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Abstract. We consider a stochastic system of N particles, usually called vortices in that setting,
approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial
distribution of the position and circulation of the vortices has finite (partial) entropy and a finite
moment of positive order, we show that the empirical measure of the particle system converges in
law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation.
We actually prove a slightly stronger result : the propagation of chaos of the stochastic paths
towards the solution of the expected nonlinear stochastic differential equation. Moreover, the
convergence holds in a strong sense, usually called entropic (there is no loss of entropy in the
limit). The result holds without restriction (but positivity) on the viscosity parameter.

The main difficulty is the presence of the singular Biot-Savart kernel in the equation. To
overcome this problem, we use the dissipation of entropy which provides some (uniform in N)
bound on the Fisher information of the particle system, and then use extensively that bound
together with classical and new properties of the Fisher information.

1. Introduction

The subject of this paper is the convergence of a stochastic vortices system to the 2D Navier-
Stokes equation written in vorticity without restriction (but positivity) on the viscosity parameter.

The particle system. We consider a system ofN vortices labeled by an index 1 ≤ i ≤ N , each one
being fully described by its position XN

i ∈ R
2 and its circulation 1

NMN
i ∈ R which measures the

“strength” of the vortices. We use what is called a mean-field scaling : the factor 1
N is there in order

to keep the global circulation (or also total vorticity) bounded. The case MN
i > 0 corresponds to

a vortex which turns round in the direct (trigonometric) sense while the case MN
i < 0 corresponds

to a vortex which turns in the reverse sense. We assume that the system evolves stochastically
according to the following system of R

2-valued S.D.E.s on the vortices positions

∀i = 1, . . . , N, XN
i (t) = XN

i (0) +
1

N

∑

j 6=i
MN

j

∫ t

0

K(XN
i (s) −XN

j (s))ds + σBi(t),(1.1)

where ((Bi(t))t≥0)i=1,...,N stands for an independent family of 2D standard Brownian motions,
σ > 0 is a parameter linked to the viscosity and K : R

2 → R
2 is the Biot-Savart kernel defined by

∀x = (x1, x2) ∈ R
2, K(x) =

x⊥

|x|2 =
(

− x2

|x|2 ,
x1

|x|2
)

= ∇⊥ log |x|,

It is worth emphasizing that we assume here that any vortex keeps its initial circulation, so that
the MN

i are time-independent and act like fixed parameters in (1.1). Each vortex’s position moves
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randomly according to a Brownian noise as well as deterministically according to a vector field
generated by all the other vortices through the Biot-Savart kernel. The singularity of K makes
difficult the study of the particle system (1.1). However, Osada [42] and others have shown that
the particles a.s. never encounter, so that the singularity of K is a.s. never visited and (1.1) is
well-posed. See Theorem 2.10 and Section 2.5 below for more details.

The vorticity equation. As is now well-known, the dynamics of such models is linked to the
2D Navier-Stokes equation written in vorticity formulation which will be called later the vorticity
equation with a viscosity ν = σ2/2

∂twt(x) = (K ⋆ wt)(x) · ∇xwt(x) + ν∆xwt(x),(1.2)

where w : R+ × R
2 → R is the vorticity function and the initial vorticity w0 : R

2 → R is given. It
is worth emphasizing again that we do not assume here that w is non-negative and this is of course
related to the fact that the circulations in the N -vortex system may be positive and negative.
There is a huge literature on that model. Our analysis will be based on the well-posedness of (1.2)
in a L1-framework as developed in Ben-Artzi in [3] and slightly improved in [7]. We also refer to
Gallagher-Gallay [20] and the references therein for more recent well-posedness results.

Origin of the model. The deterministic N -particle system (with σ = 0) was originally introduced
by Helmholtz in 1858 [25] and later studied by Kirchhoff [28] and many others. It is sometimes
quoted as the Helmholtz-Kirchhoff (HK in short) system. In the non-viscous case σ = 0, the
empirical measure associated to the finite particle system (1.1) solves exactly the non viscous
vorticity equation (i.e. (1.2) with σ = 0) if the self interaction is neglected. This is not the
case when σ > 0, where the Navier-Stokes equation is expected to be solved only in the limit
N → ∞. Thus for a fixed N , addition of noise on the position of the vortices as in (1.1) is not the
most relevant idea. Physicists prefer to introduce damped vortices, known as Oseen vortices. The
dynamics of Oseen vortices is still driven by the a variant of the deterministic HK system, where K
now varies with time, in order to take into account the dissipation. Both systems (vortices driven
by (1.1) or Oseen vortices) are interesting because they approximate the dynamics of real vortices,
that appear, for instance, in geostrophic or atmospheric flows, and are remarkably stable. See the
works of Marchioro [32] and Gallay [21] for a justification of the approximation, and the one of
Gallay-Wayne [22] for a precise mathematical result on the stability of Oseen vortices.

Interest of the limit in large number of vortices. Later, Onsager [40] was the first to see
the interest of the statistical properties of the N vortices system to distinguish which among the
numerous stationary solutions of the vorticity equation are physically relevant. His heuristic ideas
where made more rigorous by Caglioti, Lions, Marchioro and Pulvirenti in [9]. After that, the
question of the convergence of the HK model towards Euler and Navier-Stokes equations was
studied by several authors. In the deterministic case Schochet [47] proved the convergence towards
solutions of the Euler equation. But since such solutions seem to be numerous under weak a priori
conditions, his results does not implies propagation of chaos.

As mentioned before, the stochastic model (1.1) becomes much more relevant when N is large.
However, in that case the use of independent noise on each vortex is not motivated by the underlying
physics. Since vortices are not real particles but rather small structures appearing in fluid models,
a noise acting on them should depend on their relative positions: the noise of two close vortices
should be quite correlated. We refer to the work of Flandoli, Gubinelli and Priola [18] for such
more realistic models with a fixed number of vortices. But that kind of noise is much more difficult
to handle in the limit of large number of vortices. Thus in the sequel, we will use independent
Brownian motion, despite this shortcoming.
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A second interest of the stochastic vortices system is that it may be seen as a companion model
for stochastic particle systems with positions and velocities, interacting trough a two-body force
and with velocities excited by independent brownian motions. The case of a smooth interaction
force has been extensively studied since the work of McKean [35], but there is only few references
in the case of singular interactions. Rather strangely, the deterministic case is better known since
there exist some convergence results for not too singular interaction without cut-off [23]. However,
we do not know any result valid for singular interaction in the stochastic case. In fact such models
seem tougher than the vortices one, since the diffusion does not act on the full position-velocity
variables.

Main result. In order to connect the sequence of solutions ZN
t = (M1,XN

1 (t), ..., MN ,XN
N (t)),

to the random particle system (1.1) with a solution to the vorticity equation (1.2), we introduce
the vorticity empirical measure

WN
t (dx) :=

1

N

N
∑

i=1

MN
i δXN

i (t)(dx)

which a.s. takes values in the space of bounded measures on R
2, as well as the typical vorticity

defined from the law of (MN
1 ,XN

1 (t)) in the following way

wN1 (t, x) :=

∫

R

mL (MN
1 ,XN

1 (t))(dm, x).

Then, under suitable (chaos) hypothesis on the initial conditions ZN
0 we shall show that for any

positive time

WN
t ⇒ wt in law as N → ∞,(1.3)

wN1 (t) → wt strongly in L1(R2) as N → ∞,(1.4)

where w is the unique solution to the vorticity equation (1.2) with appropriate initial datum w0.

In the other way round and in particular, for any initial (Lebesgue measurable) vorticity function
w0 : R

2 → R satisfying

(1.5)

∫

R2

|w0| (1 + |x|k + | log |w0||) dx <∞, for some k ∈ (0, 2),

we can build a sequence of initial conditions ZN
0 and then define the family of solutions ZN

t to
the N -particle vortex system (1.1) so that the vorticity empirical measure WN

t and the typical
vorticity wN1 (t) converge to the solution wt as stated in (1.3) and (1.4), where w is the unique
solution to the vorticity equation (1.2) with initial datum w0.

The construction of the initial conditions is not very elaborated, but requires some notation
that will be introduced in Section 2. Let us just mention that in the case of a non-negative initial
vorticity, we can assume up to some scaling that ω0 is a probability, and then the choice MN

i = 1
for any 1 ≤ i ≤ N and (XN

i (0))1≤i≤N i.i.d. with law ω0 will do the job.

Chaos and limit trajectories. The solution w of the vorticity equation is thus obtained as the
limit in a kind of law of large numbers from the N -vortex system. However, the picture is not that
simple.

It is indeed rather reasonable to assume that the initial positions and circulations of the vor-
tices are (at least asymptotically) independent. Then, as time passes, vortices interact and that
create correlations so that vortices are never any longer independent. We may expect that these
correlations vanish asymptotically because the interactions between pairs of vortices in (1.1) tends
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to zero. For a smooth (say Lipschitz) interaction force field K, such a result is well-known since
the pioneer work by McKean [35], and it is related to the notions of “chaos” and “propagation of
chaos” as introduced by Kac in [27]. Here, the Biot-Savard force field kernel is singular which leads
to additional mathematical difficulties. Nevertheless, we are able to handle them and we prove
that still for the Biot-Savard kernel correlations vanish asymptotically.

We establish this asymptotic independence and the convergence (1.3) as a consequence of a
stronger ”trajectorial chaos” that we briefly describe now. The method we follow is closely related
to the strategy introduced by Sznitman in [49] which consists in showing that the sequence of
empirical trajectories µNZN converges to some stochastic process which is a solution to a nonlinear
martingale problem.

Let us first notice that if we accept that correlations asymptotically disappear, then the tra-
jectories (and circulations) (MN

i , (XN
i (t))t≥0)i≤N of the vortices must behave asymptotically like

N independent copies of the same process, (M, (X (t))t≥0, solution to the nonlinear stochastic
differential equation

(1.6) X (t) = X (0) +

∫ t

0

∫

R2

K(X (s) − x)ws(dx)ds+ σBt,

where wt(dx) =
∫

R×Bmgt(dm, dx) with gt = L(M,X (t)). It is important to stress that wt solves

necessarily the vorticity equation (1.2) if (M, (X (t))t≥0 is a solution to (1.6).

As a matter of fact, we will prove that under appropriate hypothesis on the initial law L(ZN
0 )

(which includes chaos type assumption and bound on the entropy and on some moment), the
N -vorticity system enjoys a chaos property at the level of the trajectories, namely,

(1.7) µNZN :=
1

N

N
∑

i=1

δ(MN
i ,(XN

i (t))t≥0) ⇒ g in law as N → ∞,

where g is the law of the nonlinear process (M, (X (t))t≥0 defined in (1.6). This convergence at
the level of trajectories implies (1.3). Moreover, using a trick introduced in [38] which consists in
carefully estimating what happens for the dissipation of the entropy, we deduce (1.4).

An overview of the proof. Let us briefly describe our method, which relies on compact-
ness/consistency/uniqueness as in Sznitman in [49] who was studying the homogeneous Boltzmann
equation. As already mentioned, the main difficulty comes from the fact that the kernel K is sin-
gular so that the drift in (1.1) may be very large when two particles are very close. Using standard
dissipation of entropy estimates, we obtain uniform bounds on the Fisher information of the time
marginal of the law (of the positions) of the N vortices. These uniform bounds provide enough
regularity to

(1) prove that close encounters of particles are rare, from which we deduce the tightness of
the law of the trajectories of the N vortices system (compactness),

(2) prove that the possible limit are made of solutions of the nonlinear SDE (consistency),
which satisfies some appropriate additional a priori bounds,

(3) prove the uniqueness of the above limit stochastic process.

We may also remark that for the two first points (tightness and consistency), the singularity of
the kernel in 1/|x| is not the critical one. Everything would work for divergence free kernels with
singularity behaving like 1/|x|α, with α ∈ (0, 2). But, it is critical for the question of uniqueness
of the limit stochastic process and the Navier-Stokes equation.
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We also emphasize the following important point. In order to get enough a priori bounds on
the possible limit, we use a new result: the fact that the Fisher information (properly rescaled)
can only decrease when we perform the many-particle limit. This is a consequence of the fact that
the (so called) level 3 Fisher information is linear on mixed states. That property, known from
the work of Robinson and Ruelle for the entropy [46] was proved for the Fisher information by the
two last authors in [24], with the help of the first author. The precise result is properly stated and
explained in Section 4.

We can also remark that our method is interesting only in low dimension (of space). The
extensive use of the Fisher information is very interesting in this case, since it provides rather
strong regularity. But, if we increase the dimension, the regularity obtained from the Fisher
information gets weaker and weaker and we will not be able to treat interesting singularities. As
a matter of fact, it can be checked that our method is valid for a divergence free kernel, with a
singularity at most like 1/|x| (included) near 0 in any dimension d. Again, the limitation will come
from the uniqueness part, the tightness and consistency will also hold for singularity up to 1/|x|2,
not included.

Already known results. If we replace the singular kernel K by a regularized one Kε, the result
of propagation of chaos is well-known. The more standard strategy is due to McKean [35] and
applies when the interaction is Lipschitz. It relies on a coupling argument between the solution of
the N -vortices stochastic system and N independent copies of the solution of the nonlinear SDE.
But since the result gives a quantitative estimate of convergence, an optimization may lead to a
similar result valid for a regularization parameter ε going to 0 with N . That approach or some
variants was performed by Marchioro and Pulvirenti in [33], for bounded initial vorticity. For that
regularity on the initial condition, there is a good well-posedness theory even in the non-viscous
case, so that their method also applies if ν = 0. The drawback is that the speed of convergence of
the regularization parameter is very slow : ε(N) ∼ log(N)−1. See also Méléard [37] for a similar
result for more general initial data.

It is worth emphasizing that the convergences (1.3), (1.4), (1.7) are proved without any rate.
This is a consequence of the compactness method we use. In particular, we were not able to
implement the coupling method popularized by Sznitman [50] and revisited by Malrieu [31], see
also [4] and the references therein for recent developments, nor the quantitative Grunbaum’s duality
method elaborated in [39].

