

0
G(τ − τ̄ , k1, ξ)f0(ξ) dξ

+
∫ τ

τ̄

ds

∫ ∞

0
dξG(τ − s, k1, ξ)U(ξ; λ(s), H(s, τ̄ , ξ)). (3.96)

Multiplying by k
7/6
1 and taking the limit as k1 → 0, we obtain

a(τ, τ̄) =
∫ ∞

0
ξ1/6σ

(
τ − τ̄

ξ1/3

)
f0(ξ) dξ

+
∫ τ

τ̄

ds

∫ ∞

0
dξ ξ1/6σ

(
τ − s

ξ1/3

)
U(ξ; λ(s), H(s, τ̄ , ξ)) (3.97)

for all τ < τ̄ , where the convergence of the different integrals is ensured by the
estimates (3.79) and (3.80). We now take the limit of (3.97) as τ → τ̄ . To this end,
we use in the first integral of the right-hand side the change of variables ξ = ζτ3

and (2.3), whence

lim
τ→τ̄

∫ ∞

0
ξ1/6σ

(
τ − τ̄

ξ1/3

)
f0(ξ) dξ = A

∫ ∞

0
σ(ζ−1/3)ζ−1 dζ. (3.98)

Differentiating the identity Q̃(Ak−7/6) = 0 (c.f. (1.8)) with respect to A, we obtain
Lk,2(Ak−7/6, Hs) = 0. Therefore, if f0(ξ) = ξ−7/6 and U = 0 in (3.98) it would
follow that a(τ̄ , τ) = A, whence∫ ∞

0
σ(ζ−1/3)ζ−1 dζ = 1. (3.99)
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On the other hand, using (3.79) and (3.80) and lemmas 3.9 and 3.10, we deduce
that ∣∣∣∣ ∫ ∞

0
dξ ξ1/6σ

(
τ − s

ξ1/3

)
U(ξ; λ(s), H(s, τ̄ , ξ))

∣∣∣∣ � C(τ − s)−1+3δ.

Integrating this formula in the interval (τ̄ , τ), we derive an estimate for the second
term on the right-hand side of (3.97) in the form C(τ − τ̄)−3δ. Taking the limit
τ → τ̄ and using (3.98), (3.99), we obtain (3.89).

The function H(τ, τ̄ , k) satisfies (3.85) in the classical sense. To check this we
could differentiate formally in (3.96), after rewriting the second integral on the
right-hand side as∫ τ−τ̄

0
ds

∫ ∞

0
dξ G(s, k1, ξ)U(ξ; λ(τ − s), H(τ − s, τ̄ , ξ))

to obtain

∂H

∂τ
(τ, τ̄ , k1) =

∫ ∞

0

∂G

∂τ
(τ − τ̄ , k1, ξ)f0(ξ) dξ+

∫ ∞

0
G(τ − τ̄ , k1, ξ)U(ξ; λ(τ̄), f0(ξ)) dξ

+
∫ τ−τ̄

0
ds

∫ ∞

0
dξ G(s, k1, ξ)

{
∂U
∂λ

λ′(τ − s) +
∂U
∂H

∂H

∂τ
(τ − s, τ̄ , ξ)

}
.

Use of Gronwall’s lemma would then yield that H is a classical solution of (3.85). To
make this argument rigorously, we merely replace ∂/∂τ by the incremental quotients
and pass to the limit.

Let us first indicate the formal arguments that we will use to prove (3.90) and
(3.92)–(3.95). In order to prove (3.90) we differentiate (3.85) and (3.86) with respect
to τ̄ to obtain

∂

∂τ

(
∂H

∂τ̄

)
(τ, τ̄ , k) = Lk

(
λ(τ)f0,

(
∂H

∂τ̄

)
(τ, τ̄)

)
, (3.100)

∂H

∂τ̄
(τ̄ , τ̄) = −∂H

∂τ
(τ̄ , τ̄) = −Lk(λ(τ̄)f0, f0). (3.101)

Using (2.3), we obtain
‖Lk(λ(τ̄)f0, f0)‖α,β � C (3.102)

with α = 3
2 − δ and β = 11

6 − δ. The estimate (3.90) is then a consequence of
theorem 3.2.

The analogous argument to prove (3.92) and (3.93) would be as follows. We note
first that, due to (3.87), estimating the derivative of a function with respect to t is
equivalent to estimating its derivative with respect to τ . Differentiating (3.85) with
respect to τ , and using (3.100) and (3.101), we see that ∂H/∂τ solves

∂

∂τ

(
∂H

∂τ

)
= Lk,2

(
f0,

(
∂H

∂τ

))
+

1
λ(τ)

Lk,1

(
f0,

(
∂H

∂τ

))
+

∂

∂τ

(
1

λ(τ)

)
Lk,1(f0, H), (3.103)

∂H

∂τ
(τ̄ , τ̄) =

1
λ(τ̄)

Lk(λ(τ̄)f0, f0). (3.104)
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Combining (2.3), (2.5) and (3.87), as well as the fact that H ∈ Y7/6,β(T ), it follows
that ∥∥∥∥ ∂

∂τ

(
1

λ(τ)

)
Lk,1(f0, H)

∥∥∥∥
α,β

� C.

Applying theorem 3.2 to (3.102), we deduce (3.92). Formula (3.93) follows from
(3.22).

Analogously, in order to derive (3.94), we use the fact that the equation satis-
fied by W = H − f0, which may be derived using (3.85), (3.86), is linear with zero
initial data and source terms bounded by Ck

−3/2+δ
1 for k1 � 1. Therefore, (3.94) fol-

lows, using variation of the constants as above and theorem 3.1. The proof of (3.95)
is similar, but uses (3.103), (3.104) instead of (3.85), (3.86), and theorem 3.2 instead
of theorem 3.1.

The above computations can be made rigorous by replacing the derivatives ∂/∂τ̄
and ∂/∂τ by the corresponding incremental quotients.

4. Solving the nonlinear truncated equation

In this section we prove the following result.

