Keywords:

UNIQUENESS AND LONG TIME ASYMPTOTIC FOR THE
PARABOLIC-PARABOLIC KELLER-SEGEL EQUATION

K. CARRAPATOSO, S. MISCHLER

ABSTRACT. The present paper deals with the parabolic-parabolic Keller-Segel equation in the
plane in the general framework of weak (or “free energy”) solutions associated to an initial datum
with finite mass M < 8w, finite second log-moment and finite entropy. The aim of the paper is
twofold:

(1) We prove the uniqueness of the “free energy” solution. The proof uses a DiPerna-Lions
renormalizing argument which makes possible to get the “optimal regularity” as well as an
estimate of the difference of two possible solutions in the critical L*/3 Lebesgue norm similarly
as for the 2d vorticity Navier-Stokes equation.

(2) We prove a radially symmetric and polynomial weighted L? exponential stability of the
self-similar profile in the quasi parabolic-elliptic regime. The proof is based on a (singular)
perturbation argument which takes advantage of the exponential stability of the self-similar
profile for the parabolic-elliptic Keller-Segel equation as established in [9, 14].
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The Patlak-Keller-Segel (PKS) system for chemotaxis describes the collective motion of cells
that are attracted by a chemical substance that they are able to emit ([31, 21]). In this paper we
are concerned with the parabolic-parabolic PKS model in the plane which takes the form

(1.1)

of = Af—=V(fVu) in (0,00) x R?,
edu = Au+f—au in (0,00) x R?,

which is complemented with an initial condition

(1.2)

f(O,):fOZO and U(O,'):U()ZO in R2.

Here t > 0 is the time variable, x € R? is the space variable, f = f(¢,x) > 0 stands for the mass
density of cells while uw = wu(t,z) > 0 is the chemo-attractant concentration and € > 0, « > 0
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are constants. We refer to [7] and the references quoted therein for biological motivation and
mathematical introduction.

The fundamental identities are that any solution to the Keller-Segel equation (1.1) satisfies at
least formally the conservation of mass

(1.3) M) = () = (o) = M, with (g) = [ gla)da,
and the free energy-dissipation of the free energy identity
t
(1.4) F(t) +/ Dx(s)ds = Fy,
0

where the free energy F(t) = F(f(t),u(t)), Fo = F(fo,uo) is defined by
(1.5) F = F(f,u) ::/ flogfdx—/ fudx+1/ V|2 dz + 9/ w2dz,
R2 R2 2 Jgre 2 Jr2

and the dissipation of free energy by
1
(1.6) Dr =Dx(f,u) := / fIV(log f) — Vu|* dx + g/ |Au + f — au|? de.
R2 R2

Following [7], throughout this paper, we shall assume that the initial data fo and ug satisfy
fo (1 +1log(z)?) € L'(R?*) and folog fo € L'(R?);
(1.7) up € H*(R*)if a >0 or wuy€ L'Y(R?), Vug € L*(R?) if a = 0;
fouo € L*(R?),

where here and below we define the weight function (x) := (1 4 |z[?)"/2. We also make the
important restriction of subcritical mass hypothesis

M = <f0> € (0’87(-)7

because a suitable global existence theory is available in that case (see [7, 27]) and that there
exists blow up (not global in time) solution when M > 87 (see [19, 29, 28] and the discussion in
[27, 1. Introduction]). We also refer to [4, 12] where a global existence theory is developed in the
possible supercritical case M > 0 and the condition that ¢ is large enough (which corresponds to
a case where the nonlinearity in (1.1) is small).

As in [7], we consider the following definition of weak solution.

Definition 1.1. For any initial datum (fo,uo) satisfying (1.7) with M < 8r, we say that the
couple (f,u) of nonnegative functions satisfying

f e L™0,T; LY(R?*)) N C([0,T); D'(R?)), VT € (0,00),

u € L*(0,T; H' (R?)) if o> 0;
u € L0, T; LY(R?)) and Vue L>®(0,T;L*(R?)) ifa=0;
fu € L>(0,T; L*(R?))

(1.8)

is a weak solution to the Keller-Segel equation associated to the initial condition (fo,ug) whenever
(f,u) satisfies the mass conservation (1.3), the bound

T
(1.9) sup F(t) +sup | f log(x)?dx + / Dx(t)dt < Cr,
[0,7] [0,T] JR2 0

as well as the Keller-Segel system of equations (1.1)-(1.2) in the distributional sense, namely

T
[ [ {0089 - Vo - i} dear
0 R2
T

(1.10) . fo(z) (0, x) dz

(1.11) 5/Rzu0(x)w(0,x)dx :/O [ {020+ v = e0w) = 1 (t. )0 do e



KELLER-SEGEL EQUATION 3

for any T > 0 and p,v € C%([0,T) x R?).

It is worth emphasizing that thanks to the Cauchy-Schwarz inequality, we have
[ 719208 ) = Vil do < 02 DL
R2

and the RHS of (1.10) is then well defined thanks to (1.3) and (1.9).

This framework is well adapted for a global existence theory in the subcritical mass case.

Theorem 1.2. ([7, Theorem 1]) For any initial datum (fo,uo) satisfying (1.7) and M < 8rm
there exists at least one weak solution in the sense of Definition 1.1 to the Keller-Segel equation
(1.1)-(1.2).

Our first main result establishes that this framework is also well adapted for the well-posedness
issue.

Theorem 1.3. For any initial datum (fo,uo) satisfying (1.7) with M < 8 there exists at most
one weak solution in the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2). This one
is furthermore a classical solution in the sense that

(1.12) fru € C2((0,00) x R?)
and satisfies the accurate small time estimate
(1.13) Vge[4/3,2),  ta|f(t)|lee >0 as t—0.