In a series of papers, Osada proves the convergence of the particle system (1.1) to the vorticity
equation (1.2): the case of a large viscosity is studied in [44] and the case of any positive viscosity
is discussed in [45]. In this last paper, the pathwise convergence is not obtained (while it is checked
in [44] when σ is large enough). His strategy relies strongly on a deep result obtained by himself in
[41]: estimates à la Nash for convection-diffusion equation, with divergence free and very singular
drift. This last result is also a key argument in most works about existence and uniqueness for the
2D Navier-Stokes equation, with the exception of the work of Ben-Artzi [3] that we use here.

Let us finally mention the result of Cepa and Lepingle [12] about Coulomb gas models in
dimension one. Their models are very similar to ours, but their singularity is repulsive and strong
since it behaves like 1/|x| (far above the singularity of the Coulomb law since we are in dimension
one). However, their technics are limited to dimension one.

The present paper improves on preceding results in several directions. It does not require that
the viscosity coefficient is large as in Osada [43], nor to cutoff the interaction kernel in the particle
system as in [33] or [37]. Moreover, in the two above mentioned previous works of Osada, the
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convergence (1.4) was only established in the weak sense (of measures) and only for non-negative
vorticity. Moreover, the results of Osada basically apply when w0 ∈ L∞, while we allow any
w0 ∈ L1(R2) with a finite entropy and moment of positive order. Last but not least, our proof
seems simpler than the one of Osada in [43], which uses very technical estimates.

The case of bounded domains. In the case of general bounded domains Ω with boundaries, the
problem is more delicate. The first difficulty is that the vorticity formulation of the Navier-Stokes
equation does not behave well with the boundaries conditions. In fact, vorticity is created at the
boundary. However, it is still possible to imagine branching processes of interacting particles that
will take the possible creation and annihilation of vortices at the boundary, as is done by Benachour,
Roynette and Vallois in [2], but the analysis of such systems seems much more difficult.

However, if we move to some periodic and bounded setting, Ω = T
2, then our results will apply

with small modifications. All we have to do is to replace the Biot-Savard K by its periodization

Kper(x) :=
x⊥

|x|2 + g∞(x)

where g∞ is some C∞ function. The singularity is exactly the same, and the addition of a smooth
function g∞ in the kernel does not raise any difficulty. As a consequence, our result will apply to
that case with the appropriate modifications.

2. Statement of the main results

2.1. Notation. For any Polish space E, we denote by P(E) the set of probability measures on E
and by M(E) the set of finite signed measures on E. Both are endowed with the topology of weak
convergence defined by duality against functions of Cb(E). For N ≥ 2, we denote by Psym(EN )
the set of symmetric probability measures F on EN (i.e. such that F is the law of an exchangeable
EN -valued random variable (Y1, . . . ,YN )).

In the whole paper, when f ∈ M(Rd) has a density, we also denote by f ∈ L1(Rd) its density.

For x ∈ R
2, we introduce 〈x〉 := (1 + |x|2)1/2. For k ∈ (0, 1] and N ≥ 1 we set

∀X = (x1, ..., xN ) ∈ (R2)N , 〈X〉k :=
1

N

N
∑

i=1

〈xi〉k.

For F ∈ P((R2)N ), we define

Mk(F ) :=

∫

(R2)N

〈X〉k F (dX).

We also introduce

Pk((R
2)N ) := {F ∈ P((R2)N ) : Mk(F ) <∞}.

For F ∈ P((R2)N ) with a density (and a finite moment of positive order for the entropy), we
introduce the Boltzmann entropy and the Fisher information of F defined as

H(F ) :=
1

N

∫

(R2)N

F (X) log(F (X)) dX and I(F ) :=
1

N

∫

(R2)N

|∇F (X)|2
F (X)

dX.

If F ∈ P((R2)N ) has no density, we simply put H(F ) = +∞ and I(F ) = +∞. The somewhat
unusual normalization by 1/N is made in order that for any f ∈ P(R2),

H(f⊗N) = H(f) and I(f⊗N ) = I(f).



PROPAGATION OF CHAOS FOR THE 2D VISCOUS VORTEX MODEL. 7

We will often deal here with probability measures on (R × R
2)N , representing the circulations

and positions of N vortices. But the circulations only act like parameters. We thus adapt all
the previous notation by a simple integration. For G ∈ P((R × R

2)N ), write the disintegration
G(dM, dX) = R(dM)FM (dX), where R ∈ P(RN ) and for each M ∈ R

N , FM ∈ P((R2)N ) and
define partial moment, entropy and Fisher information by

M̃k(G) :=

∫

RN

Mk(F
M )R(dM) =

∫

(R×R2)N

〈X〉kG(dM, dX)(2.1)

H̃(G) :=

∫

RN

H(FM )R(dM)(2.2)

Ĩ(F ) :=

∫

RN

I(FM )R(dM).(2.3)

To understand these objects, let us make a few observations. When G has a density on (R×R
2)N ,

Ĩ(F ) = N−1

∫

(R×R2)N

|∇
X
G(M,X)|2
G(M,X)

dMdX.

When G has a finite (classical) entropy, we can write

H̃(G) =

∫

(R×R2)N

G(M,X) logG(M,X)dMdX −
∫

RN

R(M) logR(M)dM = H(G) −H(R).

We finally introduce

Pk((R × R
2)N ) := {G ∈ P((R × R

2)N ); M̃k(G) <∞}.

2.2. Notions of chaos. In this subsection, E will stand for an abstract polish space.

Definition 2.1 (Chaos for probability measures). A sequence (FN ) of symmetric probability mea-
sures on EN is said to be f -chaotic, for a probability measure f on E if one of three following
equivalent conditions is satisfied:

(i) the sequence of second marginals FN2 ⇀ f ⊗ f as N → +∞;
(ii) for all j ≥ 1, the sequence of j-th marginals FNj ⇀ f⊗j as N → +∞;

(iii) the law F̂N of the empirical measure (under FN ) converges towards δf in P(P(E)) as
N → ∞.

This definition translates into an equivalent definition in terms of random variables.

Definition 2.2 (Chaos for random variables). A sequence (YN1 , . . . ,YNN ) of exchangeable E-valued
random variables is said to be Y-chaotic for some E-valued random variable Y if the sequence of
laws L(YN1 , . . . ,YNN ) is L(Y)-chaotic, in other words, if one of three following equivalent condition
is satisfied:

(i) (YN1 ,YN2 ) goes in law to 2 independent copies of Y as N → ∞;
(ii) for all j ≥ 1, (YN1 , . . . ,YNj ) goes in law to j independent copies of Y as N → ∞;

(iii) the empirical measures µNYN = 1
N

∑N
1 δYN

i
∈ P(E) go in law to the constant L(Y) as

N → ∞.

We refer for instance to the lecture of Sznitman [50] for the equivalence of the three conditions,
as well as [24, Theorem 1.2] where that equivalence is established in a quantitative way. Let us
only mention that exchangeability is very important in order to understand point (i).
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Propagation of chaos in the sense of Sznitman holds for a system N exchangeable particles
evolving in time (for instance the system (1.1)) if when the initial conditions (YN1 (0), . . . ,YNN (0)) are
Y(0)-chaotic, the trajectories ((YN1 (t))t≥0, . . . , (YNN (t))t≥0) are (Y(t))t≥0-chaotic, where (Y(t))t≥0

is the (unique) solution of the expected (one-particle) limit model (here the nonlinear SDE (1.6)).

Another (stronger) sense of chaos has been developped: the entropic chaos. It goes back to a
celebrated work of Kac [27] and was formalized recently in [11, 24] (see also [24] for a notion of
Fisher information chaos).

Definition 2.3 (Entropic chaos). A sequence (FN ) of symmetric probability measures on EN is
said to be entropically f -chaotic, for a probability measure f on E, if

FN1 → f weakly in P(E) and H(FN ) → H(f)

as N → ∞, where FN1 stands for the first marginal of FN .

It is shown in [24] that this is in fact a stronger notion than propagation of chaos. Actually, it is
known that the entropy can only decrease if a sequence FN is f chaotic: we say that the entropy
is Γ-lower semi continuous. With our normalization, it writes

H(f) ≤ lim inf
N→∞

H(FN ).

Since the entropy is convex, limH(FN ) = H(f) is a stronger notion of convergence, which implies
that for all j ≥ 1, the density of the law of (YN1 , . . . ,YNj ) goes to f⊗j strongly in L1.

Here, we will have to modify slightly this notion, replacing the use of H by that of H̃, since the
circulations of the vortices only act like parameters.

2.3. The Navier-Stokes equation.

Definition 2.4. We say that w = (wt)t≥0 ∈ C([0,∞),M(R2)) is a weak solution to (1.2) if

(2.4) ∀ T > 0,

∫ T

0

∫

R2

∫

R2

|K(x− y)| |ws|(dx) |ws|(dx) ds <∞

and if for all ϕ ∈ C2
b (R

2), all t ≥ 0,
∫

R2

ϕ(x)wt(dx) =

∫

R2

ϕ(x)w0(dx) +

∫ t

0

∫

R2

∫

R2

K(x− y) · ∇ϕ(x)ws(dy)ws(dx) ds(2.5)

+ ν

∫ t

0

∫

R2

∆ϕ(x)ws(dx) ds.

We will establish the following extension of [3, 7] which is well adapted to our purpose.

Theorem 2.5. Assume that w0 ∈ L1(R2) satisfies (1.5). There exists a unique weak solution w
to (1.2) such that

∇xw ∈ L2q/(3q−2)(0, T, Lq(R2)) ∀ q ∈ [1, 2), ∀ T > 0.(2.6)

This solution furthermore satisfies

(2.7) w ∈ C([0,∞);L1(R2)) ∩C((0,∞);L∞(R2))

and

(2.8) ∂tβ(w) = (K ∗ w) · ∇xβ(w) + ν∆β(w) − νβ′′(w) |∇w|2 on [0,∞) × R
2

in the distributional sense, for any β ∈ C1(R)∩W 2,∞
loc (R) such that β′′ is piecewise continuous and

vanishes outside of a compact set.
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As we will see in the proof of the above result, thanks to the Sobolev embedding and the Hardy-
Littlewood-Sobolev inequality one can show that for w ∈ C([0,∞),M(R2)), (2.6) implies (2.4).
The proof of (2.8) is classical. When ν = 0 such a result has been proved in [16, Theorem II.2]
while the case ν > 0 can be obtained by adapting a result from [15, Section III]. For the sake of
completeness, we will however sketch the proof of (2.8) in Section 7.

2.4. Stochastic paths associated to the Navier-Stokes equation. Since a solution (wt)t≥0

to the vorticity equation (1.2) does not take values in probability measures on R
2, a few work is

needed to find some related stochastic paths: roughly, we write the initial vorticity w0 as some
partial information of the law g0 of circulations and positions of the vortices.

We consider g0 ∈ P(R × R
2) satisfying, for some A ∈ (0,∞) and some k ∈ (0, 1],

Supp g0 ⊂ A× R
2, A = [−A,A], M̃k(g0) <∞ and H̃(g0) <∞.(2.9)

Remark 2.6. (i) Let g0 ∈ P(R × R
2) satisfying (2.9) and define w0 ∈ M(R2) by

(2.10) ∀ B ∈ B(R2), w0(B) =

∫

R×B
mg0(dm, dx).

Then w0 ∈ L1(R2) and satisfies (1.5).
(ii) For w0 ∈ L1(R2) satisfy (1.5), it is possible to find a probability measure g0 on R × R

2

satisfying (2.9) and such that (2.10) holds true.

Proof. We first check (i). First, |w0|(dx) ≤ A
∫

m∈R
g0(dm, dx), so that |w0|(R) ≤ A and w0 is

a finite measure. Next, there holds
∫

R2〈x〉k|w0|(dx) ≤ A
∫

R×R2〈x〉kg0(dm, dx) < ∞. Finally, to

prove that |w0| has a density satisfying
∫

R2 |w0(x)| log(|w0(x)|)dx < ∞, it obviously suffices to

check that κ(dx) :=
∫

m∈R
g0(dm, dx) has a finite entropy, since |w0| ≤ Aκ. We thus disintegrate

g0(dm) = r0(dm)fm0 (dx) and use the convexity of the entropy functional to get

H(κ) = H

(
∫

m∈R

r0(dm)fm0 (dx)

)

≤
∫

R

r0(dm)H(fm0 ) = H̃(g0) <∞ by assumption.

To verify (ii), write w0 = w+
0 − w−

0 , for two non-negative functions with disjoint supports w+
0

and w−
0 , put a :=

∫

R2 |w0(x)|dx and set (for example)

g0(dm, dx) =
1

a
δa(dm)w+

0 (x)dx +
1

a
δ−a(dm)w−

0 (x)dx.

Then (2.10) holds true and (2.9) is easily deduce from (1.5). This is the most simple possibility,
but many other exist. In general, g may be seen as a Young measure associated to w, and it may
be of physical interest to introduce Young measures in the context of the Euler equation, see for
instance [5]. �

We can now introduce some (stochastic) paths associated to the vorticity equation.

Definition 2.7. Let g0 be a probability measure on R × R
2 and consider a g0-distributed random

variable (M,X (0)) independent of a 2D-Brownian motion (Bt)t≥0. We say that a R
2-valued

process (X (t))t≥0 solves the nonlinear SDE (1.6) if for all t ≥ 0,

X (t) = X (0) +

∫ t

0

∫

R2

K(X (s) − x)ws(dx)ds+ σBt,(2.11)

where wt is the measure on R
2 defined by

(2.12) ∀ B ∈ B(R2), wt(B) = E[M1I{X (t)∈B}] =

∫

R×B
mgt(dm, dx)
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where gt = L(M,X (t)), and if (wt)t≥0 satisfies (2.4).

Roughly, M represents the circulation of a typical vortex and (X (t))t≥0 its path, in an infinite
vortices system subjected to the vorticity equation. The rigorous link is the following.

Remark 2.8. For (X (t))t≥0 a solution to (1.6), (wt)t≥0 is a weak solution to (1.2).

Proof. This can be checked by an application of the Itô formula: for ϕ ∈ C2
b (R

2), we have

Mϕ(X (t)) = Mϕ(X (0)) +

∫ t

0

∫

R2

M∇ϕ(X (s)) ·K(X (s) − x)ws(dx)ds

+ ν

∫ t

0

M∆ϕ(X (s))ds + σ

∫ t

0

M∇ϕ(X (s))dBs,

where we recall that ν := σ2/2. Taking expectations and using that the last term is a martingale
with mean 0, we find (2.5). �

We will check the following consequence of Theorem 2.5.