Theorem 4.1. Suppose that f0 satisfies (2.3), (2.5). Then, for any M > 0 and
M ′ > 0, there exist a T = T (M, M ′) > 0 and a unique solution of (2.10)–(2.12)
of the form f(t) = λ(t)f0 + g(t), where g ∈ C[[0, T ] × (0,∞)], g ∈ Y7/6−δ/2,β(T ),
β = 11

6 − δ, for δ > 0 sufficiently small, and λ ∈ C[0, T ] ∩ C
1(0, T ). Moreover,

|||g|||7/6−δ,β(T ) � CM,M ′T δ/2. (4.1)

Remark 4.2. Note that the condition g ∈ Y7/6−δ,β(T ) implies that (2.14) holds.

The idea of the proof of theorem 4.1 is to use a fixed-point argument for (2.17)
under the constraint (2.14). First we will obtain a proof of the result in the τ vari-
able instead of t because, by (2.21), both formulations are equivalent as long as
1
2 � λ � 2. The statement in the t variable immediately follows for the same rea-
son. As a first step, we derive suitable estimates for the terms R1 and R2 defined
in (2.19), (2.20).

Lemma 4.3. Suppose that f0 satisfies (2.3), (2.5) and 1
2 � λ(τ) � 2 for 0 � τ � T

and some T > 0. Then the function R1(τ, k1) defined in (2.19) satisfies

sup
0�τ�T

|R1(τ, k1)| �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CM

k
3/2−δ
1

, k1 � 1,

CM

k
7/3−2δ
1

, k1 � 1,

where CM = C(A, B, D, δ, M) is a positive constant independent of M ′.
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Proof of lemma 4.3. Using the fact that q(f) = q̃(f) + r(f) as well as (3.5) with
g = λ(τ)(f0 − Ak−7/6), we can rewrite R1 as

R1(τ, k1) =
∫

D(k1)
WM,M ′ q̃(λ(τ)Ak−7/6) dk3 dk4

+
∫

D(k1)
WM,M ′ 
̃(λ(τ)Ak−7/6, λ(τ)(f0 − Ak−7/6)) dk3 dk4

+
∫

D(k1)
WM,M ′ ñ(λ(τ)Ak−7/6, λ(τ)(f0 − Ak−7/6)) dk3 dk4

+
∫

D(k1)
WM,M ′r(λ(τ)f0) dk3 dk4

≡ R1,1 + R1,2 + R1,3 + R1,4. (4.2)

The q̃(f) term may be bounded by CMk
−7/3
1 min (1, k

−7/6
2 ) since WM,M ′ is sup-

ported in the region |k3 − k4| � M (due to (3.3)). Using the fact that

W (k1, k2, k3, k4) � min
(

1,

√
k2√
k1

)
,

we then deduce that

|R1,1| � CMk
−7/3
1

∫ ∞

0
min

(
1,

√
k2√
k1

)
min(1, k

−7/6
2 ) dk2.

Splitting the integral into the three regions 0 < k2 < 1, 1 < k2 < k1 and k1 < k2 <
∞, we obtain

|R1,1| � CM

k
5/2
1

, k1 � 1. (4.3)

On the other hand, since∫
D(k1)

Wq̃(Ak−7/6) dk3 dk4 = 0, (4.4)

we can rewrite R1,1 as

R1,1 =
∫

D(k1)
(WM,M ′ − W )q̃(λ(τ)Ak−7/6) dk3 dk4. (4.5)

Using the fact that WM,M ′ − W vanishes for |k3 − k4| < M , we obtain

|R1,1| � CM

k
7/6
1

, k1 � 1. (4.6)

We now consider R1,2. By (2.3) the estimate |λ(τ)(f0 −Ak−7/6)| � Ck
−7/6+δ
1 holds

for all k1 > 0. Making the change of variables k3 = k1ξ3, k4 = k1ξ4, it follows that

|R1,2| � C

k
3/2−δ
1

for k1 � 1. (4.7)
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Arguing as in the derivation of (4.3) we obtain

|R1,2| � CMe−Bk1 for k1 � 1. (4.8)

Similar arguments yield

|R1,3| �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CM

k
5/2
1

for k1 � 1,

CM

k
3/2−2δ
1

for k1 � 1,

(4.9)

as well as

|R1,4| �

⎧⎪⎨⎪⎩
CM

k
4/3
1

for k1 � 1,

CMe−Bk1 for k1 � 1.

(4.10)

Putting together (4.3) and (4.6)–(4.10), lemma 4.3 follows.

Lemma 4.4. Suppose that g ∈ Y7/6−δ/2,β(T ), for some T > 0, with β as in the-
orem 4.1. Suppose that λ also satisfies the assumptions in theorem 4.1 and 1

2 �
λ(τ) � 2. Then the function R2(τ, k1, g) defined by (2.20) satisfies

sup
0�τ�T

|R2(τ, k1, g)| � CM

k
3/2−δ
1

, k1 � 1, (4.11)

sup
0�τ�T

|R2(τ, k1, g)| � CM

kβ
1

, k1 � 1, (4.12)

where CM = C(A, B, D, δ, M, |||g|||7/6−δ/2,β) is uniformly bounded if |||g|||7/6−δ/2,β

is bounded and is independent of M ′. Moreover, suppose that g, ḡ are such that

|||g|||7/6−δ/2,β + |||ḡ|||7/6−δ/2,β � ρ (4.13)

for some positive constant ρ. Then,

|||R2(·, ·, g) − R2(·, ·, ḡ)|||3/2−δ,β � CM |||g − ḡ|||7/6−δ/2,β , (4.14)

where CM = C(A, B, D, δ, M, ρ).

Remark 4.5. Lemma 4.4 will play a crucial role in the forthcoming argument. The
reason is that it states that the function R2(τ, k1, g) is smaller near the origin than
the leading linear term Lk,2(f0, g)(τ, k1) in (2.22). Indeed, given g ∈ Y7/6−δ/2,β(T ),
it follows that Lk,2(f0, g)(τ, k1) is pointwise bounded by Ck

−3/2+δ/2
1 for 0 < k1 � 1.

On the other hand, the term R2(τ, k1, g) can be estimated by the smaller quantity
Ck

−3/2+δ
1 for 0 < k1 � 1. This additional smallness, which is due to the fact that

R2(τ, k1, g) is quadratic with respect to g, allows us to handle the final term in a
perturbative manner.