Finally, the free energy-dissipation of the free energy identity (1.4) holds.

Theorem 1.3 improves the uniqueness result proved in [11] in the class of solutions f € C([0,T];
LA(R?)) N L>((0,T) x R?) which can be built under the additional assumption fy € L*(R?)
(see also [17] where a uniqueness result is established for a related model and the recent works
[15, 4, 12] where the well-posedness is proved in some particular regimes). Our proof follows a
strategy introduced in [16] for the 2D viscous vortex model and generalize a similar result obtained
in [14] for the parabolic-elliptic model (which corresponds to the case ¢ = 0). It is based on a
DiPerna-Lions renormalization process (see [13]) which makes possible to get the optimal regularity
of solutions for small time (1.13) and then to follow the uniqueness argument introduced by Ben-
Artzi for the 2D viscous vortex model (see [2, 6]). It is worth emphasizing that such an argument
is also related to Kato’s works on the Navier-Stokes equation (see e.g. [20]).

From now on in this introduction, we definitively restrict ourself to the case & = 0 and we focus
on the long time asymptotic of the solutions. For that last purpose it is convenient to work with
self-similar variables. We introduce the rescaled functions g and v defined by

(1.14) f(t,x) :== R(t) 2g(log R(t), R(t) ), wu(t,z):=v(logR(t),R(t) ‘z),

with R(t) := (1 +t)'/2. For these new unknowns, the rescaled parabolic-parabolic Keller-Segel
system reads

(1.15) 8tg=Ag+V(%xg—ng) in (0,00) x R?,

(1.16) eatv:Av—f—g—i—%m-Vv in (0,00) x R

We are interested in self-similar solutions to the Keller-Segel parabolic-parabolic equation (1.1),
that is solutions which write as
1 x x
f(tvx) = ;Gs(ﬁ)a u(tvx) = ‘/s(ﬁ)

with

(1.17) ft,x)dx :/ G:(y)dy =M € (0,8).
R2 R2
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Such a couple of functions (f,w) is a solution to (1.1) if and only if the associated “self-similar
profile” (G.,V;) satisfies the elliptic system

1
(1.18) AGE—V(GEVVS—ixGE)zo in R?
AVa—i—%mVVE—i—GE:O in R?,

and thus corresponds to a stationary solution to the rescaled parabolic-parabolic Keller-Segel sys-
tem (1.15). It is known that for any € € (0,1/2) and any M € (0, 87) there exists a unique solution
(G., V2) to (1.18) such that the mass of G, equals M which is furthermore radially symmetric and
smooth (say C?(R?)), see [30, 3].

Our second main result concerns the exponential nonlinear stability of the self-similar profile
for any given mass M € (0,87) under the strong restriction of radial symmetry and closeness to
the parabolic-elliptic regime. We define the norm

(g, )l = llgllay + vl
where the weighted Lebesgue space L} (R?) for 1 < p < o0, k > 0, is defined by

LY (R?) := {f € Lioc(R?); [ fllz = If (2)*||ze < o0},

and higher-order Sobolev spaces W,f’p (R?) are defined by the norm
1 = 3 W) 0% -

o<

Theorem 1.4. For any given mass M € (0,8), there exist €* > 0 and n* > 0 such that for any
e € (0,e%) and any initial datum (go,vo) satisfying

lgo.w0) = GVl < v, [ avdo= [ Gedr=

the associated solution (g,v) to (1.15)-(1.16) satisfies
I(g(t),v(t)) = (G, V)l < Cae™ Va € (—1/2,00), Yt >0,
for some constant Coy = Cy(go,vo)-

That result extends to the parabolic-parabolic Keller-Segel equations similar results known on
the parabolic-elliptic Keller-Segel equations, see [14]. To our knowledge, Theorem 1.4 is the first
exponential stability result for the system (1.1) even under the two strong restrictions of radial
symmetry and quasi parabolic-elliptic regime (we mean £ > 0 small). However, we refer again to
the recent work [12, Section 4] where some results of convergence (without rate) of some solutions to
the associated self-similar profile are established. We also refer to that work for further discussion
and additional references.

Let us end the introduction by describing the plan of the paper. In Section 2 we present
some functional inequalities which will be useful in the sequel of the paper and we establish
several a posteriori bounds satisfied by any weak solution. Section 3 is dedicated to the proof
of the uniqueness result stated in Theorem 1.3. In Section 4 we prove the exponential stability
of the linearized problem associated to (1.15)-(1.16). Finally, in Section 5 we prove the long-time
behaviour result as stated in Theorem 1.4.

Acknowledgments. We thank J.-Y. Chemin, J. Dolbeault, I. Gallagher and O. Kavian for fruitful
discussions and for having pointing out some interesting references related to our work. The
research leading to this paper was (partially) funded by the French ” ANR blanche” project Kibord:
ANR-13-BS01-0004. K.C. is supported by the Fondation Mathématique Jacques Hadamard.
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2. LOCAL IN TIME A PRIORI AND A POSTERIORI ESTIMATES

2.1. A priori estimates. In that short paragraph, we follow [7] and we explain how to obtain
the basic estimates which lead to the notion of weak solution as presented in Definition 1.1. We
first observe that the following space logarithmic moment control holds true

d
T f( log H)dr = /RZfV(logffu)oV(logH)dx

IN

) 1
-D = log H|?
3 Ds(fou)+ 55 [ 11V Iog H[da,

where

H(z) = - @ and then |Vlog H(x)| < 2,
T

which together with (1.4) imply that the modified free energy functional

Fu=F(f,u)— flogH
R2

satisfies
1
2.1 — —Dr(t) <M.
(21) & Fult) + 3 Dr(1) <
On the one hand, introducing the Laplace kernel rg(z) := —5-1log|z| and the Bessel kernel