Theorem 2.9. Let g0 be a probability measure on R × R
2 satisfying (2.9). There exists a unique

strong solution (X (t))t≥0 to the nonlinear SDE (1.6) such that

∀ T > 0,

∫ T

0

Ĩ(gs)ds <∞,(2.13)

gt ∈ P(R × R
2) being the law of (M,X (t)). Furthermore, its associated vorticity function (wt)t≥0

satisfies (2.6) and (gt)t≥0 satisfies the entropy equation

(2.14) H̃(gt) + ν

∫ t

0

Ĩ(gs) ds = H̃(g0) ∀ t > 0.

2.5. The stochastic particle system. As shown by Osada [42] and others, the system (1.1) is
well-posed.

Theorem 2.10. Consider any family (MN
i ,XN

i (0))i=1,...,N of R × R
2-valued random variables,

independent of a family (Bi(t))i=1,...,N,t≥0 of i.i.d. 2D-Brownian motions and such that a.s.,
XN
i (0) 6= XN

j (0) for all i 6= j. There exists a unique strong solution to (1.1).

Actually, Osada [42] shows that a.s., for all t ≥ 0, all i 6= j, XN
i (t) 6= XN

j (t). This implies the

well-posedness of (1.1), since the singularity of K is thus a.s. never visited by the system.

Let us give a few more references. When the circulations MN
i are positive, Takanobu proved the

well-posedness of the system using a martingale argument [51]. Osada extended in [42] his results
to arbitrary vorticities using estimates à la Nash for fundamental solutions to parabolic equations
with divergence free drift [41]. More recently, Fontbona and Martinez adapted in [19] the technique
used by Marchioro and Pulvirenti for the deterministic N vortex models [34, Chapter 4.2] to the
stochastic case (1.1).

2.6. The result of propagation of chaos. To study the many-particle limit of the vortex system
(1.1), we have to impose some compactness and consistency properties on the initial system.

Denote by GN0 ∈ P((R×R
2)N ) the law of (MN

i ,XN
i (0))i=1,...N . We will assume that there are

k ∈ (0, 1], A ∈ (0,∞) and g0 ∈ P(R × R
2) supported in A × R

2, where A = [−A,A], such that,
setting r0(dm) :=

∫

x∈R2 g0(dm, dx) ∈ P(A),
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(2.15)























GN0 ∈ Psym((R × R
2)N ) is g0-chaotic;

supN≥2 M̃k(G
N
0 ) <∞, supN≥2 H̃(GN0 ) <∞;

RN0 (dm1, . . . , dmN ) :=
∫

(R2)N GN0 (dm1, dx1, . . . , dmN , dxN ) = r⊗N0 (dm1, . . . , dmN ).

This last condition asserts that MN
1 , . . . ,MN

N are i.i.d. and r0-distributed.

Remark 2.11. (i) The typical situation is the following: let g0 ∈ P(R × R
2) satisfy (2.9) and

consider, for N ≥ 2, an i.i.d. family (MN
i ,XN

i (0))i=1,...,N of g0-distributed random variables.

Then GN0 = g⊗N0 and (2.15) is met.
(ii) Consider a family (MN

i ,XN
i (0))i=1,...N satisfying (2.15) with some g0 ∈ P(R × R

2). Then
g0 automatically satisfies (2.9), so that the nonlinear SDE (1.6) has a unique solution associated
to g0 by Theorem 2.9. Also, w0 defined from g0 as in (2.10) satisfies (1.5) by Remark 2.6-(i), so
that Theorem 2.5 implies that (1.2) with w0 as initial condition is well-posed.

(iii) Under (2.15), we have H̃(GN0 ) <∞ for each N ≥ 2, whence the law of (XN
1 (0), . . . ,XN

N (0))
has a density on (R2)N . In particular, XN

i (0) 6= XN
j (0) a.s. for all N ≥ 2, all i 6= j, so that for

each N ≥ 2, the particle system (1.1) is well-posed by Theorem 2.10.

Proof. Point (i) is easily checked, using in particular that M̃k(G
N
0 ) = M̃k(g0) and H̃(GN0 ) = H̃(g0)

for all N ≥ 2. For (ii), we just have to check that g0 satisfies (2.9). But by exchangeability we
have Mk(G

N
0 ) = Mk(G

N
0,1), where GN0,1 denotes the first marginal of GN0 . Since GN0,1 ⇀ g0 weakly

in the sense of measures, we get M̃k(g0) ≤ lim infN M̃k(G
N
0,1) < ∞. Finally, the Γ-sci property

H̃(g0) ≤ lim infN H̃(GN0 ) is more difficult to prove but follows from Theorem 4.1 below. Point (iii)
is obvious. �

Let us now write down the first part of our main result, concerning the paths of the particles.
Here C([0,∞),R2) is endowed with the topology of uniform convergence on compacts.

Theorem 2.12. Consider, for each N ≥ 2, a family (MN
i ,XN

i (0))i=1,...,N of R × R
2-valued

random variables. Assume that the initial chaos assumptions (2.15) holds true for some g0. For
each N ≥ 2, consider the unique solution (see Remark 2.11-(iii)) (XN

i (t))i=1,...,N,t≥0 to (1.1), and
the unique solution (X (t))t≥0 to the nonlinear SDE (1.6) given by Theorem 2.9 associated to g0
(see Remark 2.11-(ii)). Then, the sequence (MN

i , (XN
i (t))t≥0)i=1...,N is (M, (X (t))t≥0)-chaotic.

In particular, it implies that if we set

(2.16) WN
t :=

1

N

N
∑

i=1

MN
i δXN

i (t),

then (WN
t )t≥0 goes in probability in C([0,∞),M(R2)), as N → ∞, to the unique weak solution

(wt)t≥0 given by Theorem 2.5 to the vorticity equation (1.2) starting from w0 (see Remark 2.11-
(ii)).

Our last result deals with entropic chaos.

Theorem 2.13. Adopt the same notation and assumptions as in Theorem 2.12 and assume fur-
thermore that limn H̃(GN0 ) = H̃(g0) (which is the case if GN0 = g⊗N). For t ≥ 0, denote by
gt ∈ P(R × R

2) the law of (M,X (t)).
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(i) For all t ≥ 0, ((MN
i ,XN

i (t))i=1,...,N is gt-entropically chaotic in the sense that, denoting by
GNt ∈ P((R × R

2)N ) its law,

(MN
1 ,XN

1 (t)) → gt in law and H̃(GNt ) → H̃(gt) as N → ∞.

(ii) For j = 1, . . . , N , define the j-particle vorticity wNjt as the measure on (R2)j:

(2.17) wNjt (dx1, . . . , dxj) :=

∫

m1,...,mN∈R, xj+1,...,xN∈R2

m1 . . .mj G
N
t (dm1, dx1, . . . , dmN , dxN ).

This measure has a density and for all fixed t ≥ 0, all fixed j ≥ 1,

(2.18) wNjt → w⊗j
t strongly in L1((R2)j) as N → ∞.

2.7. Plan of the proof. In Section 3, we prove various functional inequalities, showing in partic-
ular that a Fisher information estimate for the N -particles distribution allow us to control the close
encounters between particles. Section 4 is dedicated to a result in the spirit of Robinson-Ruelle [46]:

the partial entropy H̃ and partial Fisher information Ĩ are affine on mixed states, which implies the
Γ-lower semi continuity of both functionals. Precisely, that was proved in [24] for the full entropy
and Fisher information and here we only present the adaptation necessary in the partial case. In
Section 5, we prove our main estimate: denoting by GNt = L ((MN

1 ,XN
1 (t)), . . . , (MN

N ,XN
N (t))),

∀ T > 0, sup
N≥2

{

sup
[0,T ]

[H̃(GNt ) + M̃k(G
N
t )] +

∫ T

0

Ĩ(GNt ) dt

}

<∞

and deduce the tightness of our system. We then show that any limit point solves the nonlinear
S.D.E. in Section 6, and satisfies the a priori condition of Theorem 2.9. We prove our uniqueness
results (Theorems 2.5 and 2.9) in Section 7 and conclude the proofs of Theorems 2.12 and 2.13 in
Section 8.

We close that section with a convention that we shall use in all the sequel. We write C for a
(large) finite constant and c for a positive constant depending only on σ and on all the bounds
assumed in (1.5), (2.9) and (2.15). Their values may change from line to line. All other dependence
will be indicated in subscript.

3. Entropy and Fisher information

In this section, we present a series of results involving the Boltzmann entropy H , the Fisher
information I and their modified versions H̃, Ĩ. In the sequel of the article, they will provide key
estimates in order to exploit the regularity of the objects we will deal with.

The following very classical estimate will be useful in order to get bounds on the system of
particles in the next section. It also explains why the entropy is well-defined from Pk((R

2)N ) into
R ∪ {+∞}. See the comments before [24, Lemma 3.1] for the proof.

Lemma 3.1. For any k, λ ∈ (0,∞), there is a constant Ck,λ ∈ R such that for any N ≥ 1, any
F ∈ Pk((R

2)N )

H(F ) ≥ −Ck,λ − λMk(F ).

We next establish some kind of Gagliardo-Nirenberg-Sobolev inequality involving the Fisher
information.



PROPAGATION OF CHAOS FOR THE 2D VISCOUS VORTEX MODEL. 13

Lemma 3.2. For any f ∈ P(R2) with finite Fisher information, there holds

∀ p ∈ [1,∞), ‖f‖Lp(R2) ≤ Cp I(f)1−1/p,(3.1)

∀ q ∈ [1, 2), ‖∇f‖Lq(R2) ≤ Cq I(f)3/2−1/q.(3.2)

Proof. We start with (3.2). Let q ∈ [1, 2) and use the Hölder inequality:

‖∇f‖qLq =

∫
∣

∣

∣

∣

∇f√
f

∣

∣

∣

∣

q

f q/2 ≤
(
∫ |∇f |2

f

)q/2 (∫

f q/(2−q)
)(2−q)/2

= I(f)q/2 ‖f‖q/2
Lq/(2−q) .

Denoting by q∗ = 2q/(2 − q) ∈ [2,∞) the Sobolev exponent associated to q, we have, thanks to a
standard interpolation inequality and to the Sobolev inequality,

(3.3) ‖f‖Lq/(2−q) = ‖f‖Lq∗/2 ≤ ‖f‖1/(q∗−1)
L1 ‖f‖(q∗−2)/(q∗−1)

Lq∗ ≤ Cq ‖f‖1/(q∗−1)
L1 ‖∇f‖(q∗−2)/(q∗−1)

Lq .

Gathering these two inequalities, it comes

‖∇f‖Lq ≤ Cq I(f)1/2 ‖f‖1/(2(q∗−1))
L1 ‖∇f‖(q∗−2)/(2(q∗−1))

Lq ,

from which we easily deduce (3.2) using that f ∈ P(R2).

We now verify (3.1). For p ∈ [1,∞), write p = q∗/2 = q/(2 − q) with q := 2p/(1 + p) ∈ [1, 2)
and use (3.3) and (3.2):

||f ||Lp ≤ Cp||f ||1/(q
∗−1)

L1 I(f)(3/2−1/q)(q∗−2)/(q∗−1),

from which one easily concludes since f ∈ P(R2). �

As a first consequence, we deduce that pairs of particles which law has finite Fisher information
are not too close in the following sense.

Lemma 3.3. Consider F ∈ P(R2 × R
2) with finite Fisher information and (X1,X2) a random

variable with law F . Then for any γ ∈ (0, 2) and any β > γ/2 there exists Cγ,β so that

(3.4) E(|X1 −X2|−γ) =

∫

R2×R2

F (x1, x2)

|x1 − x2|γ
dx1dx2 ≤ Cγ,β (I(F )β + 1).

Proof. We introduce the unitary linear transformation

∀ (x1, x2) ∈ R
2 Φ(x1, x2) =

1√
2

(

x1 − x2, x1 + x2

)

=: (y1, y2).

Defining F̃ := F ◦ Φ−1 which is nothing but the law of 1√
2

(

X1 − X2,X1 + X2

)

and f̃ as the

first marginal of F̃ (the law of 1√
2
(X1 − X2)). A simple substitution shows that I(F̃ ) = I(F ).

Furthermore, the super-additivity property of Fisher’s information proved in [10, Theorem 3] (the
factor 2 below is due to our normalized definition of the Fisher information), see also [24, Lemma
3.7], implies that

(3.5) I(f̃) ≤ 2 I(F̃ ) = 2 I(F ).
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Let β ∈ (γ/2, 1) be fixed (the case β ≥ 1 will then follow immediately). We have
∫

R2×R2

F (x1, x2)

|x1 − x2|γ
dx1dx2 = 2γ/2

∫

R2×R2

F̃ (y1, y2)

|y1|γ
dy1dy2

= 2γ/2
∫

R2

f̃(y)

|y|γ dy

≤ 2γ/2 + 2γ/2
∫

|y|≤1

f̃(y)

|y|γ dy.

Using the Hölder inequality, that γ/β < 2 and (3.1), we deduce that

∫

R2×R2

F (x1, x2)

|x1 − x2|γ
dx1dx2 ≤ 2γ/2 + 2γ/2

[

∫

|y|≤1

|y|−γ/βdx
]β

‖f̃‖L1/(1−β)(R2)

≤ Cγ,β(1 + I(f̃)β).

We conclude thanks to (3.5). �

We also need something similar to Lemma 3.2 that can be applied to vorticity measures.

Lemma 3.4. Consider a probability measure g on R×R
2 with Supp g ⊂ [−A,A]×R

2 and define
the probability measure v and the (signed) measure w on R

2 by

v(B) =

∫

R×B
g(dx, dm), w(B) =

∫

R×B
mg(dx, dm), ∀B ∈ B(R2).

We have

∀ p ∈ [1,∞), ‖v‖Lp(R2) + ‖w‖Lp(R2) ≤ Cp,AĨ(g)
1−1/p,(3.6)

∀ q ∈ [1, 2), ‖∇v‖Lq(R2) + ‖∇w‖Lq(R2) ≤ Cq,AĨ(g)
3/2−1/q.(3.7)

Proof. We disintegrate g(dm, dx) = r(dm)fm(dx). For p ∈ [1,∞), using the support condition on
g, that the Lp-norm is convex and (3.1) (since fm ∈ P(R2) for each m ∈ R), we get

||w||Lp =

∥

∥

∥

∥

∫

R

mr(dm)fm(x)

∥

∥

∥

∥

Lp

≤ A

∫

R

r(dm)‖fm‖Lp ≤ ACp

∫

R

r(dm)I(fm)1−1/p.