Proof of lemma 4.4. The function n(λ(τ)f0, g) contains two types of term, depend-
ing on their homogeneity. Some of the terms are those in ñ which are quadratic
in g and linear in f0. These terms can be estimated for 0 � k1 � 1 using (2.3) and
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g ∈ Y76−δ/2,β(T ). Using the change of variables k3 = k1ξ3, k4 = k1ξ4, we deduce an
estimate of the form (4.11) for the contribution due to these terms. The remain-
ing terms in n(λ(τ)f0, g) are the ones in r(λ(τ)f0, g). Their contribution can be
estimated as CMk

−7/6−δ
1 when k1 � 1, which is smaller than the right-hand side

of (4.11). Finally, (4.12) follows by using the same arguments as in the proof of
lemma 4.3. Estimates for the differences (4.14) are obtained in the same way.

Proof of theorem 4.1. Recall that we are looking for a solution of the problem
(2.22), (2.23) of the form

f(τ, k) = λ(τ)f0(k) + g(τ, k),

where λ(τ) will be prescribed, imposing g ∈ Y7/6−δ/2,β(T ) for some T > 0. More-
over, we also have g(0, k) = 0 for k � 0 (cf. (2.15)).

Let us introduce a suitable functional framework. We define the space

Λ(T ) ≡ {λ ∈ C([0, T ]) ∩ C
1(0, T ) : |λ(τ) − λ(0)| � 1

4 , |λ′(τ)| � C, 0 � τ � T}
(4.15)

endowed with the norm

‖λ‖1,∞ = sup
0�τ�T

{|λ(τ)| + |λ′(τ)|}. (4.16)

Let us introduce the functional spaces

W(T ) =
{

g ∈ Y7/6−δ/2,β(T ),
∂g

∂τ
∈ Y7/6−δ/2,β(T )

}
(4.17)

with the norm

‖g‖W = |||g|||7/6−δ/2,β +
∣∣∣∣∣∣∣∣∣∣∣∣∂g

∂τ

∣∣∣∣∣∣∣∣∣∣∣∣
7/6−δ/2,β

(4.18)

and Z(T ) = W ×Λ(T ). We define an operator T from Z into itself as follows. Given
(g, λ) ∈ Z, let g̃1 be the solution of

∂g̃1

∂τ
(τ, k1) = Lk,2(f0, g̃1)(k1, τ) +

1
λ(τ)

Lk,1(f0, g̃1)(k1, τ)

+
1

λ2(τ)
(R1(τ, k1) + R2(τ, k1, g)), (4.19)

g̃1(0) = 0. (4.20)

The function g̃1 is uniquely defined due to theorem 3.1. Moreover, the limit

b(τ) ≡ bg,λ(τ) ≡ lim
k→0

k7/6g̃1(τ, k) (4.21)

exists. We define the function λ̃(t) as the solution of the integral equation

λ̃(τ) ≡ a(τ, 0) +
1
A

∫ τ

0

∂a

∂τ̄
(τ, τ̄)λ̃(τ̄) dτ̄ − b(τ) ≡ S(λ̃), (4.22)

where a is defined by (3.88) in lemma 3.21. Let us suppose for the moment that
the function λ̃(τ), the solution of (4.22), is well defined. We then define a function
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g̃2 by means of

g̃2(τ, k) =
1
A

{
H(τ, τ, k)λ̃(τ) − H(τ, 0, k)λ̃(0) −

∫ τ

0

∂H

∂τ̄
(τ, τ̄ , k)λ̃(τ̄) dτ̄

}
, (4.23)

where H is the solution of the problem (3.85), (3.86) whose existence and uniqueness
is asserted in lemma 3.21.

After all these preliminaries we define

T : Z → Z,

T (g, λ) = (g̃, λ̃),
g̃ = g̃1 + g̃2.

⎫⎪⎬⎪⎭ (4.24)

Note that a fixed point of the operator T is a solution of the integral equation
associated with the problem (2.22), (2.23). Moreover, we remark that the solution
of such an integral equation solves the differential equation (2.22), (2.23). Indeed,
this follows from the differentiability of the function g̃2 defined in (4.23) with respect
to τ for k > 0. Such a regularity can be seen by differentiating formally the right-
hand side of (3.100) with respect to τ and using the regularity properties of the
function H proved in lemma 3.21 (see (3.91) and (3.92)).

We then proceed to check that the operator T is well defined. As a first step
we derive a local well-posedness result for (4.22). To this end we first prove an
auxiliary result. Let us denote by T (g; λ) = g̃1 the solution of (4.19), (4.20) and let
S(g; λ) = T (g) − bg,λk−7/6. We then have the following lemma.

Lemma 4.6. Suppose that λ ∈ Λ(T ) satisfies ‖λ‖1,∞ < ∞ with ‖λ‖1,∞ defined
in (4.16) and g, ∂g/∂τ ∈ Y7/6−δ/2,β(T ). Then the function b(τ) defined in (4.21)
satisfies

|b(τ)| + |b′(τ)| � Cτ3δ, 0 � τ � T. (4.25)

Moreover,

|bg,λ(τ) − bh,µ(τ)| + |b′
g,λ(τ) − b′

h,µ(τ)| � Cτ3δ(‖λ − µ‖1,∞ + ‖g − h‖W) (4.26)

and

‖S(g; λ) − S(h; µ)‖W � CT 3δ/2(‖g − h‖W + ‖λ − µ‖L∞(0,T )) (4.27)

for 0 � τ � T , where C = C(A, B, D, δ, M, M ′, d) and d = |||g|||W + |||h|||W +
‖λ‖1,∞ + ‖µ‖1,∞ + ‖g − h‖W .

Proof of lemma 4.6. The existence of the functions g̃1 and b(τ) and the part of the
estimate (4.25) for b is just a consequence of theorem 3.1.