Ka(z) = 1= [5 t L exp(—|z|?/(4t) — at) dt for o > 0, so that u = Ui, := kq * f is a solution to the
Laplace type equation
—Au=f—oau in R?

and introducing as well the chemical energy and the modified entropy

: /\vu\z /u —/fu Hy )::/flog<f/H)

one can easilly show (see e.g. [7, Lemma 2.2])

(2.2) Fulfiu) = Hu(f) + Falf, ) + /|Vu—ua| 4 /(u—ua>2
and
(2.3 Fulfin) = =5 [ [ 1@ 1) sale =) dudy

On the other hand, we know from the classical logarithmic Hardy-Littlewood Sobolev inequality
(see e.g. [1, 10]) or its generalization for the Bessel kernel (see [7, Lemma 4.2])

(2.4) Vf>0, / f(x)log f(x)dx — //R2 . Y) Koz — y) dedy
/R2 f(z)log H(z)dx > —C1 (M),

where here and below C;(M) denotes a positive constant which only depends on the mass M.
Then from (2.2), (2.3) and (2.4) together with the very classical functional inequality (see e.g.
[7, Lemma 2.4])

(25) HE = 1) = [ FosD)e < Hah) — ] [ Flosta)? + Caan),

one immediately obtains for M < 87

Falfw) = (0= gomulh)+ 5= (Ha(N =57 [ [ £ 16)rale =) doy)

V

v

(M) Ho (f) + Ca(M) / flog(x)? — C5(M).
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One concludes that under the assumption (1.7) on the initial datum, the identity (1.3) and the
inequality(2.1) provide a convenient a priori estimates in order to define weak solutions, namely

1 t
(26) CalM)HF (1(0) + Ca(00) [ F(O)1og(a)? + 5 [ Dr(f(s),u(s)) ds <
0
< Fu(0)+ Cs(M) + Mt,
and we remark that the RHS term is finite under assumption (1.7) on (fo, uo), because

Fua(0) = F(fo,uo) — / fologH

= F(fo,uo) + M logm + Q/fo log(z)? < +oo.

It is worth emphasazing that in order to get the bounds announced in Definition 1.1 in the case
a > 0 one may use the inequality

Q1) FuzCuM) [ IVaP + €00 [ a4 €M) [ fu- G0N+ 1/a)
which is establihed in [7, (3.5)].

2.2. Local in time a posteriori estimates. We start by presenting some elementary functional
inequalities which will be of main importance in the sequel. The two first estimates are picked up
from [16, Lemma 3.2] but are probably classical and the third one is a variant of the Gagliardo-
Niremberg-Sobolev inequality.

Lemma 2.1. For any 0 < f € L (R?) with finite mass M and finite Fisher information

2
r=1= [ FE
Rz f
there holds
(2.8) Vpe[l,00), |floeme < CpMYPI(f)1=1/,
(2.9) Vqe[l,2), [[Vfllpage) < CqMYIY21(f)3/2-1a,
For any 0 < f € LY(R?) with finite mass M, there holds
(2.10) VpeE(2,00) |fllrime) < Cp MY/ P+ ||v(fp/2)||2L/2(p+1).

We refer to [16, Lemma 3.2] and [14, Lemma 2.1] for a proof.

The proof of (1.12) in Theorem 1.3 is split in several steps that we present as some intermediate
autonomous a posteriori bounds.

Proposition 2.2. For any weak solution, we have

I(f(t)) € L*(0,T), VYT >0.
Proof of Proposition 2.2. We write
(2.11) Dr(f) 2 1(7) +2 [ £ A,

Then by Young’s inequality it follows

/fAu = /f(aatu—f—i-ozu)
> —(1+0¢/2+5/2)/f2—E/2/(8tu)2—a/2/u2.

The second and third terms belong to L'(0,7) from (1.9), so we only need to estimate the first
one.
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For any A > 1, using the Cauchy-Schwarz inequality and the inequality (2.8) for p = 3, we have

/f21sz /flsz v /f3>1/2
(fr 20y (canrrp)™

from what we deduce for A = A(M,H™) large enough, and more precisely taking A such that
logA=16H, C3 M(1+ a/2+¢/2)?,

3/2M1/2WI < (1+oz/24+6/2)*1 1),

IN

IN

(2.12) /f2 154 <C

Denoting ®(u) = ¢ [(0u)* 4+ a [u? € L'(0,T) and putting together the last estimate with (2.11),
it follows

1
F1(f) = D;+C/f21f§A+<I>(u)
< Dr+2M exp(CHy M) + P(u),
and we conclude thanks to (1.3)—(2.6). O

Remark 2.3. The logarithmic Hardy-Littlewood Sobolev inequality (2.4) in the supercritical case
M > 8m does not lead to a global estimate as for the subcrtitical case M € (0,8w). However,
introducing the function 4 := M H of mass M and the modified free energy

1
Far(fou) ::/ (f log(f/M) — f + M) dz 7/ fudz + 7/ Vu|? da + 9/ w2da
R2 R2 2 R2 2 R2
one shows that any solution (f,u) to the Keller-Segel equation (1.1) formally satisfies

d -~

1
—=D M
di F(.f7u)+

< —zw) - / fAu— = / (0u)* + M

< —%I(f) /(atu (1+¢) /f2 /u + M,

where we have just used (2.1) and the estimate (2.11) and the ones which follow at the beginning
of the proof of Proposition 2.2. We also observe that from (2.5) and (2.7), we may deduce