Since r ∈ P(R), the Jensen inequality leads us to

||w||Lp ≤ Cp,A

(
∫

R

r(dm)I(fm)

)1−1/p

= Cp,AĨ(g)
1−1/p.

The same proof works for v. Finally, (3.7) is shown similarly, using (3.2) instead of (3.1). �

We end this section with some easy functional estimates.

Lemma 3.5. Let (wt)t≥0 ∈ C([0,∞),M(R2)) satisfy (2.6). Then

(3.8) ∀ T > 0, ∀ p ∈ (1,∞), w ∈ Lp/(p−1)([0, T ], Lp(R2))

and

(3.9) ∀ T > 0, ∀ γ ∈ (0, 2),

∫ T

0

∫

R2

∫

R2

|x− y|−γ |ws(x)||ws(y)|dydxds <∞.
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Proof. The first estimate follows from (3.3) (applied with q = 2p/(1 + p) and thus q∗ = 2p) and
the fact that w ∈ L∞(0, T ;L1(R2)) (because w ∈ C([0,∞),M(R2))).

To check the second estimate, consider p > 2/(2 − γ) and observe that for any x ∈ R
2, by the

Hölder inequality, since γp/(p− 1) < 2,

∫

{|x−y|≤1}
|x− y|−γ |ws(y)|dy ≤ ‖ws‖Lp

(

∫

{|x−y|≤1}
|x− y|−γp/(p−1)dy

)1−1/p

≤ Cγ,p‖ws‖Lp .

Consequently,
∫

R2

∫

R2

|x− y|−γ |ws(x)||ws(y)|dydx ≤
∫

{|x−y|≥1}

∫

R2

|ws(x)||ws(y)|dydx

+

∫

{|x−y|<1}
|x− y|−γ |ws(x)||ws(y)|dydx

≤ ‖ws‖2
L1 + Cγ,p‖ws‖Lp‖ws‖L1.

We easily conclude using that w ∈ L∞(0, T ;L1(R2)) ∩ Lp/(p−1)([0, T ], Lp(R2)). �

4. Many-particle entropy and Fisher information

We will need a result showing that if the particle distribution of the N -particle system has a
uniformly bounded entropy and Fisher information, then any limit point of the associated empirical
measure has finite entropy and Fisher information. As we will see, such a result is a consequence
of representation identities for level-3 functionals as first proven by Robinson and Ruelle in [46] for
the entropy in a somewhat different setting. Recently in [24], that kind of representation identity
has been extended to the Fisher information. The proof is mainly based on the De Finetti-Hewitt-
Savage representation theorem [26, 14] (see also [24] and the references therein) together with
convexity tricks for the entropy, and concentration for the Fisher information. Unfortunately,
we cannot apply directly the result of [24] due to the additional variable corresponding to the
circulations of vortices. But the result still holds true and will be stated in the next theorem after
some necessary definitions.

For a given r ∈ P(R), we define EN (r) as the set of probability measures GN ∈ Psym((R×R
2)N )

such that
∫

(R2)N G
N (dm1, dx1, . . . , dmN , dxN ) = r⊗N (dm1, . . . , dmN ). We also denote by E∞(r)

the set of probability measures π ∈ P(P(R×R
2)) supported in {g ∈ P(R×R

2) :
∫

x∈R2 g(dm, dx) =

r(dm)}. In addition, Pk(P(R × R
2)) will denote the set of probabilities measure π with finite

moment M̃k(π) :=
∫

P(R×R2)
M̃k(g)π(dg) = M̃k(π1), where π1 :=

∫

P(R×R2)
g π(dg) ∈ P(R × R

2).

Theorem 4.1. Let k > 0 and r ∈ P(R) supported in A = [−A,A] for some A > 0. Consider, for
each N ≥ 2, a probability measure GN ∈ EN (r). For j ≥ 1, denote by GNj ∈ P((R×R

2)j) the j-th

marginal of GN . Assume that supN M̃k(G
N
1 ) <∞ and that there exists a compatible sequence (πj)

of symmetric probability measures on (R×R
2)j so that GNj → πj in the weak sense of measures in

P((R × R
2)j). Denoting by π ∈ Pk(P(R × R

2)) the probability measure associated to the sequence
(πj) thanks to the De Finetti-Hewitt-Savage theorem, there holds

(4.1)

∫

P(R×R2)

H̃(g)π(dg) = sup
j≥1

H̃(πj) ≤ lim inf
N→∞

H̃(GN ),

as well as

(4.2)

∫

P(R×R2)

Ĩ(g)π(dg) = sup
j≥1

Ĩ(πj) ≤ lim inf
N→∞

Ĩ(GN ).
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The De Finetti-Hewitt-Savage theorem asserts that for a sequence (πj) of symmetric probability
on Ej , compatible in the sense that the k-th marginal of πj is πk for all 1 ≤ k ≤ j, there exists
a unique probability measure π ∈ P(P(E)) such that πj =

∫

P(E)
g⊗jπ(dg). See for instance [24,

Theorem 5.1].

Theorem 4.1 is an immediate consequence of [24, Lemma 5.6] and of the series of properties on
the partial entropy and Fisher information functionals that we state in the following lemma.

Lemma 4.2. Let k > 0 and r ∈ P(R) supported in A = [−A,A] for some A > 0. The partial

entropy and Fisher information functionals satisfy, with the common notation J̃ = H̃ or Ĩ, J̃ = H̃
or Ĩ, the following properties

(i1) For any j ≥ 1, Ĩ : P((A × R
2)j) → R ∪ {+∞} is non-negative, convex, proper and lower

semi-continuous for the weak convergence.
(i2) For any j ≥ 1, H̃ : Pk((A × R

2)j) → R ∪ {+∞} is convex, proper, lower semi-continuous
for the weak convergence and there exists some constant Ck ∈ R such that

P((A × R
2)j) → R ∪ {+∞}, G 7→ H̃(G) + M̃k/2(G) + Ck

is lower semi-continuous for the weak convergence and non-negative.
(ii) For all j ≥ 1, all g ∈ Pk(A× R

2), J̃(g⊗j) = J̃(g).

(iii) For all G ∈ Pk((A×R
2)j), all ℓ, n with j = ℓ+n , there holds j J̃(G) ≥ ℓ J̃(Gℓ)+n J̃(Gn),

where Gℓ ∈ Pk((A × R
2)ℓ) stands for the ℓ-marginal of G.

(iv) The functional J̃ ′ : Pk(P(A × R
2)) ∩ E∞(r) → R ∪ {∞} defined by

J̃ ′(π) := sup
j≥1

J̃(πj) where πj :=

∫

P(A×R2)

g⊗jπ(dg)

is affine in the following sense. For any π ∈ Pk(P(A × R
2)) and any partition of Pk(A × R

2)
by some sets ωi, 1 ≤ i ≤ M , such that ωi is an open set in (A × R

2)\(ω1 ∪ . . . ∪ ωi−1) for any
1 ≤ i ≤M − 1 and π(ωi) > 0 for any 1 ≤ i ≤M , defining

αi := π(ωi) and γi :=
1

αi
1ωi π ∈ Pk(P(A× R

2))

so that

π = α1 γ
1 + ...+ αM γM and α1 + ...+ αM = 1,

there holds

J ′(π) = α1 J ′(γ1) + . . .+ αM J ′(γM ).

Proof of Lemma 4.2. We only sketch the proof, which is roughly an adaptation to the partial case
of the proofs of [24, Lemma 5.5] and [24, Lemma 5.10].

Step 1. We first prove point (i).
Let us first present alternative expressions of the entropy and the Fisher information. For

G ∈ Pk((A× R
2)j), it holds that

H̃(G) =
1

j
sup

φ∈Cc((A×R2)j)

〈

G,φ −H∗(φ) + log θj
〉

(4.3)

with θj(M,X) := θj(X) = cj exp(−|x1|k − ...− |xj |k), where c chosen so that θj is a probability,
where

H∗(φ)(M) :=

∫

R2j

h∗(φ(M,X)) θj(X) dX
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and where h∗(t) := et − 1 is the Legendre transform of h(s) := s log s − s+ 1. The RHS term is
well-defined in R ∪ {+∞} because the function φ−H∗(φ) + log θj is continuous and bounded by
−C 〈X〉k by below for any φ ∈ Cc((A× R

2)j).
We also have, for G ∈ P((A× R

2)j),

(4.4) Ĩ(G) :=
1

j
sup

ψ∈C1
c ((A×R2)j)2j

〈

G,−|ψ|2
4

− divX ψ
〉

.

Again, the RHS term is well defined in R because the function |ψ|2/4 − divX ψ is continuous and
bounded for any ψ ∈ C1

c ((A× R
2)j)2j .

As a consequence of the representation formulas (4.3) and (4.4) we immediately conclude that

H̃ and Ĩ are convex, lower semi-continuous and proper so that point (i1) and the first part of (i2)
hold. The lower bound expressed in (i2) is nothing but the result stated in Lemma 3.1.

Step 2. Point (ii) is obvious from (2.2)-(2.3).

Step 3. We now prove (iii). For the partial entropy, we define

h̃i := i H̃(Gi)

for any G ∈ Pk((A×R
2)j) and 1 ≤ i ≤ j, and we just write Gi = Ri Fi instead of the more explicit

expression Gi(dM, dX) = Ri(dM)FMi (X) dX . We then compute

h̃j − h̃i − h̃j−i =

∫

(A×R2)j

Gj logFj −
∫

(A×R2)j

Gi logFi −
∫

(A×R2)j−i

Gj−i logFj−i

=

∫

(A×R2)j

Gj [logFj − logFi ⊗ Fj−i]

=

∫

Aj

Rj

∫

(R2)j

Fj [logFj − logFi ⊗ Fj−i]

=

∫

Aj

Rj

∫

(R2)j

Fi ⊗ Fj−i [u log u− u+ 1] ≥ 0,

where we have set u := Fj/(Fi ⊗ Fj−i) and we have used that Fj , Fi ⊗ Fj−i ∈ P((R2)j) for any
given M ∈ R

j .

For the partial Fisher information we reproduce the proof of the same super-additivity property
established for the usual Fisher information in [24, Lemma 3.7]. We define for any i ≤ j

ι̃i := i Ĩ(Gi) = sup
ψ∈C1

c ((A×R2)i)2i

∫

(A×R2)i

(

∇X Gi · ψ −Gi
|ψ|2
4

)

where the sup is taken on all ψ = (ψ1, . . . , ψi), with all ψℓ : (A × R
2)i → R

2. We then write the
previous equality for ιj and restrict the supremum over all ψ such that for some i ≤ j:

• the i first ψℓ depend only on (x1, . . . , xi), with the notation ψi = (ψ1, . . . , ψi),
• the j − i last ψℓ depend only on (xi+1, . . . , xj), with the notation ψj−i = (ψi+1, . . . , ψj).
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We then have the inequality

ι̃j ≥ sup
ψi, ψj−i

∫

(A×R2)j

[∇iG · ψi + ∇j−iG · ψj−i −G
|ψi|2 + |ψj−i|2

4
]

= sup
ψi∈C1

c ((A×R2)i)2i

∫

(A×R2)i

[∇iGi · ψi −Gi
|ψi|2

4
]

+ sup
ψj−i∈C1

c ((A×R2)j−i)2(j−i)

∫

(A×R2)j−i

[∇j−iGj−i · ψj−i −Gj−i
|ψj−i|2

4
]

= ι̃i + ι̃j−i,

where all the gradients appearing are only gradients in the X variables.

Step 3. We first note that as a consequence of (iii) we have (see [24, Lemma 5.5] for details)
for any π ∈ Pk(P(A× R

2))

(4.5) J̃ ′(π) := sup
j≥1

J̃(πj) = lim
j→∞

J̃(πj).

We now prove the affine caracter (iv) for the partial entropy H̃′, considering only the case M = 2
for simplicity. Let us consider A,B ∈ Pk(P(A× R

2)) ∩ E∞(r), θ ∈ (0, 1), and let us introduce the
disintegration Aj = Rjαj , Bj = Rjβj , with Rj = r⊗j (because both A and B belong to E∞(r)).
Using that s 7→ log s is an increasing function and that s 7→ s log s is a convex function, we have

H̃(θ Aj + (1 − θ)Bj) =
1

j

∫

(A×R2)j

Rj (θ αj + (1 − θ)βj) log(θ αj + (1 − θ)βj)

≥ 1

j

∫

(A×R2)j

Rj {θ αj log(θ αj) + (1 − θ)βj log((1 − θ)βj)}

= θ H̃(Aj) + (1 − θ) H̃(Bj) +
1

j
[θ log θ + (1 − θ) log(1 − θ)]

≥ H̃(θ Aj + (1 − θ)Bj) +
1

j
[θ log θ + (1 − θ) log(1 − θ)].

Passing to the limit j → ∞ in the two preceding inequalities and using (4.5), we get

H̃′(θ A+ (1 − θ)B) ≥ θ H̃′(A) + (1 − θ) H̃′(B) ≥ H̃′(θ A+ (1 − θ)B),

from which the announced affine caracter follows.

We next prove the affine caracter (iv) for the partial Fisher information. For the sake of
simplicity we only consider the case when M = 2 and ω1 is a ball. The case when ω1 is a
general open set can be handled in a similar way and the case when M ≥ 3 can be deduced by an
iterative argument. For some given π ∈ Pk(P(R × R

2)) ∩ E∞(r) which is not a Dirac mass, some
f1 ∈ Pk(R × R

2) and some η ∈ (0,∞) so that

θ := π(Bη) ∈ (0, 1), Bη = B(f1, η) := {ρ,W1(ρ, f1) < η},
we define

A :=
1

θ
1IBηπ, B :=

1

1 − θ
1IBc

η
π

so that

A,B ∈ Pk(P(A× R
2)) ∩ E∞(r) and π = θA+ (1 − θ)B,
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and we have to prove that

(4.6) Ĩ ′(π) = θ Ĩ ′(A) + (1 − θ) Ĩ ′(B).