In order to estimate b′(τ), we differentiate (4.19) with respect to τ . The resulting
equation has the form

∂

∂τ

(
∂g̃1

∂τ

)
= Lk,2

(
f0,

∂g̃1

∂τ

)
(k1, τ)

+
1

λ(τ)
Lk,1

(
f0,

∂g̃1

∂τ

)
(k1, τ) + F

(
k1, g, g̃1,

∂g

∂τ
, τ

)
. (4.28)
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Arguing as in the proof of lemmas 4.3 and 4.4, we deduce∣∣∣∣∣∣∣∣∣∣∣∣F(
k1, g, g̃1,

∂g

∂τ
, τ

)∣∣∣∣∣∣∣∣∣∣∣∣
3/2−δ,β

� C‖g‖W . (4.29)

The estimate for b′(τ) in (4.25) then follows from theorem 4.1. Combining (4.14)
and theorem 3.1 we obtain

|bg,λ − bh,µ| � CT 3δ(|||g − h|||7/6−δ/2,β + ‖λ − µ‖L∞(0,T )),
(4.30)

|||S(g; λ) − S(h; µ)|||7/6−δ/2,β � CT 3δ/2(|||g − h|||7/6−δ/2,β + ‖λ − µ‖L∞(0,T )).
(4.31)

Arguing as in the proof of (4.29) we obtain∣∣∣∣∣∣∣∣∣∣∣∣F(
k1, g,T (g; λ),

∂g

∂τ
, τ

)
− F

(
k1, h,T (h; µ),

∂h

∂τ
, τ

)∣∣∣∣∣∣∣∣∣∣∣∣
3/2−δ,β

� C(‖g − h‖W + ‖λ − µ‖L∞(0,T )).

Using theorem 3.1 again, we deduce that

|b′
g,λ − b′

h,µ| � CT 3δ(|||g − h|||W + ‖λ − µ‖L∞(0,T )), (4.32)∣∣∣∣∣∣∣∣∣∣∣∣ ∂

∂t
S(g; λ) − ∂

∂t
S(h; µ)

∣∣∣∣∣∣∣∣∣∣∣∣
7/6−δ/2,β

� CT 3δ/2(‖g − h‖W + ‖λ − µ‖L∞(0,T )).

(4.33)

This concludes the proof of lemma 4.6.

We can now prove a local well-posedness result for (4.22).

Lemma 4.7. For any M > 0 and M ′ > 0 there exist a T such that

T = T (A, B, D, δ, M, M ′)

and a unique λ ∈ C([0, T ]) solving (4.22) for 0 � τ � T . Moreover,

|λ(τ) − A| � C(A, B, D, δ, M, M ′)T 3δ, 0 � τ � T. (4.34)

Proof of lemma 4.7. We note that the operator S defined in (4.22) maps C[0, T ]
onto C[0, T ] and is contractive for T sufficiently small. Indeed, by (4.26) and (3.90)
we have

|S(λ1)(τ) − S(λ2)(τ)| � Cq(T )T 3δ‖λ1 − λ2‖1,∞, (4.35)

where C = C(δ) and

q(T ) = sup
0� ¯τ�τ�T

∣∣∣∣(τ − τ̄)1−3δ ∂a

∂τ̄
(τ, τ̄)

∣∣∣∣.
Moreover,

‖S(λ) − b(·) − a(·, 0)‖∞ � q(T )T 3δ(‖b‖∞ + ‖a(·, 0)‖∞ + ‖λ − b(·) − a(·, 0)‖∞).
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By theorem 3.1 and lemma 3.21, we have, for some T̃ = T̃ (A, B, D, δ, M, M ′) > 0

‖b(·)‖∞ + ‖a(·, 0)‖∞ + q(T ) � C(A, B, D, δ, M, M ′), 0 � T � T̃ .

Therefore, a standard fixed-point argument concludes the proof of the lemma.

Lemma 4.8. The function λ̃ solution of the integral equation (4.22) satisfies

|λ̃(τ)| � C(‖a(·, 0)‖∞ + ‖b‖∞), 0 � τ � T, (4.36)

|λ̃τ (τ)| � C‖b′‖∞, 0 � τ � T, (4.37)

for T > 0 sufficiently small.

Proof of lemma 4.8. The inequality (4.36) is a consequence of (3.90) and (4.22). On
the other hand, in order to derive (4.37), note that integration by parts in (4.22)
yields

1
A

∫ τ

0
a(τ, τ̄)λ̃′(τ̄) dτ̄ + b(τ) = 0. (4.38)

Differentiating this equation, we obtain

λ̃′(τ) +
1
A

∫ τ

0

∂a

∂τ
(τ, τ̄)λ̃′(τ̄) dτ̄ + b′(τ) = 0, (4.39)

which, combined with (3.93), gives (4.37).

We now complete the proof of theorem 4.1. This reduces to show that the oper-
ator T defined in (4.24) is a contraction for T small enough. Note that

T (g, λ) = (T (g) + g̃2, λ̃). (4.40)

Let us first show that T (g)+ g̃2 ∈ W(T ). Indeed, using (4.23) and (3.88), we obtain

lim
k→0

k7/6g̃2(τ, k) = λ(τ) − a(τ, 0)λ(0) − 1
A

∫ τ

0

∂a

∂τ
(τ̄ , τ̄) dτ̄ . (4.41)

Combining (4.21), (4.22) and (4.41), it then follows that

lim
k→0

(k7/6(T (g) + g̃2)) = 0. (4.42)

Then, the fact that T (g) + g̃2 ∈ W(T ) follows from (3.94), (3.95), (4.23) and (4.27).
Moreover, we also obtain

‖(T (g) + g̃2) − (T (h) + h̃2)‖W � 1
4 (‖g − h‖W + ‖λ − µ‖1,∞) (4.43)

for T > 0 sufficiently small.
On the other hand, in order to keep track of the dependence of a(·, 0) with respect

to λ, we denote by Hλ(t, 0) the solution of (3.85) and by aλ the function defined
by (3.88) in lemma 3.21. Lemma 4.8 then yields

‖λ̃ − µ̃‖1,∞ � C(‖bg,λ − bh,µ‖1,∞ + ‖aλ(·, 0) − aµ(·, 0)‖∞). (4.44)
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The first term on the right-hand side of (4.44) was estimated in (4.26). Additionally,
the second term may be estimated as follows. Consider

∂

∂τ
(Hλ − Hµ) = Lk,1(f0, Hλ − Hµ)

+
1

λ(τ)
Lk,2(f0, Hλ − Hµ) +

(
1

λ(τ)
− 1

µ(τ)

)
Lk(f0, Hµ). (4.45)

Using both the fact that∥∥∥∥(
1

λ(τ)
− 1

µ(τ)

)
Lk,2(f0, Hµ)(t)

∥∥∥∥
3/2−δ,β

� C‖λ − µ‖∞

and theorem 3.1 we deduce that

‖aλ(·, 0) − aµ(·, 0)‖∞ � C‖λ − µ‖W . (4.46)

Combining (4.26) and (4.46) we obtain

‖λ̃ − µ̃‖1,∞ � 1
4 (‖g − h‖W + ‖λ − µ‖1,∞) (4.47)

for T > 0 sufficiently small. Formulae (4.41), (4.43) and (4.47) imply that T is a
contractive operator, from whence we see that the operator T defined in (4.24) has
a unique fixed point. Finally, changing to the time variable t using (2.21) yields
theorem 4.1.