IA

’H+(f)+/|Vu|2+a/u2 < KaFulfou) + Ko

where K;, i = 1,2, are constants which may depend on M > 0 and o > 0. Arguing then as in the
proof of Proposition 2.2, we easily get

KaFuld ) )

1
4 rufn) < —if(f)—Z/(atu)z+(1+5){MA+C§’/2M1/2 T

dt
Ky -~ K
o Fulfou) + 5+ M (VA>0)

< hg) =% [(@u + Ky expls Futh.) + K

4
by making the appropriate choice log A = K' ]:"M(f7 u) for A. This differential inequality provides a
local a priori estimate on the modified free energy which can be used in order to prove local existence
result for supercritical mass. Because we will prove in Theorem 1.3 that the above resulting bound
is suitable in order to get the uniqueness of the solution, we classically can obtain the existence and
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uniqueness of mazimal solutions (in the weak sense of definition 1.1) (f,u) € C([0,T*); D'(R?) x
D'(R?)) such that

_ T
sup Far(£(0).u(t) + [ {170+ Dr(s@)u(®) }dt <0 T € (0.17)
[0,7) 0

and the alternative

T.=+o0o or (T.<oo, Far(f(t),u(t)) = oo ast — T*).

As an immediate consequence of Lemma 2.1 and Proposition 2.2, we have

Lemma 2.4. For any T > 0, any weak solution f satisfies

(2.13) f e LP/®=Y(0,T; LP(R?)), Vpe (1,00),
(2.14) Ve L?/Br=2(0,T; LP(R?)), Vpe|l,?2),
(2.15) Au € L*(0,T; L*(R?)).

Proof of Lemma 2.4. The bound (2.13) is a direct consequence of (2.8) and Proposition 2.2. The
bound (2.14) is consequence of (2.9) and Proposition 2.2. The bound (2.15) is an immediate
consequence of the equation Au = edyu + au — f and the fact that each term of the right-hand
side lies in L?(0,T; L?(R?)) thanks to (2.13) and (1.9). O

Lemma 2.5. Any weak solution (f,u) satisfies

(2.16) / B(fe,) dx+/ / B"(f) IV fs|?* dads
< [ strdes [ [ (60 - 1)) s dods.

for any times 0 < tg < t; < o0 and any renormalizing function B : R — R which is convex,
piecewise of class C' and such that

1B < C(1+E&(ogé)s), (BE)—EB(§)+ <C(1+E) VEER.
Proof of Lemma 2.5. Consider a weak solution (f, ), we write
Onf = Af - Vu-Vf— (Au) f,
and we split the proof into three steps.

Step 1. Continuity. Consider a mollifier sequence (p,) on R2, that is p,(x) := n%p(nz), 0 < p €
D(R?), [ p =1, and introduce the mollified function f;* := fi*,p,. Clearly, f* € C([0,T); L*(R?)).
Using (2.13) and (1.9), a variant of the commutation Lemma [13, Lemma II.1 and Remark 4] tells
us that

(2.17) O f" =Af"—Vu - V" — (Au) f* + 1",
with 7 =" 4+ r3y given by
= Vu-Vf" = (Vu-Vf)xp, —0 in L0,T;L},.(R?)),
rgy = (Au)f" = [(Au)fl % pp = 0 in L0, T; L, (R?)).
The important point here is that f € L?(0,T; L?(R?)) thanks to (2.13) and Vu € L2(0,T; W12(R?))

thanks to (2.15), hence the commutation lemma holds true.
As a consequence, the chain rule applied to the smooth function f™ reads

(2.18) QB(f") = AB(™) = B"(f") IV f"1? = Vu- VB(f") — (Au) f"B'(f7) + B'(f")r"

for any 8 € C1(R) N leocoo (R) such that 8" is piecewise continuous and vanishes outside of a

compact set. Because the equation (2.17) with u fixed is linear, the difference f™F := f» — fk
satisfies (2.17) with 7" replaced by r™* := " — ¢k — 0 in L'(0,T; L}, .(R?)) and then also (2.18)

loc
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(with again f™ and r™ changed in f™* and r™*). For any non-negative function y € C2(R%) we
obtain

n,k _ nk ” nk ok
Rzﬁ(f () x AU // B (F7F () |V f7oH ()2 v
n,k s u(s) - n,k s)) — n,k s 10 enk s uls
i /O/WW (5)) Vuls) VX+/O/RQ{5(f (5)) = fE()8'(F"H ()} Auls) x
" /O R2 B/(fn7k(s))rn7k(3) X-

In that last equation, we choose 3(£) = B1 (&) where B4(€) = £2/2 for €] < A, Ba(€) = A|€]— A%)2
for [¢] > A, and using |B1] < 1 and 37 > 0 it follows

[ty < [ aurt oy [ [ i) vl

[t = s sl s [ [ el

Since fo € L', we have f™*(0) — 0 in L'(R?) and we deduce from the previous inequality and
the following convergences: r™* — 0in L1(0,T; L}, (R?)); B1(f™*)|Vu| — 0in L1(0,T; L, (R?)),
because £1(€) < [€], f* — 0in L%(0,T, LQ(RZ)) by (2.13) with p =2 and Vu € LQ(O,T L?(R?))
by definition 1.1; B1(f™*)|Au| — 0 in L'(0,7T; L*(R?)), because B;(¢) < [|¢], f** — 0 in
L2(0,T,L?*(R?)) and Au € L?(0,T; L%(R?)) by (2.15); and f™F31(f™*)|Au| — 0in L1 (0, T; L*(R?)),
because |3;] < 1, f** — 0in L%(0,T, L?(R?)) and Au € L?(0,T; L*(R?)); that

sup [ Bi(fMM(t ) x(@)de — 0.

te[0,T] JR2 n,k—o0

L (R?)) so that f* — f in
C([0,T); L},.(R?)), YT > 0. Together with the convergence f* — f in C([0,00); D'(R?)) and the
bound (1.9), we deduce that f = f and

(2.19) f*— f in C([0,T]; L*(R?)), VT >0.