We claim that proceeding as in the proof of [24, Lemma 5.10] we may assume, up to regularization
by convolution in the X variables, that

sup
j,M,X

(

|∇1 log πj | + |∇1 logAj | + |∇1 logBj |
)

≤ C <∞,

where the ∇1 stands for the gradient in the first position variable only. For any given j ≥ 1, we
define

Zj := θ Ĩ(Aj) + (1 − θ) Ĩ(Aj) − Ĩ(θ Aj + (1 − θ)Bj),

and after some calculations, we obtain, using the disintegrations Aj = Rjαj and Bj = Rjβj as
previously,

Zj = θ(1 − θ)

∫

Rj
αjβj

(1 − θ)αj + θβj

∣

∣

∣

∣

∇1 log
αj
βj

∣

∣

∣

∣

2

≤ 2 θ(1 − θ)

∫

Rj
αjβj

(1 − θ)αj + θβj

(

∣

∣∇1 log βj
∣

∣

2
+
∣

∣∇1 logαj
∣

∣

2
)

≤ 4θ(1 − θ)C

∫

Rj
αjβj

(1 − θ)αj + θβj
= 4θ(1 − θ)C

∫

AjBj
(1 − θ)Aj + θBj

.

At this stage, the proof follows exactly the one done in [24, Lemma 5.10] which states that the
same property holds for the full Fisher information. Let us introduce, for any s ∈ (0, η) the two
measures on P(A× R

2) (which are not necessarily probability measures)

A′ := 1IBsA =
1

θ
1IBsπ, A′′ := 1IBη\Bs

A,

and let us observe that

lim
s→η

∫

A′′(dρ) = 0,

by Lebesgue’s dominated convergence theorem. By construction, there holds A′ +A′′ = A as well
as for any j ≥ 1 there holds A′

j +A′′
j = Aj with A′′

j ≥ 0, so that we may write for any ε > 0

Zj ≤ 4θ(1 − θ)C

∫

P(A×R2)

BjA
′
j

(1 − θ)Bj + θA′
j

+ ε

taking s close enough to r (independently of j). We introduce the notation y = (m,x) for the
couple circulation-position, define the distance d(y, y′) := min(|y − y′|, 1) on R × R

2 and the
Monge-Kantorovitch-Wasserstein distance W1 defined on P(R × R

2) according to distance d.
We introduce the real numbers u = η+s

2 and δ = η−s
2 , as well as the set

B̃u := {Y j = (y1, . . . , yj) , W1(µ
j
Y j , f1) < u} ⊂ (R × R

2)j

which is nothing but the reciprocal image of the ball Bu ⊂ P(R × R
2) by the empirical measure

map. Using that
BjA

′
j

(1 − θ)Bj + θA′
j

≤ 1

θ
Bj 1B̃u

+
1

1 − θ
A′
j 1B̃c

u
,

we get

(4.7) Zj ≤ 4C

(

(1 − θ)

∫

B̃u

Bj + θ

∫

B̃c
u

A′
j

)

+ ε.
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Using concentration of empirical measures exactly as in Step 3 of the proof of [24, Lemma 5.11]
we deduce that

Zj ≤
4C [Ak + M̃k(π)]1/k

δjγ
+ ε,

with γ := 1/(5 + 3/k). Remark that we have the bound Ak + M̃k(π) for the full moment in
z = (m,x) of the probability π, since the m variable always belongs to A = [−A,A]. Using the
above estimate and the convexity estimate Zj ≥ 0, we obtain that

lim
j→0

Zj = 0

from which we conclude using (4.5). �

As a consequence of Lemma 4.2, we also have some super-additivity inequalities as well as some
weak lower semi-continuity properties that we will frequently use.

Corollary 4.3. Let k > 0 and r ∈ P(R) supported in A = [−A,A] for some A > 0.
(i) Let G ∈ EN (r) for some N ≥ 2. For any 1 ≤ j ≤ N , denoting by Gj the j-marginal of G

and introducing the Euclidian decomposition N = n j + ℓ, 0 ≤ ℓ ≤ j − 1, there holds

(4.8) Ĩ(Gj) ≤ (1 +
ℓ

nj
) Ĩ(G) ≤ 2 Ĩ(G) and H̃(Gj) ≤ (1 +

ℓ

nj
) H̃(G) +

ℓ

nj
(Ck + M̃k/2(Gℓ)).

(ii) Let j ≥ 1 be fixed and πj ∈ Ej(r). Consider a sequence GN ∈ EN(r) such that GNj ⇀ πj

weakly in P((R × R
2)j) as N → ∞ and supN M̃k(G

N
1 ) <∞. Then

H̃(πj) ≤ lim inf
N→∞

H̃(GN ) and Ĩ(πj) ≤ lim inf
N→∞

Ĩ(GN ).

Proof of Corollary 4.3. We start with point (i). Iterating the super-additivity property expressed
in Lemma 4.2-(iii) tells us that

(4.9) ℓJ̃(Gℓ) + njJ̃(Gj) ≤ NJ̃(G),

for J̃ = H̃ and J̃ = Ĩ. In the case of the Fisher information (which is non-negative), we deduce

that njĨ(Gj) ≤ NĨ(G) which implies the first assertion in (4.8). For the entropy, (4.9) together

with the non-negativity property ℓ H̃(Gℓ) + ℓ (M̃k/2(Gℓ) + Ck) ≥ 0 established in Lemma 4.2-(i2)
imply the last assertion in (4.8).

We next check (ii). The lower semi-continuity stated in Lemma 4.2-(i) implies that

J̃(πj) ≤ lim inf
N→∞

J̃(GNj )

for J̃ = H̃ and J̃ = Ĩ. We conclude using point (i). �

5. Main estimates and tightness

In the whole section, a family GN0 ∈ Psym((R×R
2)N ) satisfying (2.15) for some k ∈ (0, 1], some

A ∈ (0,∞) and some g0 ∈ P(R × R
2) is fixed. The following estimate is central in our proof.

Proposition 5.1. For N ≥ 2, let (MN
i ,XN

i (0))i=1,...,N be GN0 -distributed and consider the unique
solution (XN

i (t))i=1,...,N,t≥0 to (1.1). For t ≥ 0, denote by GNt ∈ Psym((R × R
2)N ) the law of

(MN
i ,XN

i (t))i=1,...,N . There is a constant C = C(σ, k,A) such that for all t ≥ 0,

H̃(GNt ) + M̃k(G
N
t ) +

ν

2

∫ t

0

Ĩ(GNs )ds ≤ H̃(GN0 ) + M̃k(G
N
0 ) + C t.(5.1)
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As a consequence, there exists a constant C which depends furthermore on an upper bound on
H̃(GN0 ) and M̃k(G

N
0 ) so that for all N ≥ 2, all t ≥ 0,

H̃(GNt ) ≤ C(1 + t), M̃k(G
N
t ) ≤ C(1 + t) and

∫ t

0

Ĩ(GNs )ds ≤ C(1 + t).(5.2)

Proof. The computations below are formal. To handle a rigorous proof, it suffices to approximate
the singular kernel K by a smoothed kernel Kε enjoying the properties that div Kε = 0 and that
Kε(x) = K(x) for all |x| ≥ ε, which makes all the computations below rigorous. Since (1.1) is

well-posed thanks to Osada [42] (see Theorem 2.10) and since the functionals M̃k, H̃ and Ĩ are
lower semi-continuous for the weak convergence, it is not hard to conclude to (5.1) (with only an
inequality now).

Step 1. Denoting by X = (x1, . . . , xN ) and M = (m1, . . . ,mN ), we disintegrate GNt (dM, dX) as

RNt (dM)FN,Mt (dX) and we observe that FN,Mt is nothing but the conditional law of (XN
i (t))i=1,...,N

knowing that (MN
i )i=1,...,N = M . We also observe that RNt (dM) = RN0 (dM), because the cir-

culations MN
i do not depend on time. Conditionally on (MN

i )i=1,...,N = M , (XN
1 (t), . . . ,XN

N (t))
solves

∀i = 1, . . . , N, XN
i (t) = Xi(0) +

1

N

∑

j 6=i

∫ t

0

mjK(XN
i (s) −XN

j (s))ds + σBi(t).(5.3)

Applying the Itô formula to compute the conditional expectation of ϕ(XN
1 (t), . . . ,XN

N (t)) knowing
that (MN

i )i=1,...,N = M , we get, for any ϕ ∈ C2
b ((R

2)N ), any t ≥ 0,

d

dt

∫

(R2)N

ϕ(X)FN,Mt (dX) =

∫

(R2)N





1

N

∑

i6=j
mjK(xi − xj) · ∇xiϕ(X)



FN,Mt (dX)(5.4)

+ ν

∫

(R2)N

∆Xϕ(X).

Consequently (recall that div K = 0), FN,M is a weak solution to

∂tF
N,M
t (X) +

1

N

∑

i6=j
mjK(xi − xj) · ∇xiF

N,M
t (X) = ν∆XF

N,M
t (X).(5.5)

Step 2. We easily compute the evolution of the entropy (in the space variable):

d

dt
H(FN,Mt ) =

1

N

∫

(R2)N

(∂tF
N,M
t (X))(1 + log(FN,Mt (X))) dX

= − 1

N2

∑

i6=j
mj

∫

(R2)N

K(xi − xj).∇xiF
N,M
t (X)(1 + log(FN,Mt (X))) dX

+
ν

N

∫

(R2)N

∆XF
N,M
t (X) (1 + log(FN,Mt (X))) dX.

Observing that the first term vanishes (because div K = 0) and performing an integration by parts
on the second term, we immediately and classically deduce that

H(FN,Mt ) + ν

∫ t

0

I(FN,Ms ) ds = H(FN,M0 ), ∀ t ≥ 0.(5.6)
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Integrating this equality against R0(dM), we finally get

H̃(GNt ) + ν

∫ t

0

Ĩ(GNs )ds = H̃(GN0 ), ∀ t ≥ 0.(5.7)

Step 3. Applying (5.4) with ϕ(X) = 〈X〉k (for which |∇xiϕ| ≤ C/N and |∆Xϕ| ≤ C because
k ∈ (0, 1]) and integrating against RN0 (dM), we get

d

dt
M̃k(G

N
t ) ≤ C

N2

∫

RN

RN0 (dM)

∫

(R2)N

FN,Mt (dX)
∑

i6=j
|mj ||K(xi − xj)|

+C

∫

RN

RN0 (dM)

∫

(R2)N

FN,Mt (dX)

≤ CA

∫

(R×R2)N

GNt (dM, dX)|K(x1 − x2)| + C.

For the last inequality, we used that RN0 (dM)FN,Mt (dX) = GNt (dM, dX) is a symmetric probability
measure supported in ([−A,A] × R

2)N . Denoting by GNt2 the two-marginal of GNt , disintegrating

GNt2(dm1, dx1, dm2, dx2) = rNt (dm1, dm2)f
N,m1,m2

t (dx1, dx2) and using Lemma 3.3 with γ = 1 and

β = 2/3, then the Jensen inequality (rNt is a probability measure) and finally the definition of Ĩ,
we find
∫

(R×R2)N

|K(x1 − x2)|GNt (dM, dX) =

∫

(R×R2)2

1

|x1 − x2|
GNt2(dm1, dm2, dx1, dx2)

=

∫

R2

rNt (dm1, dm2)

∫

(R2)2

1

|x1 − x2|
fN,m1,m2

t (dx1, dx2)

≤ C

∫

R2

rNt (dm1, dm2)
(

1 + I(fN,m1,m2

t )2/3
)

≤ C + C

(
∫

R2

rNt (dm1, dm2)I(f
N,m1,m2

t )

)2/3

≤ C + CĨ(GNt2)
2/3.

Finally, using Corollary 4.3, we have Ĩ(GNt2) ≤ 2Ĩ(GNt ), so that

d

dt
M̃k(G

N
t ) ≤ C + CĨ(GNt )2/3 ≤ C +

ν

2
Ĩ(GNt ).

For the last inequality, we recall that the value of C is allowed to change and we mention that we
used the inequality Cx2/3 ≤ C′ + (ν/2)x for all x ≥ 0. Integrating in time, we thus get

(5.8) M̃k(G
N
t ) ≤ Ct+ M̃k(G

N
0 ) +

ν

2

∫ t

0

Ĩ(GNs )ds.

Step 4. Summing (5.7) and (5.8), we thus find (5.1). This implies the first inequality in (5.2) by

positivity of M̃k and Ĩ. Finally, we write

M̃k(G
N
t ) +

ν

2

∫ t

0

Ĩ(GNs )ds ≤ C(1 + t) − H̃(GNt ) ≤ C(1 + t) + M̃k(G
N
t )/2

by Lemma 3.1 (with the choice λ = 1/2). Thus M̃k(G
N
t ) + ν

∫ t

0
Ĩ(GNs )ds ≤ C(1 + t) which implies

the second and third inequalities in (5.2) by positivity of M̃k and Ĩ again. �

We can now easily prove the tightness of our particle system.
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Lemma 5.2. For each N ≥ 2, recall that (MN
i ,XN

i (0))i=1,...,N is GN0 -distributed and consider

the unique solution (XN
i (t))i=1,...,N,t≥0 to (1.1) . We also set QN := N−1

∑N
i=1 δ(MN

i ,(XN
i (t))t≥0).

(i) The family {L((XN
1 (t))t≥0), N ≥ 2} is tight in P(C([0,∞),R2)).

(ii) The family {L(QN ), N ≥ 2} is tight in P(P(R × C([0,∞),R2))).

Proof. First, point (ii) follows from point (i). Indeed, MN
1 takes values in the compact set

[−A,A], so that we deduce from (i) that the family {L(MN
1 , (XN

1 (t))t≥0), N ≥ 2} is tight in
P(R × C([0,∞),R2)). Then (ii) follows from the exchangeability of the system, see [50, Proposi-
tion 2.2] or [36, Lemma 4.5].