Remark 4.9. We note that the dependence on M , M ′ of the different constants C
used in the proof of theorem 4.1 is due to the dependence on M , M ′ of the terms R1,
R2, Uk, k = 1, 2, 3 in (2.19), (2.20) and (3.13)–(3.15). This fact is relevant because,
in the next section we will derive refined estimates for the solution f of (2.10), (2.11)
which, in particular, will provide estimates on the terms R1, R2, Uk, k = 1, 2, 3,
independent of M , M ′. This will make it possible to show that the solution f
constructed in theorem 4.1 can be extended on a time interval independent of M
and M ′.

5. The limit M, M ′ → ∞

5.1. Uniform bounds

The aim of this subsection is to obtain uniform bounds on the solutions of the trun-
cated nonlinear problem (2.10)–(2.12) with respect to the truncation parameters
M and M ′. The main result that we prove is an estimate of the form

0 � f(t, k) � L
e−Dk

k7/6 if k > 0, t ∈ (0, T ), (5.1)

with L and T independent of M and M ′ and with D as in (2.5). We recall that,
although the functions f depend on M and M ′, we will not state this dependence
explicitly unless it is necessary.

Note that, by (2.5) and (2.5)–(2.11), for all M > 0 and M ′ > 0, we have

f(t, k) = f(0, k) � L
e−Dk

k7/6 for all k > M ′, t > 0, (5.2)
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whence we see that (5.1) holds immediately for all k > M ′. Our goal now is to
extend the range of validity of this inequality to the values k < M ′.

Owing to the interaction between the regions of small and large values of k, it
is not possible to obtain the estimate (5.1) without also estimating the function
f(t, k) for k of order 1. More precisely, in the derivation of (5.1), we will also obtain

|f(t, k) − a(t)k−7/6| � Lk−7/6+δ/2, k � 1, t ∈ (0, T ), (5.3)
|a(t)| � L t ∈ (0, T ), (5.4)

with L and T as in (5.1). The key idea for proving (5.1), (5.3), (5.4) is to use a
standard continuity argument. More precisely, it turns out that the functions f(t, k),
solutions of problems (2.10)–(2.12), satisfy (5.1), (5.3), (5.4) in an interval of time
t ∈ [0, T (M, M ′)]. This is proved in the next lemma. In the rest of this subsection
we extend the range of validity of these inequalities to a time interval independent
of M and M ′. Since we are interested in the limit as M and M ′ approach to ∞, we
will assume from now on that M and M ′ are larger than a positive fixed number.

Lemma 5.1. For any M > 0 and M ′ > 0, there exists T (M, M ′) such that the
solution f of (2.10)–(2.12), with f0 as in (2.3)–(2.5), obtained in theorem 4.1,
satisfies (5.1), (5.3), (5.4) with L = 4B, where B is as in (2.3)–(2.5), for t ∈
[0, T (M, M ′)].

Proof of lemma 5.1. For k > M ′ this is a consequence of the fact that WM,M ′

vanishes. For k � M ′ the result is a consequence of (4.1) in theorem 4.1.

Our purpose is now to extend these estimates to a finite time T independent of
M ′. From now on let us denote by Tmax(M, M ′, L) the size of the largest interval
of the form [0, T ] where (5.1), (5.3), (5.4) hold.

Lemma 5.2. Let f be the solution of (2.10)–(2.12). There exists a T > 0, T = T (L)
independent of M and M ′ such that

f(t, k) � 1
2f0(k), 1 � k � 2, t ∈ [0, min{T, Tmax(M, M ′, L)}). (5.5)

Proof of lemma 5.2. Note that

∂f1

∂t
� −f1

∫
D(k1)

f2(1 + f3 + f4)WM,M ′ dk3 dk4 for 0 � t � Tmax(M, M ′, L).

(5.6)
In order to derive a lower estimate for ∂f/∂t we need an upper estimate for the
integral term on the right-hand side of (5.6). To this end we first use∫

D(k1)
f2WM,M ′ dk3 dk4 � 1√

k1

∫ ∞

0

∫ k2+k1

−k2−k1

√
k2f2 dξ dk2, (5.7)

where ξ = k4 − k3. Therefore,∫
D(k1)

f2WM,M ′ dk3 dk4 � 2L√
k1

∫ ∞

0

√
k2

e−Dk2

k
7/6
2

(k2 + k1) dk2

= CL(k−1/2
1 + k

1/2
1 ), (5.8)
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where C is a positive constant independent of M , M ′ and L. On the other hand, a
straightforward calculation, using (5.1), gives∫

D(k1)
f2(f3 + f4)WM,M ′ dk3 dk4 � CL2k

−2/3
1 , (5.9)

where C is a positive constant independent of M, M ′ and L. Combining (5.8) and
(5.9) we obtain∫

D(k1)
f2(1 + f3 + f4)WM,M ′ dk3 dk4 � CL(k−1/2

1 + k
1/2
1 ) + CL2k−2/3 (5.10)

for 0 � t � T (M, M ′). Therefore, by (5.6),
∂f

∂t
� −CL(k−1/2

1 + k
1/2
1 ) − CL2k−2/3 for 0 � t � Tmax(M, M ′, L). (5.11)

Integrating this equation for k ∈ (1, 2), lemma 5.2 follows.

We now prove the following lemma.

Lemma 5.3. Suppose that f is a solution to (2.10)–(2.12) with initial data f0.
Then, there exist two positive constants, ρ = ρ(L) and κ = κ(L), independent of
M and M ′ such that∫

D(k1)
f2(1 + f3 + f4)WM,M ′ dk3 dk4 � κ√

k1
min{M, k1}χ

(
k1

M ′

)
(5.12)

for 0 � t � Tmax(M, M ′, L).