Since x is arbitrary, we deduce that there exists f € C([0,00); L},

Step 2. Linear estimates. We come back to (2.18), which implies, for all 0 < ¢y < t1, all x € C%(R?),
t1 t1
e20) [ s [ [ srumwerex= [ o [ s v vx
R2 to
tl tl
o[ L -y s [ g

Choosing 0 < x € C2(R?) and 8 € C*(R) N W;2>°(R) such that 5 is non-negative and vanishes

loc
outside of a compact set, and passing to the limit as n — oo, we get

[ 8 x+/ / B(£,) V. fb|2x</ B(fs) x+/ /{B 1) = FoB' (o)} Dy x
(2.21)

/ B(f.) Vu - Vy.
to R2

By approximating x = 1 by the sequence (xr) with xr(z) = x(z/R), 0 < x € D(R?), we see
that the last term in (2.21) vanishes and we get (2.16) in the limit R — oo for any renormalizing
function 8 with linear growth at infinity.

Step 3. Superlinear estimates. Finally, for any 3 satisfying the growth condition as in the statement
of the Lemma, we just approximate [ by an increasing sequence of smooth renormalizing functions
Br with linear growth at infinity, and pass to the limit in (2.16) in order to conclude. (]
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Lemma 2.6. For any weak solution f and any p > 2, there exists a constant C' := C(M,Hgy, M2(0), T, p)
such that

1 [h
(2:22) £+ 5 [ 19af? st < ClECOIE

to
Proof of Lemma 2.6. We define the renormalizing function g : Ry — Ry, K > 2 by
p—1

K
Brel€) =€ i E< K, re(6) = 1o Elog€ if €2 K,

so that B is convex and piecewise of class C!, and moreover there holds
p—1

Br(6) —Br(§) = (p—1) &P Leck + K £1£>K7

and
Kpr-11
K& =pp =) lea + — K £ leon

Thanks to Lemma 2.5, we may write

Kr—! V. f[?
6K(ft1)da:+ //|V fp/2)|21f<deds+ //' 7l 15>k dads
R2

tl tl
§/ ﬂK(ftO)dxf(pfl)/ / Aufp1f<Kdacdsf / / Au f 1y dads.
R2 to R2 - log K -
On the one hand, using the Gagliardo-Niremberg-Sobolev inequality

/g4da:§C/ g2dx/ Vg|? da,
R2 R2 R2

T = (p—l)/ |Au| fP 1<k dzds
R2

we have

IN

1/2
o= 18ules( [ (K7 do)
P »/ 1/2
< Claul( [ (FaKpds [V AK)pRE ds)
1
< ClAulf /R 6K(f)d:c+l7/R2 IV (f7/2)? 1<k d.

On the other hand, thanks to the Sobolev inequality (line 2) and the Cauchy-Schwarz inequality
(line 3), we have for K large enough

o= e <ap (- rsom a)”
< 4f§g; Al / VU = K/l de =R Sulzs [ 9613
< 4{;;; |Aulz2 dx (/fleK/2 dx)l/Q (/}R2 |VJ{|2 1f2K/2)1/2
< C||Au||L2/Kp_ Flyskpde +21,,f§;; 8 lva Ly> /2
< olsuls [t g i {2 [ w2 e [ TR
< Claul [ Brndat S [ 90 fp/2)|21f<de+;f§;; 5 'VJ{Q 15k da.
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All together, we have proved that there holds for some numerical constant C

t1

2
/2ﬁK(ft1)d$+]? 2|Vx(f1’/2>‘21f§1<d$d5
R to JR

ty
< [ gt e +c [ isuls [ () drds

We conclude to (2.22) by applying first the Gronwall lemma, using that ||Aul|2, € L*(0,7), and
passing next to the limit K — oo. O

Lemma 2.7. Any weak solution (f,u) satisfies

Oif,0uf,03 ., f,0ru, 0yu, 07, u € Cp((0,T] x R?), VT >0,

Y YT T
so that it is a “classical solution” for positive time.

Proof of Lemma 2.7. For any time to € (0,7") and any exponent p € (1, 00), there exists t, € (0, %)
such that f(t,) € LP(R?) thanks to (2.13), from what we deduce using (2.22) on time interval
(ty, T) that

(2.23) f € L¥(ty, T; LP(R?)) and V,f € L*((ty,T) x R?).
Since u satisfies the parabolic equation
edyu — Au + au = f,

the maximal regularity of the heat equation in LP-spaces (see Theorem X.12 stated in [5] and the
quoted references) and the fact that
u(t) = Ve *tw f+ Ve xauo  and  Vu =T ko f+ 9 2 Vg