To prove (i), we have to check that for all η > 0 and all T > 0, we can find a compact subset
Kη,T of C([0, T ],R2) such that supN P[(XN

1 (t))t∈[0,T ] /∈ Kη,T ] ≤ η. Let thus η > 0 be fixed. We

introduce the random variable ZT := sup0<s<t<T |σB1(t) − σB1(s)|/|t − s|1/3 which is a.s. finite,
since the paths of B1 are a.s. Hölder continuous with index 1/3. Note also that the law of ZT does
not depend on N . Next, we use the Hölder inequality and the fact that a.s., |MN

i | ≤ A for all i
(recall (2.15)) to get, for all 0 < s < t < T ,

∣

∣

∣

1

N

∫ t

s

∑

j 6=1

MN
j K(XN

1 (u) −XN
j (u))du

∣

∣

∣
≤A

N

∫ t

s

∑

j 6=1

|XN
1 (u) −XN

j (u)|−1du

≤A

N
(t− s)1/3

∑

j 6=1

[

∫ T

0

|XN
1 (u) −XN

j (u)|−3/2du

]2/3

≤(t− s)1/3



A+
A

N

∑

j 6=1

∫ T

0

|XN
1 (u) −XN

j (u)|−3/2du





=:UNT (t− s)1/3.

All this yields that for all 0 < s < t < T (recall that XN
1 satisfies the first equation of (1.1)),

|XN
1 (t) −XN

1 (s)| ≤ (ZT + UNT )(t− s)1/3.

By exchangeability and using Lemma 3.3,

E[UNT ] = A+A
N − 1

N

∫ T

0

E[|XN
1 (u) −XN

2 (u)|−3/2]du ≤ A+ A

∫ T

0

Ĩ(GNu2)du,

where GNu2 is the two-marginal of GNu . But Ĩ(GNu2) ≤ 2Ĩ(GNu ) (by Corollary 4.3), so that using
finally Proposition 5.1, E[UNT ] ≤ A+ CA(1 + T ).

Thus supN≥2 E[UNT ] < ∞ and since ZT is a.s. finite, we can clearly find R > 0 such that

P[ZT + UNT > R] ≤ η/2 for all N ≥ 2. We also know by (2.15) that supN≥2 E[〈XN
1 (0)〉k] =

supN≥2 M̃k(G
N
0 ) < ∞, so that there is a > 0 such that supN≥2 P[|XN

1 (0)| > a] ≤ η/2. Let now

Kη,T be the set of all continuous functions f : [0, T ] 7→ R
2 with |f(0)| ≤ a and |f(t) − f(s)| ≤

R(t− s)1/3 for all 0 < s < t < T . For all N ≥ 2, we have P[(XN
1 (t))t∈[0,T ] /∈ Kη,T ] ≤ P[|XN

1 (0)| >
a]+ P[ZT +UNT > R] ≤ η. Since Kη,T is a compact subset of C([0, T ],R2), this ends the proof. �

6. Consistency

In the whole section, we assume (2.15) for some k ∈ (0, 1], some A > 0 and some g0 ∈ P(R×R
2).

We define S as the set of all probability measures g ∈ P(R × C([0,∞),R2)) such that g is the
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law of (M, (X (t))t≥0) with (X (t))t≥0 solution to the nonlinear SDE (1.6) associated with g0 and
satisfying (2.13): for gt ∈ P(R × R

2) the law of (M,X (t)),

∀ T > 0,

∫ T

0

Ĩ(gs)ds <∞.

Proposition 6.1. For each N ≥ 2, let (MN
i ,XN

i (0))i=1,...,N be GN0 -distributed and consider
the unique solution (XN

i (t))i=1,...,N,t≥0 to (1.1). Assume that there is a subsequence of QN :=

N−1
∑N
i=1 δ(MN

i ,(XN
i (t))t≥0

going in law to some P(R × C([0,∞),R2))-valued random variable Q.

Then Q a.s. belongs to S.

Proof. We consider a (not relabelled) subsequence of QN going in law to some Q. We adopt in
this proof the convention that K(0) = 0.

Step 1. Consider the identity maps m : R 7→ R and γ : C([0,∞),R2) 7→ C([0,∞),R2). Using
the classical theory of martingale problems, we realize that g belongs to S as soon as

(a) g ◦ (m, γ(0))−1 = g0;
(b) setting gt = g ◦ (m, γ(t))−1, (2.13) holds true;
(c) for all 0 < t1 < · · · < tk < s < t, all ψ ∈ Cb(R), all ϕ1, . . . , ϕk ∈ Cb(R

2), all ϕ ∈ C2
b (R

2),

F(g) :=

∫ ∫

g(dm, dγ)g(dm̃, dγ̃)ψ(m)ϕ1(γt1) . . . ϕk(γtk)

[

ϕ(γt) − ϕ(γs) −
∫ t

s

m̃K(γu − γ̃u) · ∇ϕ(γu)du − ν

∫ t

s

∆ϕ(γu)du

]

= 0.

Indeed, let (M, (X (t))t≥0) be g-distributed. Then (a) implies that (M,X (0)) is g0-distributed
and (b) says that the requirement (2.13) is fulfilled. Moreover, defining the vorticity wt(B) :=
∫

R×R2 m1IB(x)gt(dm, dx) for all B ∈ B(R), we see from to (2.13) and (3.7) that (wt)t≥0 satisfies

(2.6), which implies (2.4) by Lemma 3.5. Finally, point (c) tells us that for all ϕ ∈ C2
b (R

2),

ϕ(X (t)) − ϕ(X (0)) −
∫ t

0

∫

m̃K(X (s) − γ̃s) · ∇ϕ(X (s))g(dm̃, dγ̃)ds− ν

∫ t

0

∆ϕ(X (s))ds

is a martingale. This classically implies the existence of a 2D-Brownian motion (B(t))t≥0 such
that

X (t) = X (0) +

∫ t

0

∫

m̃K(X (s) − γ̃s)g(dm̃, dγ̃)ds+ σB(t).

¿From the definition of wt, we see that
∫

m̃K(X (s) − γ̃s)g(dm̃, dγ̃) is nothing but
∫

R2 K(X (s) −
x)ws(dx). Hence (X (t))t≥0 solves (1.6) as desired.

We thus only have to prove that Q a.s. satisfies points (a), (b) and (c). For each t ≥ 0, we set
Qt = Q ◦ (m, γ(t))−1.

Step 2. We know from (2.15) that the sequence GN0 is g0-chaotic, which implies that QN
0 =

QN ◦(m, γ(0))−1 goes weakly to g0 in law (and thus in probability since g0 is deterministic), whence
Q0 = g0 a.s. Hence Q satisfies (a).

Step 3. Point (b) follows from Theorem 4.1 and Proposition 5.1. Indeed, recall thatGNt is the law
of (MN

i ,XN
i (t))i=1,...,N . Since the MN

i are i.i.d. and r0-distributed by assumption (2.15) and since
the system is exchangeable, it holds that GNt ∈ En(r0) for all t ≥ 0 and r0 is supported in [−A,A]

still by (2.15). Next, Proposition 5.1 implies that supN≥2 M̃k(G
N
t ) < ∞, which is equivalent,

by exchangeability, to supN≥2 M̃k(G
N
t1) < ∞. Finally, we know that N−1

∑N
i=1 δ(MN

i ,XN
i (t)) goes
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weakly to Qt in law (by hypothesis), which classically implies (see e.g. Sznitman [50]) that for all
j ≥ 1, GNtj goes weakly to πtj , where πt := L(Qt) and where πtj =

∫

P(R×R2) g
⊗jπt(dg). We thus

may apply Theorem 4.1 (for each t ≥ 0) and deduce that
∫

P(R×R2)
Ĩ(g)πt(dg) ≤ lim infN Ĩ(G

N
t ).

By the Fatou Lemma and by definition of πt, this yields

E

[

∫ T

0

Ĩ(Qs)ds

]

=

∫ T

0

∫

P(R×R2)

H̃(g)πt(dg)dt ≤
∫ T

0

lim inf
N

Ĩ(GNs )dt ≤ lim inf
N

∫ T

0

Ĩ(GNs )dt.

This last quantity is finite by Proposition 5.1, so that
∫ T

0 Ĩ(Qs)ds <∞ a.s.

Step 4. From now on, we consider some fixed F : P(R×C([0,∞),R2)) 7→ R as in point (c). We
will check that F(Q) = 0 a.s. and this will end the proof.

Step 4.1. Here we prove that for all N ≥ 2,

(6.1) E
[

(F(QN ))2
]

≤ CF
N
.

To this end, we recall that ϕ ∈ C2
b (R

2) is fixed and we apply the Itô formula to (1.1): for all
i = 1, . . . , N , (here we use the convention that K(0) = 0)

ONi (t) :=ϕ(XN
i (t)) − 1

N

∑

j

MN
j

∫ t

0

∇ϕ(XN
i (s)) ·K(XN

i (s) −XN
j (s))ds− σ2

2

∫ t

0

∆ϕ(XN
i (s))ds

=ϕ(XN
i (0)) + σ

∫ t

0

∇ϕ(XN
i (s))dBis.

But one easily get convinced that

F(QN ) =
1

N

N
∑

i=1

ψ(MN
i )ϕ1(XN

i (t1)) . . . ϕk(XN
i (tk))[O

N
i (t) − ONi (s)]

=
σ

N

N
∑

i=1

ψ(MN
i )ϕ1(XN

i (t1)) . . . ϕk(XN
i (tk))

∫ t

s

∇ϕ(XN
i (u))dBiu.

Then (6.1) follows from some classical stochastic calculus, using that 0 < t1 < · · · < tk < s < t,
that ψ, ϕ1, . . . , ϕk,∇ϕ are bounded and that the Brownian motions B1, . . . ,BN are independent.

Step 4.2. Next we introduce, for ε ∈ (0, 1), the smoothed kernel Kε : R
2 7→ R defined by

Kε(x) = K(xmax(|x|, ε)/|x|). This kernel is continuous, bounded, verifies Kε(x) = K(x) as soon
as |x| ≥ ε and |Kε(x)| ≤ |K(x)| = |x|−1. We also introduce Fε defined as F with K replaced by
Kε. Then one easily checks that g 7→ Fε(g) is continuous and bounded from P(R×C([0,∞),R2))
to R. Since QN goes in law to Q, we deduce that for any ε ∈ (0, 1),

E[|Fε(Q)|] = lim
N

E[|Fε(QN )|].

Step 4.3. We now prove that for all N ≥ 2, all ε ∈ (0, 1),

E[|F(QN ) −Fε(QN )|] ≤ CF
√
ε.
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Using that all the functions (including the derivatives) involved in F are bounded and that |Kε(x)−
K(x)| ≤ |x|−11I{0<|x|<ε}, we get

|F(g) −Fε(g)| ≤CF

∫ ∫

|m̃|
∫ t

0

|γ(u) − γ̃(u)|−11I{0<|γ(u)−γ̃(u)|<ε}dug(dm̃, dγ̃)g(dm, dγ)(6.2)

≤CF
√
ε

∫ ∫

|m̃|
∫ t

0

|γ(u) − γ̃(u)|−3/21I{γ(u) 6=γ̃(u)}dug(dm̃, dγ̃)g(dm, dγ).

Thus

|F(QN ) −Fε(QN )| ≤ CF

√
ε

N2

∑

i6=j
|MN

j |
∫ t

0

|XN
i (u) −XN

j (u)|−3/2du,

whence by exchangeability (and since |MN
j | ≤ A a.s. for all j by (2.15)),

E[|F(QN ) −Fε(QN )|] ≤ CF
√
ε

∫ t

0

E[|XN
1 (u) −XN

2 (u)|−3/2]du.

Denoting by GNu2 the two-marginal of GNu and using Lemma 3.3 with γ = 3/2 and β = 1, we get

E[|F(QN ) −Fε(QN )|] ≤ CF
√
ε

∫ t

0

Ĩ(GNu2)du.

We conclude using Proposition 5.1 and that Ĩ(GNu2) ≤ 2Ĩ(GNu ), see Corollary 4.3.

Step 4.4. We next check that a.s.,

lim
ε→0

|F(Q) −Fε(Q)| = 0.

Since Q is the limit in law of QN by assumption and since Supp QN ⊂ [−A,A] × C([0, T ],R2)
a.s. thanks to (2.15), we deduce that Supp Q ⊂ [−A,A] × C([0, T ],R2) a.s. Hence Supp Qs ⊂
[−A,A] × R

2 a.s. for each s ≥ 0. Denote by vs(dx) :=
∫

R
Qs(dm, dx), we have from Step 3 and

Lemma 3.4 that ∇v ∈ L2q/(3q−2)([0, T ], Lq(R2)) for all q ∈ [1, 2) a.s., whence
∫ t

0

∫

R2

∫

R2

|x− y|−3/2vs(dx)vs(dy)ds <∞

a.s. by Lemma 3.5. Using now (6.2), we deduce that

|F(Q) −Fε(Q)| ≤CFA
√
ε

∫ ∫ ∫ t

0

|x(s) − x̃(s)|−3/2dsQ(dm̃, dx̃)Q(dm, dx)

=CFA
√
ε

∫ t

0

∫

R2

∫

R2

|x− y|−3/2vs(dx)vs(dy)ds.

The conclusion follows.

Step 4.5. We finally conclude: for any ε ∈ (0, 1), we write, using Steps 4.1, 4.2 and 4.3,

E[|F(Q)| ∧ 1] ≤E[|Fε(Q)|] + E[|F(Q) −Fε(Q)| ∧ 1]

= lim
N

E[|Fε(QN )|] + E[|F(Q) −Fε(Q)| ∧ 1]

≤ lim sup
N

E[|F(QN )|] + lim sup
N

E[|F(QN ) −Fε(QN )|] + E[|F(Q) − Fε(Q)| ∧ 1]

≤CF
√
ε+ E[|F(Q) −Fε(Q)| ∧ 1].

We now make tend ε → 0 and use that limε E[|F(Q) − Fε(Q)| ∧ 1] = 0 thanks to Step 4.4 by
dominated convergence. Consequently, E[|F(Q)| ∧ 1] = 0, whence F(Q) = 0 a.s. as desired. �
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7. Well-posedness for the limit equation and its stochastic paths

We first give the

Proof of Theorem 2.5. First, existence follows from Proposition 6.1. Let w0 satisfy (1.5), introduce
g0 satisfying (2.9) such that (2.10) holds true as in Remark 2.6-(ii) and finally consider set GN0 :=

g⊗N0 , which satisfies (2.15). Then Proposition 6.1 implies the existence (in law) of a solution to the
nonlinear SDE 1.6 associated to g0 and such that (2.13) holds true. Defining (wt)t≥0 by (2.12),
Remark 2.8 implies that (wt)t≥0 is a weak solution starting from w0 to (1.2). Furthermore, we
have seen in the proof of Proposition 6.1, Step 1, that (wt)t≥0 satisfies (2.6).