Proof of lemma 5.3. We have∫
D(k1)

f2(1 + f3 + f4)WM,M ′ dk3 dk4

� χ

(
k1

M ′

) ∫
D(k1)

f2WM,M ′ dk3 dk4

� χ

(
k1

M ′

) ∫ k1/2

0

∫ k1+k2

−k1−k2

WM,M ′ dξf2 dk2

� 2√
k1

χ

(
k1

M ′

) ∫ k1/2

0

√
k2f2

∫ k1−k2

0
χ

(
ξ

M

)
dξ dk2

=
1√
k1

χ

(
k1

M ′

)
min{k1, M}

∫ ∞

0

√
k2f2 dk2. (5.13)

Using lemma 5.2, we derive a uniform lower estimate for the last integral and
lemma 5.3 follows.

Lemma 5.4. Suppose that f is a solution to (2.10)–(2.12) satisfying (5.1) with
initial data f0. Then, there exists a positive constant ρ = ρ(L), independent of M
and M ′, such that∫

D(k1)
f3f4(1 + f1 + f2)WM,M ′ dk3 dk4 � Cχ

(
k1

M ′

)
e−Dk1

k
7/3
1

min{k1, M} (5.14)

for k1 � ρ and t � Tmax(M, M ′).
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Proof of lemma 5.4. Estimate (5.1) implies that there exists ρ = ρ(L) > 0 such
that f1 � 1 for k1 � ρ. Then, for k1 � ρ,∫

D(k1)
f3f4(1 + f1 + f2)WM,M ′ dk3 dk4 � 2

∫
D(k1)

f3f4(1 + f2)WM,M ′ dk3 dk4.

(5.15)
Again using (5.1), we may write∫

D(k1)
f3f4(1 + f2)WM,M ′ dk3 dk4 = Ce−Dk1

∫ ∞

0
dk2(1 + f2)e−Dk2J(k1, k2),

(5.16)

J(k1, k2) = (k1 + k2)−7/6
∫ k1+k2

0
dξ

WM,M ′

(k1 + k2 − ξ)7/6 , (5.17)

where we have used the change of variables k2 = k3 + k4 − k1, ξ = k4 − k3 and the
fact that k1 + k2 + ξ � k1 + k2 for ξ � 0.

Consider first the case when ρ < k1 � 2M and k2 � k1. Using the estimate
WM,M ′ � k

1/2
3 k

−1/2
1 = (k1 + k2 − ξ)1/2k

−1/2
1 , we deduce that

J(k1, k2) � Ck
−1/2
1 (k1 + k2)−5/6 � Ck

−4/3
1 . (5.18)

On the other hand, we use the fact that

WM,M ′ � min{k
1/2
2 k

−1/2
1 , (k1 + k2 − ξ)1/2k

−1/2
1 }

holds if ρ < k1 � 2M and k2 � k1. Therefore, an explicit computation yields

J(k1, k2) � C(k1 + k2)−7/6k
1/3
2 k

−1/2
1 � 1

k
4/3
1

(
k2

k1

)1/3

, (5.19)

where, in the derivation of this formula, we split the domain of integration in (5.17)
into the intervals (0, k1 − k2) and (k1 − k2, k1 + k3). In the original variables these
regions are equivalent to k4 � k1 and k4 � k1, respectively.

Suppose now that k1 � 2M . In this case, a geometrical argument shows that, for
the values of k3 and k4 where WM,M ′ �= 0, they can be estimated from below by
means of k1. More precisely, there exists a positive constant κ, independent of k1,
k3, k4, M and M ′ such that, for (k3, k4) ∈ D(k1) and WM,M ′ �= 0, k3 � κk1 and
k4 � κk1 hold. Using WM,M ′ � min(1, k

1/2
2 k

−1/2
1 ), it then follows that

J(k1, k2) � Ck
−7/3
1 M min{1, k

1/2
2 k

−1/2
1 } � Ck

−7/3
1 M min{1, k

1/3
2 k

−1/3
1 }. (5.20)

By (5.18)–(5.20) we obtain

J(k1, k2) � C

k
7/3
1

min{k1, M} min
{

1,

(
k2

k1

)1/3}
. (5.21)

Plugging this into (5.16), and using (5.1), we conclude the proof of lemma 5.4.

Combining now the two previous lemmas, we can obtain the following upper
estimate for the solutions.
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Lemma 5.5. Suppose that f is a solution to (2.10)–(2.12) satisfying (5.1) in 0 �
t � Tmax(M, M ′) with initial data f0 satisfying (2.3)–(2.5). Then, there exists
ρ = ρ(L) independent of M and M ′ such that

f(t, k1) � 1
2Lk

−7/6
1 e−Dk1 , k1 � ρ, 0 � t � Tmax(M, M ′). (5.22)

Proof of lemma 5.5. Using the estimates (5.12) and (5.14) in (2.10), we obtain

∂f

∂t
�

(
Ck

−7/3
1 e−Dk1 − κ√

k1
f

)
min{M, k1}χ

(
k1

M ′

)
. (5.23)

By the maximum principle, we obtain

f(k1, t) � max
{

f0(k1),
C

κ

e−Dk1

k
11/6
1

}
. (5.24)

Combining (5.1) and (5.24) yields lemma 5.5.

As a final step, we prove that (5.22) also holds for 0 < k1 � ρ as well as the
improved estimates (5.3), (5.4). To this end we use the regularity estimates derived
for the solutions of (2.10)–(2.12) in § 3.

Proposition 5.6. Suppose that f is a solution to (2.10)–(2.12) satisfying (5.1),
(5.3) and (5.4) in 0 � t � Tmax(M, M ′) with initial data f0 satisfying (2.3)–(2.5).
There exists T ∗ = T ∗(A, B, δ) such that, if Tmax(M, M ′) � T ∗,

f(t, k1) � 1
2Lk

−7/6
1 e−Dk1 , 0 < k1 � ρ, (5.25)

|f(t, k) − a(t)k−7/6| � 1
2Lk−7/6+δ/2, k � 1, (5.26)

|a(t)| � 1
2L (5.27)

for 0 � t � Tmax(M, M ′).