—Qas

~s and similarly for I', ~, is the heat kernel given by

1 2
yi(x) := ypn exp (@) € L*(0,T; LZZ(RQ)), V21,20 > 1, 1/21+1/29 > 1,

where we denote 7 = e

and
Ty(z) = Vv (x) € L0, T; L% (R?)), Vs1,80 > 1, 1/s1+1/s5 > 3/2,
provide the bound
(2.24) u € L™ (to, T; LP(R?)), Vu € L™(ty,T; LP(R?)), 0w, D*u € LP((to,T) x R?),
for all t € (0,7) and p € (1,00). Since now f satisfies the parabolic equation
Of—Af=-YVu-Vf—(Au)f=Z
with Z € L?(to,T; L9(R?)) for all to € (0,T) and all ¢ € [1,2) from (2.23) and (2.24), the same
maximal regularity of the heat equation in L7-spaces (with the choice s; = so = (4/3)7) implies
Vf e LP(ty, T; LP(R?)),Vp € [2,4),

and then Z € LP(to,T; LP(R?)), Vp € [2,4). By a bootstrap argument of the regularity property
of the heat equation we easily get

(2.25) f € L®(ty,T; LP(R?)), VfecL®(ty,T;LP(R?), 0.f D*fec LP((ty,T) x R?),

for all t € (0,T) and p € (1,00). The Morrey inequality implies then f,Vf,u, Vu € C%%((ty, T) x
R?) for any 0 < o < 1, and any t, > 0. Finally the classical Holderian regularity result for
the heat equation (see Theorem X.13 stated in [5] and the quoted references) implies first u €
C?((tg,T) x R?) and next f € C%%((ty,T) x R?), which concludes the proof. O

We prove now the free energy-dissipation of the free energy identity (1.4) in Theorem 1.3.
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Proof of the free energy identity in Theorem 1.3. We split the proof into two steps.

Step 1. We claim that the free energy functional F is Isc in the sense that for any sequence ( f,,, uy)
of nonnegative functions such that (f,) is bounded in L' N L*(log(z)?) with same mass M < 8,
() is bounded in H' if &« > 0 or in L' N H' if & = 0, (fyuy) is bounded in L' and such that
F(fr,un) < Aand (fn,u,) = (f,u) in D'(R?) x D'(R?), there holds

(2.26) 0< feL'nL'(log(x)?) and F(f,u)< lim inf F(f,,, un).
Because of (?7) and (2.5), we have HT(f,) < C and we may apply the Dunford-Pettis lemma

which implies that f,, — f weakly in L(R?).
We rewrite the free energy functional as

]:(fnaun) = H(fn) + Fa(fnaun)

with
1 2 @ 2
H(fn) = fn Ingn and Fa(fnaun) = 5 |Vun| + 5 Up — fnun
Case o > 0. We denote u,, = K, * f, where ko(2) = ﬁ Ooo %e*%*”‘t dt is the Bessel kernel.

Since f, >0, fn € L' N Llog L and u,, € H' [7, Lemma 2.2] implies that 4, € H' and also that
the functional Fy(fy,u,) is finite and satisfies

B 1 _ e} _
Folfnyun) = Fo(fn,@n) = §||V(un - Un)”%? + §||un - un”%ﬂ
Hence we can write
1 1 _ a _
F(fastn) = H(F) = 5 [ [ Sl ool =) + 51 = w)[3 + 5 un — w0
= H(fn) + V(fn) +ul(un - ﬂn) +u2(un - 'an)7

where the functionals f; and Us are defined through the third and fourth term respectively. We
clearly have that U; +Us is Isc for the weak H' convergence and # is Isc for the weak L' convergence,
so we investigate the functional V. For any € € (0,1) we split V =V, + R, as

V9)i= = [ [ o) furale )1
Rolg)i= 5 [[ @) fuwrale = )1y

The Bessel kernel k, is a positive radial decreasing function with a singularity at the origin:
ka(2) = —5=1log|z| + O(1) when |z| — 0. Hence V. is continuous for the weak L' convergence and
for the rebt term we obtain, for any ¢ € (0,1) and A > 1,

|R ‘ < C// 1\36 y|<e +C// log‘x 7y|) 1|m—y\§e
< C// g(x)<)\g 1\3: y|<e +C'\// g(ac)>)\g )llx—y\ge

e / / 11y (0y200(5) (108 |2 — y) - Lja_yice + C / / VL (yorg(1) 108 (17 — 4| )L yj<e

< CA/yg(y) {/|z|§edz} +C/yg(y){ / ) log g(x }
JrC)\/yg(y) {/|Z|<6(10g|z| }+C/ g(mm/y{g(y) log g(y) + |z — y[ ™ oy

H(g) 3 H(g)
< 2 4
MAe + M1 \ + MXe lo )\{”H(g) + €},
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where we have used the convexity inequality uv < wlogu + €” for all w > 0, v € R and the
elementary inequality ulogu > —u!/? for all u € (0,1). Hence sup,, |R(f.)| — 0 as ¢ — 0 and we
deduce that F is lsc.

Case o = 0. We define @, = ro(fn — MH) where H(z) = (x)~*/7 and ro(z) = —5= log 2| is the
Poisson kernel. Since 0 < f,, € L' N L' (log(x)?), H(f,) is finite, [(f — MH) =10 and u, € H',
7, Lemma 2.2] implies that 7, € H' and also that the functional Fy(f, — M H,u,) is finite and
verifies )

Fo(fn = MH,un) = Fo(fn = MH, ) = S|V (un = n)|[72.

Now we argue as in the case a > 0. First we write

Flfarn) = H(F) = 5 [ [ falrfuwhmota ~y +M//fn y)rolz — 1)
+ §||V(un—ﬂn)||2L2 —M/Hun //H Y)ko(z — y)

= H(fn) +V(fn) + W(fn) +Ur(un — n) +Uo(un) + Z(H).