We now turn to uniqueness and renormalization, which we prove in several steps. We consider
a weak solution (wt)t≥0 of (1.2) satisfying (2.6) and we put K̄(t, x) := (K ⋆ wt)(x).

Step 1. First Estimates. Because of (2.6), we know that a.e. in time, ws is a measurable
function, and thanks to the M([0, T ],R2)-weak continuity assumption, we deduce that

(7.1) w ∈ L∞(0, T ;L1(R2)) ∀T > 0.

Also observe that (2.6) and (7.1) imply, thanks to Lemma 3.5, that

(7.2) w ∈ Lp/(p−1)(0, T ;Lp(R2)) ∀ p ∈ (1,∞), ∀ T > 0,

By definition of K and by the Hardy-Littlewood-Sobolev inequality (of which a particular case is
||
∫

R2 |.−y|−1f(y)dy||L2p/(2−p) ≤ Cp||f ||Lp for all p ∈ (1, 2), see e.g. [30, Theorem 4.3]), we thus get

(7.3) K̄ ∈ Lp/(p−1)(0, T ;L2p/(2−p)(R2)) ∀ p ∈ (1, 2), ∀ T > 0.

Similarly, (2.6) and the Hardy-Littlewood-Sobolev inequality imply that

(7.4) ∇xK̄ = K ∗ (∇xw) ∈ Lp/(p−1)(0, T ;Lp(R2)) ∀ p ∈ (2,∞), ∀ T > 0.

Step 2. Continuity. Consider a mollifier sequence (ρn) on R
2 and introduce the mollified

function wnt := wt ∗ ρn. Clearly, wn ∈ C([0,∞), L1(R2)). Using (7.2) and (7.4), a variant of the
commutation Lemma [16, Lemma II.1 and Remark 4] tells us that

(7.5) ∂tw
n − K̄ · ∇xw

n − ν∆xw
n = rn,

with

rn := (K̄ · ∇xw) ∗ ρn − K̄ · ∇xw
n → 0 in L1(0, T ;L1

loc(R
2)).

The important point here is that |∇xK̄| |ω| ∈ L1((0, T ) × R
2), thanks to (7.4) and (7.2). Remark

that the singularity of the Biot-Savard kernel is sharp for that property : it will no longer be true
if we increase the singularity. It is the first time that this happens, all we have done before remains
valid for a singularity like |x|−γ with γ ∈ (0, 2).

As a consequence, the chain rule applied to the smooth wn reads

(7.6) ∂tβ(wn) = K̄ · ∇xβ(wn) + ν∆xβ(wn) − νβ′′(wn) |∇xw
n|2 + β′(wn) rn,

for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a

compact set. Because the equation (7.5) with K̄ fixed is linear, the difference wn,k := wn − wk

satisfies (7.5) with rn replaced by rn,k := rn−rk → 0 in L1(0, T ;L1
loc(R

2) and then also (7.6) (with
again wn and rn changed in wn,k and rn,k). In that last equation, we choose β(s) = β1(s) where
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βM (s) = s2/2 for |s| ≤M , βM (s) = M |s| −M2/2 for |s| ≥M and we obtain for any non-negative
χ ∈ C2

c (R
d),

∫

R2

β1(w
n,k(t, x))χ(x) dx ≤

∫

R2

β1(w
n,k(0, x))χ(x) dx +

∫ t

0

∫

R2

|rn,k(s, x)|χ(x) dxds

+

∫ t

0

∫

R2

β1(w
n,k(s, x))

(

ν∆χ(x) − K̄(s, x) · ∇χ(x)
)

dxds

where we have used that divx K̄ = 0, that |β′
1| ≤ 1 and that β′′

1 ≥ 0. Because w0 ∈ L1, we have
wn,k(0) → 0 in L1(R2), and we deduce from the previous inequality, the convergence rn,k → 0
in L1(0, T ;L1

loc(R
2)), the convergence β1(w

n,k)K̄ → 0 in L1(0, T ;L1
loc(R

2)) (because β1(s) ≤ |s|,
because wn,k → 0 in L3(0, T, L3/2(R2)) by (7.2) with p = 3/2 and since K̄ ∈ L6(0, T ;L3(R2)) ⊂
L3/2(0, T ;L3(R2)) by (7.3) with p = 6/5), that

sup
t∈[0,T ]

∫

R2

β1(w
n,k(t, x))χ(x) dx −→

n,k→∞
0.

Since χ is arbitrary, we deduce that there exists w̄ ∈ C([0,∞);L1
loc(R

2)) so that wn → w̄ in
C([0,∞);L1

loc(R
2)), with the topology of uniform convergence on any compact subset in time.

Together with the convergence wn → w in C([0,∞);M(R2)) we deduce that w = w̄ and with the
same convention for the notion of convergence on [0,∞)

(7.7) wn → w in C([0,∞);L1(R2)).

Step 3. Additional estimates. We come back to (7.6), which implies, for all 0 < t0 < t1, all
χ ∈ C2

c (R
2),
∫

R2

β(wnt1 )χdx+ ν

∫ t1

t0

∫

R2

β′′(wns ) |∇xw
n
s |2 χdxds =

∫

R2

β(wnt0)χdx(7.8)

+

∫ t1

t0

∫

R2

{

β′(wns ) rn χ+ β(wns ) ν∆χ− β(wns ) K̄ · ∇χ
}

dxds.

Choosing 0 ≤ χ ∈ C2
c (R

2) and β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is non-negative and vanishes

outside of a compact set, and passing to the limit as n→ ∞ (see Step 2 for the details of a similar
convergence), we get

∫

R2

β(wt1 )χdx ≤
∫

R2

β(wt0)χdx+

∫ t1

t0

∫

R2

β(ws)
{

ν∆χ− K̄ · ∇χ
}

dxds.

It is not hard to deduce, by approximating χ ≡ 1 by a well-chosen sequence χR, using that
∫ t1
t0

∫

R2 |ws(x)|1I{|x|≥R}dx clearly tends to 0 as R → ∞ and that β is sublinear, that
∫

R2

β(wt) dx ≤
∫

R2

β(wt0 ) dx ∀ t ≥ t0 ≥ 0.

Finally, letting β(s) → |s|p/p and then p→ ∞, we get

(7.9) ‖w(t, .)‖Lp ≤ ‖w(t0, .)‖Lp , ∀ p ∈ [1,∞], ∀ t ≥ t0 ≥ 0.

Taking now β = βM in (7.8), we have
∫

R2

βM (wnt1)χdx+ ν

∫ t1

t0

∫

R2

1I{|wn
s |≤M}|∇xw

n
s |2 χdxds =

∫

R2

βM (wnt0)χdx

+

∫ t1

t0

∫

R2

{

β′
M (wns ) rn χ+ βM (wns ) ν∆χ− βM (wns ) K̄ · ∇χ

}

dxds,
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Similarly as above we first make tend n → ∞, then we approximate χ ≡ 1 by a well-chosen
sequence χR and make tend R→ ∞, and finally we take the limit as M → ∞: this yields

(7.10)

∫

R2

w2
t1 dx+ ν

∫ t1

t0

∫

R2

|∇xws|2 dxds ≤
∫

R2

w2
t0 dx ∀ t1 ≥ t0 ≥ 0.

Using (7.2), (7.9) and (7.10), we deduce that for all 0 < t0 < T ,

(7.11) ∀ p ∈ [1,∞), w ∈ L∞(t0, T ;Lp(R2)) and ∇xw ∈ L2((t0, T )× R
2).

It is easily checked, using the Hölder inequality, that ||K̄t||L∞ ≤ C(||wt||L1 + ||wt||L3). Hence,
K̄ ∈ L∞(t0, T ;L∞(R2)). We thus have

(7.12) ∂tw + ∆xw = K̄ · ∇xw ∈ L2((t0, T ) × R
2), ∀ t0 > 0

so that the maximal regularity of the heat equation in L2-spaces (see Theorem X.11 stated in [6]
and the quoted reference) provides the bound

(7.13) w ∈ L2(t0, T ;H2(R2)) ∩ L∞(t0, T ;H1(R2)), ∀ t0 > 0.

We emphasize that starting form the bound K̄ ·∇w ∈ L2(L2((t0, T )×R
2) and when wt0 ∈ H1, the

maximal regularity implies the above bound on the time interval [t0,∞). But thanks to (7.11), we
can find t0 arbitrarily close to 0 such that wt0/2 ∈ H1, and this implies that (7.13) is correct for
any t0 > 0.

Thanks to (7.13), an interpolation inequality and the Sobolev inequality, we deduce that ∇xw ∈
Lp((t0, T ) × R

2) for any 1 < p < ∞, whence K̄ · ∇xw ∈ Lp((t0, T ) × R
2), for all t0 > 0. Then

the maximal regularity of the heat equation in Lp-spaces (see Theorem X.12 stated in [6] and the
quoted references) provides the bound

(7.14) ∂tw,∇xw ∈ Lp((t0, T ) × R
2), ∀ t0 > 0

and then the Morrey inequality implies w ∈ C0,α((t0, T )× R
2) for any 0 < α < 1, and any t0 > 0.

All together we conclude with

w ∈ C([0, T );L1(R2)) ∩ C((0, T );L∞(R2)),

which is nothing but (2.7).

Step 4. Uniqueness. At this stage, we thus have shown that any weak solution to (1.2) satisfying
(2.6) meets the assumptions of [7] (which improves, thanks to very quick but smart arguments,
the uniqueness result stated in [3, Theorem B]). Such a solution is thus unique.

Step 5. Renormalization. We end the proof by showing (2.8). Let thus β ∈ C1(R) ∩W 2,∞
loc (R)

such that β′′ is piecewise continuous and vanishes outside of a compact set. Thanks to (7.11), we
can pass to the limit in the similar identity as (7.8) obtained for time dependent test functions
χ ∈ C2

c ([0,∞) × R
2) and we get

ν

∫ ∞

t0

∫

R2

β′′(ws) |∇xws|2 χdxds =

∫

R2

β(wt0 )χdx(7.15)

+

∫ ∞

t0

∫

R2

β(ws)
{

ν∆χ− K̄ · ∇χ− ∂tχ
}

dxds.

When moreover χ ≥ 0 and β′′ ≥ 0, we can pass to the limit t0 → 0 thanks to monotonous
convergence in the first term, the continuity property (7.7) in the second term and the Lebesgue
dominated convergence theorem in the third term (recall that β is sublinear and that |w|(1 +
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|K̄|) belongs to L1(0, T ;L1(R)) because w ∈ L3(0, T ;L3/2(R2)) by (7.2) with p = 3/2 and K̄ ∈
L6(0, T ;L3(R2)) ⊂ L3/2(0, T ;L3(R2)) by (7.3) with p = 6/5) and we get

ν

∫ ∞

0

∫

R2

β′′(ws) |∇xws|2 χdxds =

∫

R2

β(w0)χdx(7.16)

+

∫ ∞

0

∫

R2

β(ws)
{

ν∆χ− K̄ · ∇χ− ∂tχ
}

dxds.

With the new bound on the first term provided by (7.16), we can pass to the limit as t0 → 0 in
(7.15) and get (7.16) for arbitrary test functions χ and renormalizing functions β (i.e. without the
assumptions that χ and β′′ are non-negative). This is nothing but (2.8) in the distributional sense.
�

We now turn to the well-posedness of the nonlinear SDE (1.6).

Proof of Theorem 2.9. Let thus g0 satisfy (2.9). Here again, Proposition 6.1 (e.g. with the choice

GN0 = g⊗N0 ) shows the existence (in law) of a solution to the nonlinear SDE (1.6) such that (2.13)
holds true. Defining (wt)t≥0 by (2.12), Remark 2.8 implies that (wt)t≥0 is a weak solution to
(1.2). Furthermore, we have seen in the proof of Proposition 6.1, Step 1, that (wt)t≥0 satisfies
(2.6). Hence (wt)t≥0 is uniquely determined by Theorem 2.5. We will check below the pathwise
uniqueness for the linear equation

X (t) = X (0) +

∫ t

0

K̄s(X (s)) ds+ σBt,(7.17)

where K̄s = K∗ws. This will end the proof. Indeed, pathwise uniqueness for (1.6) will immediately
follow (consider two solutions X ,Y to (1.6) associated to the same Brownian motion B and the
same (M,X (0)), observe that both satisfy (7.17) with the same Brownian motion, so that they
coincide). Now existence in law and pathwise uniqueness classically imply strong existence by the
Yamada-Watanabe theorem [52].

For the weak uniqueness to (7.17), we might refer to [17] which assume that K̄ ∈ L2
t,x,loc. For

the pathwise uniqueness to (7.17), we might use [29], who assume that K̄ ∈ L1([0, T ],W 1,1(R2)).
But we shall give here an alternative proof for pathwise uniqueness, which is well-suited to our
initial (entropic) distribution. We adapt to our context the method of [13] concerning deterministic
ODEs with low regularity vector-field.

We thus assume that we have two solutions X and Y to (7.17) with the same Brownian motion
B, the same value of (M,X (0)) and the same vector-field K̄. Then, obviously,

X (t) − Y(t) =

∫ t

0

(K̄s(X (s)) − K̄s(Y(s))) ds,

so that for any δ > 0,

log(δ + |X (t) − Y(t)|) ≤ log δ +

∫ t

0

|K̄s(X (s)) − K̄s(Y(s))|
δ + |X (s) − Y(s)| ds

and thus

E

[

log(δ + sup
0≤s≤t

|X (s) − Y(s)|)
]

≤ log δ +

∫ t

0

E

[ |K̄s(X (s)) − K̄s(Y(s))|
δ + |X (s) − Y(s)|

]

ds.