Remark 5.7. The key point in proposition 5.6 is that T ∗ is independent of M , M ′.

Proof of proposition 5.6. Let us pick M0 > 0 sufficiently large but fixed (M0 = 4
for example). We assume from now on that M � M0, M ′ � M0. The equation
satisfied by f may be written as

∂f

∂t
=

∫
D(k1)

WM0,M0 q̃(f) dk3 dk4

+
∫

D(k1)
(WM,M ′ − WM0,M0)q̃(f) dk3 dk4

+
∫

D(k1)
WM,M ′(f3f4 − f1f2) dk3 dk4. (5.28)

Using (3.62)–(3.65), we can rewrite (5.28) as follows:

∂f

∂t
= λ2(t)

∫
D(k1)

WM0,M0 
̃(f0, g) dk3 dk4 + S, (5.29)
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S = λ(t)
∫

D(k1)
WM0,M0 ñ(f0, g) dk3 dk4 +

∫
D(k1)

(WM,M ′ − WM0,M0)q̃(f) dk3 dk4

+
∫

D(k1)
WM,M ′r(f) dk3 dk4 + λ3(t)

∫
D(k1)

WM0,M0 q̃(f0) dk3 dk4

= S1 + S2 + S3 + S4. (5.30)

In order to apply theorem 3.1 we need to bound the source term S in (5.30). This
is done in the following lemma.

Lemma 5.8. Suppose that f satisfies the assumptions in proposition 5.6. Then,

‖S(t)‖3/2−δ,β � C(L), 0 < t < Tmax(M, M ′) (5.31)

Proof of lemma 5.8. The term S1 in (5.30) is estimated using the same method as
for the term R2 in lemma 4.4. In the third term S3, in order to obtain an estimate
uniform with respect to M we use the exponential decay of f in (5.1) to bound
the integral in the region where k3 � 1 or k4 � 1. To estimate the contribution
in the region where k3 � 1, k4 � 1 we use the fact that r(f) is quadratic with
respect to f and therefore its contribution is of lower order. Actually, the argument
is exactly the same as that which was used in lemma 4.4 to estimate the quadratic
terms of R2. The main novelty arises in the estimate of S2. Note that the support
of WM,M ′ − WM0,M0 is contained in the region where |k3 − k4| � M0. On the other
hand, we write

|S2| � a1(k1)f1 + a2(k1), (5.32)

where

a1(k1) =
∫

D(k1)
|WM,M ′ − WM0,M0 |(f3f4 + f2(f3 + f4)) dk3 dk4, (5.33)

a2(k1) =
∫

D(k1)
|WM,M ′ − WM0,M0 |f2f3f4 dk3 dk4. (5.34)

Since the integration in these two formulae takes place in the region where |k3 −
k4| > M0, the functions a1 and a2 in (5.33), (5.34) can be bounded by a constant
independent of M and M ′ due to the exponential decay of f . Moreover, functions
a1 and a2 both decay exponentially fast as k1 → ∞, due to the exponential decay
of the function f .

We now complete the proof of proposition 5.6. The basic idea is once more to
apply theorem 3.1. Note that theorem 3.1 is written using the time variable τ ,
instead of t. However, (2.21) and the fact that 1

2 � λ(t) � 2 imply that the result of
theorem 3.1 can also be applied in the t variable, as it has in §§ 3 and 4. Therefore,
theorem 3.1 combined with lemma 5.8 yields

|f(k, t)| � B

k7/6 e−Dk + C
T 3δ

k7/6 , 0 < k < ρ, 0 � t � Tmax(M, M ′), (5.35)
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where C depends on M0 but is independent of M and M ′. Formula (5.25) follows
by choosing T small enough but independent of M and M ′. Similarly,

|a(t)| � B + CT 3δ/2, 0 � t � 1,

|f(t, k) − a(t)k−7/6| � (B + CT−3δ/2k−7/6+δ/2).

}
(5.36)

Hence, (5.26), (5.27) also follow by choosing T small enough but independent of
M , M ′. This concludes the proof of proposition 5.6.

Lemma 5.9. Suppose that f is a solution to (2.10)–(2.12) satisfying (5.1), (5.3)
and (5.4) in 0 � t � Tmax(M, M ′), with initial data f0 satisfying (2.3)–(2.5).
Then, the solution f constructed in theorem 4.1 can be extended to a time interval
[0, T ), where T = (A, B, D, δ) is independent of M and M ′.

Proof of lemma 5.9. Let us denote by Texist(M, M ′) the maximal existence time
of the solutions constructed in theorem 4.1. If for some M > M0, M ′ > M0 we
have Texist(M, M ′) � T ∗, the lemma will follow. Let us suppose that, on the con-
trary, for some M > M0 and M ′ > M0, we have Texist(M, M ′) < T ∗. By def-
inition, Tmax(M, M ′) � Texist(M, M ′). Moreover, we claim that Tmax(M, M ′) =
Texist(M, M ′). Indeed, if Tmax(M, M ′) < Texist(M, M ′), lemma 5.5 and proposi-
tion 5.6 yield a contradiction since estimates (5.1), (5.3) and (5.4) could be extended
beyond Tmax(M, M ′). Therefore, as long as the solution of (2.10)–(2.12) exists, these
estimates hold. The constants arising in the contractivity argument that gives theo-
rem 4.1 are then independent of M and M ′ (see remark 4.9). We deduce that there
exists a lower bound for Texist(M, M ′) independent of M and M ′ and the result
follows.

5.2. Taking the limit M → ∞, M ′ → ∞
Proposition 5.10. Suppose that f = fM,M ′ are the solutions of (2.10)–(2.12)
constructed in theorem 4.1, and defined in the interval of time T independent of
M and M ′. Then limM,M ′→∞ fM,M ′(t, k) = f̄(t, k) uniformly on compact sets of
R

+ × [0, T̄ ). The function f̄ is such that f̄ ∈ Y7/6,β, ∂tf̄ ∈ Y3/2,β, it solves (2.1),
(2.2) for 0 � t � T and, moreover, satisfies (5.1), (5.3), (5.4).