The functional U, is lsc for the weak H' convergence and H is lsc for the weak L' convergence.
For V we just argue as in the preceding case a > 0. In the same way (even simpler) we conclude
that W is lsc for the weak L' convergence. Finally we conclude that F is lsc.

Step 2. Now, we easily deduce that the free energy identity (1.4) holds. Indeed, since f is smooth
for positive time, for any fixed ¢t > 0 and any given sequence (t,) of positive real numbers which
decreases to 0, we clearly have

t

F(ftn)=F@t)+ | Dr(f(s))ds.

tn

Then, thanks to the Lebesgue convergence theorem, the lsc property of F and the fact that
f(tn) = fo weakly in D’(R?), we deduce from the above free energy identity for positive time that

Flfo) < lmint F(5(62)) < i () + [ (76 as) =70+ [ D5

n—oo

Together with the reverse inequality (1.9) we conclude to (1.4).

3. UNIQUENESS - PROOF OF THEOREM 1.3

In this section we prove the uniqueness part of Theorem 1.3. In order to do so we first prove
some estimates in Lemmas 3.1 and 3.2.

Lemma 3.1. Any weak solution f to the Keller-Segel equation satisfies that for any p € (1,00),
T € (0,00) there exists a constant K = K(fo,p,T) such that

(3.1) = fOE, <K Vte (0,T).

Proof of Lemma 3.1. Recall that we already know that ||f| ., € C(0,T) for any p > 1 and
Ifllze € L (to,T) for any 0 < to < T and any p € [1,00]. We have then for p > 1

/ o= (- 1/p) / V(AL 4 (p— 1) / (1) / (Bru + ) f7
= TV\+T,+1T;s.

Using the splitting f = min(f, A) + (f — 4)4, for some A > 0, and denoting h(u) := dyu + au €
L?(0,T; L?(R?)), we have

|T5] < C/|h(u)|min(f,A)p+C’/\h(u)|(f—A)ﬁ =:T31 + T30.
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For the term T3; we have
|T51| < CAp’l/z/lh(U)lf < CAP2(||h(w)|132 + M).

For T3z, using Gagliardo-Niremberg-Sobolev inequality [|g[|7. < C|lgl|3:[|Vgl/2. with g = (f —
A)F /% it follows

Ty < O/\h(U)I(f—A)i
1/2
< Ch() 1 ( Ju- A)i”)

< Cln(e) 2 (/(f Ay ) (/ v - A,,/le) 172
< Calln(wl3e [(F = 4% +5 [ 19(72)P 15

for any § > 0.
For the second term we have

T <C / min(f, AP+ 1 C / (f — A+,

the first part is easily bounded by C AP M and for the second one, using (2.10) we obtain

Ju-ar<e(fu-an)([ivu-aee) < L8 ([ivpae.).

Gathering all the previous estimates and choosing § > 0 small enough and A big enough, it follows

d
G2 g [P [IV0HE bl [ 12+ 01 + b)),
Thanks to the following inequalities
(12 P < eIV fIEE s and (125 < ClUFI V(7222

we obtain from (3.2)

d »

T X() < —CoX ()71 + CLHMX (1) + Co(L+ H(t),  t€(0,T),
where we denote X (t) := ||f(¢)||}, and H(t) := ||h(u)||2.(t) € L*(0,T). By standard arguments
(see e.g. [7]) we conclude to (3.1). O

We (crucially) improve the preceding estimate by showing
Lemma 3.2. Any weak solution f to the Keller-Segel equation satisfies that for any p € [2,00)
(3.3) % | f(t, )| L2osoen — 0 ast— 0.

Proof of Lemma 3.2. We now prove (3.3) from (3.1) and an interpolation argument. On the one
hand, we use the Holder inequality in order to get

/f2p/(p+1) — /fp/(pH) (log f>p/(p+1) fp/(p+1) (log f)p/(erl)
p/ b 1/(p+1)
([ raosn)™™ ([ oss1)

IN

or in other words

/(2p)
(34) o < € ([ 7 0g7) "



KELLER-SEGEL EQUATION 15

On the other hand, we observe that

! / oy < [ gy et [ og £y

<R f2R
Rp—1 tp—1
con B
(log R)? Jy<r (log R)? J¢>r
o1 MRP! K
+
- (log R)? ~ (log R)?
M+ K
3.5 — — 0,
>9) llog -1
where we have used the mass conservation and the estimate (3.1) in the third line and we have
chosen R :=t"! in the last line. We conclude to (3.3) by gathering (3.4) and (3.5). O

We are now able to prove the uniqueness of solutions.

Proof of the uniqueness part in Theorem 1.3. We consider two weak solutions (f1,u1) and (f2, us2)
to the Keller-Segel equation (1.1) that we write in the mild form

fi(t) = e® £:(0) — / e=IAY . (f;(s)Vuy(s)) ds

0
— A (0) — / Vet=A (£,(s)Vui(s)) ds
0

and

« s 1 s o s—o
ui(s) = e~ <%e=%u,(0) + f/ e 2= 3 )Afi(a) do,
€Jo

from which we also obtain

a, s 1 % _a
Vui(s) = e =% 2(Vu;(0)) + g/ e (=) (Ve
0

(S;U)A)fi(a) do.