We will use the following facts: for a measurable function f on R
2, define the Hardy-Littlewood

maximal function Mf(x) = supr>0 |Br(x)|−1
∫

Br(x)
|f(y)|dy, where Br(x) is the ball centered at x
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with radius r. Then, for a.e. x, y ∈ R
2, see [1, Corollary 4.3 with α = 0]

|f(x) − f(y)| ≤ C [M∇f(x) +M∇f(y)] |x− y|(7.18)

and for all p ∈ [1,∞], see [48, Theorem 1 in Chapter 1],

‖Mf‖Lp ≤ Cp‖f‖p, ∀p ∈ [1,∞].(7.19)

Using (7.18), we obtain

E

[

log(δ + sup
0≤s≤t

|X (s) − Y(s)|)
]

≤ log δ + C

∫ t

0

E
[

|M∇xK̄s(X (s)) +M∇xK̄s(Y(s))|
]

ds.

Denoting now by v1 (resp. v2) the law of X (t) (resp. Y(t)), we remember that (2.13) (which is
assumed for both solutions) and Lemma 3.4 imply that for i = 1, 2

(7.20) ∀p ∈ [1,+∞), vit ∈ Lp/(p−1)([0, T ], Lp(R2)).

Using (7.20) with p = 3/2, (7.19) and the estimate (7.4) with p = 3,
∫ t

0

E
[

M∇xK̄s(X (s))
]

ds =

∫ t

0

∫

R2

M∇xK̄s(x)v
1
s (x)dx

≤
∫ t

0

‖M∇xK̄s‖L3‖v1
s‖L3/2 ds

≤ C

∫ t

0

‖∇xK̄s‖L3‖v1
s‖L3/2 ds

≤ C‖∇xK̄‖L3/2([0,t],L3(R2))‖v1‖L3([0,t],L3/2(R2)) <∞.

Handling the same computation for Y, we get that

E

[

log(δ + sup
0≤s≤t

|X (s) − Y(s)|)
]

≤ log δ + Ct,

where the constant Ct is independent of δ. From that and the fact that u 7→ log u is increasing,
setting Zt := sup0≤s≤t |X (s) − Y(s)|, we can estimate for any ε > 0

P(Zt > ε) log(1 + ε δ−1) + log δ = P(Zt ≤ ε) log δ + P(Zt > ε) log(δ + ε)

= E

(

1{Zt≤ε} log δ + 1{Zt>ε} log(δ + ε)
)

≤ E

(

log(δ + Zt)
)

≤ log δ + Ct.

We have proved

P( sup
0≤s≤t

|X (s) − Y(s)| ≥ ε) ≤ Ct
log(1 + εδ−1)

.

Letting δ → 0, we obtain P(sup0≤s≤t |X (s) − Y(s)| ≥ ε) = 0. Pathwise uniqueness is proved.

It remains to prove (2.14). We denote by gt ∈ P(R×R
2) the law of (M,X (t)) and by wt ∈ M(R2)

the associated vorticity, see (2.12). Since (M, (X (t))t≥0) has been obtained by passing to the limit
in the particle system (1.1), we deduce from Theorem 2.12, Theorem 4.1 and Lemma 5.1 that

(7.21) sup
[0,T ]

H̃(gt) <∞, sup
t∈[0,T ]

M̃k(gt) <∞,

∫ T

0

Ĩ(gs) ds <∞.
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We call r0 ∈ P(R) the law of M and for m ∈ R, we denote by fmt the law of X (t) knowing that
M = m. We then have gt(dm, dx) = r0(dm)fmt (dx) for all t ≥ 0. Thanks to Itô calculus, (fmt )t≥0

clearly belongs to C([0, T ];P(R2)) (because t 7→ X (t) is a.s. continuous) and is a weak solution,
for m ∈ R fixed, to

(7.22) ∂tf
m = ν∆xf

m + K̄ · ∇xf
m

where K̄t = K ⋆ wt. Using the definitions of H̃, M̃k, Ĩ, we deduce from (7.21) that for r0-almost
every m ∈ R, for all t ≥ 0,

(7.23) H(fmt ) <∞, Mk(f
m
t ) <∞,

∫ t

0

I(fms ) ds <∞.

The Fisher information bound in (7.23) implies, by Lemma 3.2, that

∇xf
m ∈ L2q/(3q−2)(0, T, Lq(R2)) ∀ q ∈ [1, 2), ∀ T > 0.

Then we use the same arguments as in the proof of (2.8) in Theorem 2.5 (which was entirely based
on such an estimate plus an estimate saying that (fmt )t≥0 belongs to C([0, T ];P(R2))): for any

t > 0, any β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a

compact set and any χ ∈ C2
c (R

2),

∫

R2

β(fmt )χdx+ ν

∫ t

0

∫

R2

β′′(fms ) |∇fms |2χdxds

=

∫

R2

β(fm0 )χdx+

∫ t

0

∫

R2

β(fms )[ν∆χ − K̄s.∇χ]dxds.

Assume now additionally that β′′ ≥ 0 and that β(0) = 0. Considering an increasing sequence
of uniformly bounded non-negative functions χk ∈ C2

c (R
2) so that χk(x) = 1 for |x| ≤ k, it

is not hard to deduce that (use the monotonous convergence theorem for the second term, the
dominated convergence theorem and that |β(fmt )| + |β(fm0 )| ≤ C(fmt + fm0 ) ∈ L1(R2) for the first
and third terms and finally, for the last term, the dominated convergence theorem and the fact
that |β(fm)|(1+ |K̄|) ∈ L1([0, T ]×R

2) because K̄ ∈ L6(0, T ;L3(R2)) ⊂ L3/2(0, T ;L3(R2)) by (7.3)
with p = 6/5 and because fm ∈ L3(0, T ;L3/2(R2)) thanks to the Fisher information estimate in
(7.23) and Lemma 3.4 with p = 3/2),

∫

R2

β(fmt ) dx + ν

∫ t

0

∫

R2

β′′(fms ) |∇fms |2dxds =

∫

R2

β(fm0 ) dx.

We apply this with βp : R+ → R defined by β′′
p (s) := (1/s)1{s∈[1/p,p]}, βp(0) = βp(1) = 0 and let

p → ∞. The second term tends to ν
∫ t

0
I(fms )ds as p → ∞ by monotonous convergence. The first

and third terms tend toH(fmt ) andH(fm0 ) by monotonous convergence, because 0 ≤ −βp(s)1Is∈[0,1]

increases to −s log s1Is∈[0,1] while 0 ≤ βp(s)1Is∈[1,∞) increases to s log s1Is∈[1,∞). In fact, it can be
checked that βp(s) = s ln s+ (1 − s)/p if s ∈ [1/p, p]. We finally get

H(fmt ) + ν

∫ t

0

I(fms ) ds = H(fm0 ).

Integrating this equality against r0(dm) leads us to (2.14). �
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8. Conclusion

It only remains to put together all the intermediate results.

Proof of Theorem 2.12. Let us consider, for each N ≥ 2, a family (MN
i ,XN

i (0))i=1,...,N of R×R
2-

valued random variables. Assume that (2.15) holds true for some g0. For each N ≥ 2, consider the

unique solution (XN
i (t))i=1,...,N,t≥0 to (1.1) and define QN := 1

N

∑N
i=1 δ(MN

i ,(XN
i (t))t≥0)

. As shown

in Lemma 5.2, the family {L (QN ), N ≥ 2} is tight in P(P(R × C([0,∞),R2))). Proposition 6.1
shows that any (random) limit point Q of this sequence belongs a.s. to S, the set of all probability
measures g ∈ P(R×C([0,∞),R2)) such that g is the law of (M, (X (t))t≥0) with (X (t))t≥0 solution
to the nonlinear SDE (1.6) satisfying that, denoting by gt ∈ P(R×R

2) the law of (M,X (t)), (2.13)
holds true. But Theorem 2.9 implies that S is reduced to one point S = {g}. All this implies that
QN tends in law to g as N → ∞: the sequence (MN

i , (XN
i (t))t≥0) is (M, (X (t))t≥0) -chaotic.

The last point follows thanks to the fact that all the circulations are bounded by A: we know
that QN goes in probability to g, in P(R × C([0,∞),R2)). We also know that WN = Φ(QN )
and w = Φ(g), where Φ : P(R × C([0,∞),R2)) 7→ C([0,∞),M(R2)) is defined by (φ(q))t(B) =
∫

R×C([0,∞),R2)
m1I{γ(t)∈B}q(dm, dγ) for all B ∈ B(R2). A slightly tedious but straightforward study

shows that this map is continuous on the subset of all q ∈ P(R × C([0,∞),R2)) such that supp
q ⊂ [−A,A] × C([0,∞),R2). The conclusion follows, since both QN and g a.s. belong to this
subset by (2.15). �

Finally, we give the proof of Theorem 2.13 on entropy chaos and strong convergence by adapting
a trick introduced in [38] for the Boltzmann equation.

Proof of Theorem 2.13. Recall that GNt stands for the law of (MN
i ,XN

i (t))i=1,...,N , that gt is the

law of (M,X (t)), that we assume (2.15) and additionally that limN H̃(GN0 ) = H̃(g0).

Point (i). It readily follows from Theorem 2.12 that for each t ≥ 0, GNt is gt-chaotic (in
the sense of Kac) so that in particular, (MN

1 ,XN
1 (t)) goes in law to gt. It remains to prove that

limN H̃(GNt ) = H̃(gt). We first recall that from (5.7) and the remark at the beginning of the proof
of Proposition 5.1

∀ t ≥ 0, H̃(GNt ) + ν

∫ t

0

Ĩ(GNs ) ds ≤ H̃(GN0 ),

whence

lim sup
N

{H̃(GNt ) + ν

∫ t

0

Ĩ(GNs ) ds} ≤ lim sup
N

H̃(GN0 ) = H̃(g0).

On the other hand, applying Theorem 4.1 (see Step 3 of the proof of Proposition 6.1 for similar
considerations), we get

lim inf
N

H̃(GNt ) ≥ H̃(gt), lim inf
N

∫ t

0

Ĩ(GNs ) ds ≥
∫ t

0

Ĩ(gs) ds.

Using that H̃(gt) + ν
∫ t

0 Ĩ(gs) ds = H̃(g0) by (2.14), we easily conclude that for all t ≥ 0,

lim
N
H̃(GNt ) = H̃(gt), lim

N

∫ t

0

Ĩ(GNs ) ds =

∫ t

0

Ĩ(gs) ds

as desired.

Point (ii). Denote by r0 the law of M, recall that r0 is supported in A = [−A,A] and that the
MN

i are i.i.d. and r0-distributed. For j = 1, . . . , N , we denote by GNtj the j-th marginal of GNt



34 NICOLAS FOURNIER, MAXIME HAURAY, STÉPHANE MISCHLER

(that is, the law of (MN
i ,XN

i (t))i=1,...,j), and by FN,Mtj the law of (XN
i (t))i=1,...,j knowing that

(MN
i )i=1,...,j = M for any givenM ∈ Aj . Then we have the disintegration formulaGNtj (dM, dX) =

r⊗j0 (dM)FN,Mtj (dX). We also disintegrate gt(dm, dx) = r0(dm)fmt (dx).

Using first Corollary 4.3 (since GNtj → g⊗jt weakly as N → ∞ because GNt is gt-chaotic and

since supN M̃k(G
N
t ) <∞) and then that limN H̃(GNt ) = H̃(gt) by Step 1, we have, for any j ≥ 1,

H̃(g⊗jt ) ≤ lim inf
N

H̃(GNt ) lim sup
N

H̃(GNt ) = H̃(gt) = H̃(g⊗jt ),

so that, for any j ≥ 1, H̃(GNtj ) → H̃(g⊗jt ).
Introducing artificially

QNtj(dM, dX) = r⊗j0 (dM)

(

1

2
FN,Mtj (dX) +

1

2

j
∏

i=1

fmi
t (dxi)

)

=
1

2
GNtj (dM, dX) +

1

2
g⊗jt (dM, dX)

(here we use the notation X = (x1, . . . , xj) and M = (m1, . . . ,mj)), it obviously holds that QNtj
goes weakly to g⊗jt so that by lower semi-continuity, lim infN H̃(QNtj ) ≥ H̃(g⊗jt ). We deduce that

lim supN

[

1
2H̃(GNtj ) + 1

2H̃(g⊗jt ) − H̃(QNtj )
]

≤ 0, whence, by convexity of H̃ ,

lim sup
N

[

1

2
H̃(GNtj ) +

1

2
H̃(g⊗jt ) − H̃(QNtj )

]

= 0.

Using the disintegration formulae and the definition of H̃ , this rewrites

lim
N

∫

Rj

r⊗j0 (dM)

{

1

2
H
(

FN,Mtj

)

+
1

2
H
(

j
∏

i=1

fmi
t

)

−H
(1

2
FN,Mtj +

1

2

N
∏

i=1

fmi
t

)

}

= 0.

By the strict convexity of s 7→ s log s, this classically implies, see for instance [8] (all this can

be rewritten as the integral against r⊗j0 (dM)dX of a non-negative function), that from any (not
relabelled) subsequence we can extract a (not relabelled) such that

(8.1) FN,Mtj (X) →
j
∏

i=1

fmi
t (xi) for r⊗j0 -a.e.M ∈ R

j , Lebesgue-a.e.X ∈ (R2)j .

On the other hand, the estimate established in Proposition 5.1 together with Lemma 3.1 and
Corollary 4.3 imply that Ck + M̃k(G

N
tj ) + H̃(GNtj ) ≤ 2 (Ck + M̃k(G

N
t ) + H̃(GNt )) ≤ C, which

rewrites

∀N ≥ 1

∫

(A×R2)j

(〈X〉k + logFN,Mtj (X))FN,Mtj (X) r⊗j0 (dM)dX ≤ C.

The Dunford-Pettis theorem thus implies that

(8.2) FN,Mtj (X) is weakly compact in L1((A × R
2)j ; r⊗j0 (dM)dX).

It is then a well-known application of the Egorov theorem that (8.1) and (8.2) imply that

FN,Mtj (X) →
j
∏

i=1

fmi
t (xi) strongly in L1((A × R

2)j ; r⊗j0 (dM)dX).

We immediately deduce that wNtj (X) =
∫

Rj m1 . . .mjF
N,M
tj (X)r⊗j0 (dM) goes strongly in L1((R2)j)

to w⊗j
t (X) =

∫

Rj m1 . . .mj(
∏j
i=1 f

mi
t (xi))r

⊗j
0 (dM), since A is compact. �
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