Proof of proposition 5.10. The idea is to prove that the family {fM}M>M0 satisfies
the Cauchy condition with the norm |||f |||7/6−δ/2,β . Let us write f = fM,M ′ and
f̃ = fM̃,M̃ ′ . It is convenient to use the time variable τ instead of t throughout
our argument. Note that the definition of τ in terms of t in (2.21) is different for
the solutions f and f̃ . We also define g = f − λ(τ)f0 and g̃ = f̃ − λ̃(τ)f0, where
λ = λM,M ′ and λ̃ = λ̃M̃,M̃ ′ . Note that functions g and g̃ both solve the problem
(2.22), (2.23). Then

∂(g − g̃)
∂τ

=
∫∫

D(k)
WM,M ′ 
̃(f0, g − g̃) dk3 dk4 + (λτ − λ̃τ )f0 + S1 + S2, (5.37)

where

S1 =
∫∫

D(k)
(WM,M ′ − WM̃,M̃ ′)
̃(f0, g̃) dk3 dk4,
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S2 =
∫∫

D(k)

(
WM,M ′

λ
s(f0, g) −

W
M̃,M̃ ′

λ̃
s(f0, g̃)

)
dk3 dk4

+
(

R1 + R2

λ2 − R̃1 + R̃2

λ̃2

)
,

and Ri and R̃i, i = 1, 2, are defined by means of (2.19) and (2.20) using the
functions g and g̃, respectively.

Lemma 5.11. Let us define m ≡ min(M, M ′, M̃ , M̃ ′). Then, for some positive con-
stant C = C(A, B, D, δ),

‖S1(t)‖3/2−δ/2,β � Ce−DM/2, (5.38)

‖S2(t)‖3/2−δ/2,β � Ce−DM/2 + |||g − g̃|||7/6−δ/2,β + ‖λ − λ̃‖L∞(0,T ). (5.39)

Proof of lemma 5.11. We assume without any loss of generality that M̃ � M . The
estimate (5.38) is a consequence of the exponential decay of the functions g, g̃ and
the fact that the support of WM,M ′ − WM̃,M̃ ′ is contained in the region where
k3 > 1

2M , k4 > 1
2M . To estimate S2, we decompose it into the sum of different

terms containing the differences WM,M ′ − WM̃,M̃ ′ , g − g̃ and λ − λ̃, by means of
the usual triangular argument.

Lemma 5.12. Under the assumptions of proposition 5.10

|λ(τ) − λ̃(τ)| + |λτ (τ) − λ̃τ (τ)| � C|||g − g̃|||7/6−δ/2,β , 0 � τ � T. (5.40)

Proof of lemma 5.12. This result is a consequence of the estimates obtained for the
derivatives of the solution of the integral equation (4.22) (cf. (4.38)). On the other
hand, using (4.39), we have∣∣∣∣ d
dτ

λ(τ) − d
dτ

λ̃(τ)| � 1
A

∫ τ

0

∣∣∣∣∂a

∂τ̃
(τ, τ̄)

∣∣∣∣∣∣∣∣(λτ − λ̃τ )(τ̄)
∣∣∣∣ dτ̄

+
1
A

∫ τ

0

∣∣∣∣(∂a

∂τ̃
− ∂a

∂τ̃

)
(τ, τ̄)

∣∣∣∣|λ̃τ | dτ̃ + |bτ (τ) − b̃τ (τ)|. (5.41)

The first term on the right-hand side of (5.41) is estimated, using (3.90), by

CT 3δ‖λτ − λ̃τ‖L∞(0,T ).

The second term is estimated, applying theorem 3.1 to (3.85), (3.86), by

CT 3δ‖λ − λ̃‖L∞(0,T ).

Finally, the last term can be estimated, applying once more theorem 3.1 to (4.19),
(4.20), by CT 3δ/2‖λ − λ̃‖L∞(0,T ) + C|||g − g̃|||7/6−δ/2,β . A similar argument using
the equation (4.22) shows that

‖λ − λ̃‖L∞(0,T ) � CT 3δ/2‖λ − λ̃‖L∞(0,T ) + C|||g − g̃|||7/6−δ/2,β . (5.42)

Combining these estimates, the lemma follows for T sufficiently small.



106 M. Escobedo, S. Mischler and J. J. L. Velázquez

We now complete the proof of proposition 5.10. Combining theorem 3.1 with
lemmas 5.11 and 5.12, we obtain

‖λ − λ̃‖L∞(0,T ) + |||g − g̃|||7/6−δ/2,β

� CT 3δ/2(‖λ − λ̃‖L∞(0,T ) + |||g − g̃|||7/6−δ/2,β) + Ce−DM/2, (5.43)

whence, for T sufficiently small, we obtain

‖λ − λ̃‖L∞(0,T ) + |||g − g̃|||7/6−δ/2,β � Ce−DM/2

and the proposition follows. This shows the existence of f̄ as defined in the state-
ment of the proposition. Note that we may deduce from (2.10) and (2.12) that

fM,M ′(t, k) = f0(k) +
∫ t

0
QM,M ′(fM,M ′)(s, k) ds.

Taking the limit M, M ′ → ∞, we deduce that

f̄(t, k) = f0(k) +
∫ t

0
Q(f̄)(s, k) ds. (5.44)

Since the second term on the right-hand side of (5.44) is a differentiable function
of time, we deduce that ∂tf̄ = Q(f̄) ∈ Y3/2,β .

We now complete the proof of theorem 2.1.

Proposition 5.13 (uniqueness of solutions). Suppose that f0 satisfies (2.3)–(2.5).
Then there exists a unique solution of (2.1), (2.2) satisfying (5.1), (5.3) and (5.4).

Proof of proposition 5.13. The proof is basically the same as that of proposition
5.10. Indeed, if f and f̃ are two solutions of (2.1), (2.2) satisfying (5.1), (5.3) and
(5.4), then they are of the form f = λ(τ)f0 + g, f̃ = λ̃(τ)f0 + g̃ with g and g̃ in the
space Y7/6−δ/2,β . Arguing exactly as in the proof of (5.43) we obtain

‖λ − λ̃‖L∞(0,T ) + |||g − g̃|||7/6−δ/2,β � CT 3δ/2(‖λ − λ̃‖L∞(0,T ) + |||g − g̃|||7/6−δ/2,β),

which yields the desired uniqueness for T small enough.

The proof of theorem 2.1 is just a consequence of propositions 5.10 and 5.13.
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