When we assume f1(0) = f2(0) and u1(0) = u2(0) = g, the difference F := fo — fy satisfies

(3.6) ~Jo

For any t > 0, we define

Zy(t) = sup s= 5 ||fi(s)| . A@) = sup sT[[F(s)] .
0<s<t Lrt1 0<s<t

We recall the explicit formula for the heat semigroup

tA 1 ‘35|2
etg=(t") *z g, y(t, x) = e |~ )

and the following inequalities that will be useful in the sequel
1 1 1
I gller < IKleallgller, -+ o =241 1<pgr <o

and
3

1_ 1_
Iyt lzame) < Cata™" V(L) llnare) < Cqta™ 2.

We fix p > 2 and we shall compute the quantity 3| - || ;42 for each term of (3.6).
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For the second term we compute

ds
L4/3

t
() oss < Clave) £ /
0

Velt=s)A {F(s) /OS Ve(sza>Af2 (o) da}

t s
gcﬁ/ ZGOIVT F(s)/ Ve A (o) do||  ds
(3.7) % N Lt
1 _3 ’ (s—o)
gmz/(t—s) iHF(s)HL4/3/ Ve 528 £, (0 | 1+ do ds
0 0
1 t 3 s (s—0o)
<ctd (= HFGn [ 1955 po)]prdods,
0 0

where we have used Young’s inequality for convolution in the second line and Holder’s inequality
in the third line. Now we can estimate the integral over do using Young’s inequality with 1/4+1 =
1/a+ (p+1)/(2p), ie. 1/a=3/4—1/(2p), by

r

(s—

(s=o) s )
) R A P T
0
<C

L+l

(5= )i % % | fo(0)] 2 do

since the last integral is bounded thanks to —% — ﬁ > —1 from p > 2.
Gathering last estimate with (3.7) it follows

t
3| () || pars < Otz/ (t—8)"% 51 ||F(s)|| pass Z2(s) ds
0
t
gCZf,(t)A(t)/ (t—s) 3tis 2ds
0

1
<czman [(a-n iy ta

2
< CZ(t) A(t).
For the term I3 we compute

(s=o)

t S
A0l < ott [ Hv«ﬁsm{fl(s) [ v 2k o))
0 0

ds

14/3

ds

t
(3.9) gOti/ 1Vet=92 s
0 Lt

fi(s) /OS VE@AF(O') do

(s=0o)
€

t s
< i _ )i 2p a 2p .
<ot [a-a A,z [ IV2FO  dods
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We compute the integral over do, we have

3p—2

s s—o s s—o
[ I 2 2F @) s do < [ 192 e 1P ()]s do
0 Lr—1 0 L
<C [(s= o) ¥ F @) s do
0

< C’A(s)/ (s — U)_%_ﬁ o i do
0

< CA(s) s,

since the last integral is bounded because p > 2. Putting together this estimate with (3.9) we
obtain

2 A(s) s ds

Lp+1

1 1 t 3
ﬁ%@hméCﬂ/UfﬁﬂM®H
0
(3.10)

(NI

gcz;(tm(t)/t(t—s)—iti .
0
< CZ,(t) At).

For the term I; we compute

ds

t
L (1) s < cti/o [vet=2 (Fs)er2vuo}|

t
(3.11) < cﬁ/ IVe=2 s [|F(s)e*2Vugl|, ds
0

t
< (jti/ (t — 3)—% 1E(s)|| pass ’ eiAVuon ds,
0

where we have used Young’s and Holder’s inequality, respectively. Let K > 0 to be chosen later,
we estimate

(3.12) ||62Avu0||L4 < ||65AVUO 1{|Vuo\SK} ||L4 + ||62AVUO 1{|Vuo\2K} ||L4-
Using Young’s inequality we can write

For the second term in (3.12) we have (again by Young’s inequality)

s s 1 1/2
e£8Vug Ljwugi<icylloe < €220t Vo 1jvugi<xy 0 < CKF |[Vuol|14 -

s _1
€= Lass || Vuo Lijwue sy llz2 < Cs™7 o(K)

le 2 Vo 1w ug >y s < |
where
O(K) := |Vuo 1{|vue>ryll2 0 as K — 4oo,
by the dominated convergence theorem. Putting together that last estimates in (3.12) and choosing

K = s~ 1 it follows

e AVugl|La < Cs™i e(s) with ¢(s):= $F 4 @(sii) — 0,
S5—r

from which, coming back to (3.11), we obtain

t
£ || 11 (8)] pass < Ct%/ (t—8)" 7 |F(s)||pass s 7 e(s)ds
0

(3.13) <c ( sup e(s)) A(t) /Otti(t—s)—i s ds

0<s<t

<0 (5w ) aw.

0<s<t
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Gathering (3.8), (3.10) and (3.13) we conclude

1
A(t) < C | sup e(s)+ Zy(t) + Z2(t) | A(t) < = A(t)

0<s<t 2
for t € (0,7), T > 0 small enough, which in turn implies A(¢) =0 on [0,7'). We may then repeat
the argument for later times and conclude to the uniqueness of the solution. U

4. SELF-SIMILAR SOLUTIONS AND LINEAR STABILITY

4.1. Convergence of the stationary solutions. First for a given mass M € (0,87) and a given
parameter £ > 0, we consider the associated self-similar profile solution (G¢, V;) which is the unique
solution of the system of elliptic equations (1.17)-(1.18), as well as the unique positive solutions
(G, V) to the limit case ¢ = 0 system of equations

1
(4.1) AG—V@VV—imnzo in R?, Gdzr = M,
Rz

AV+G=0 in RZ

It is worth emphasizing that (G, V) is the unique self-similar profile associtaed to the parabolic-
elliptic Keller-Segel equation, see [9, 14].

Lemma 4.1. There exists a constant C such that for any € € (0,1/4]

(4.2) 0 < Ge(x) < Ce e/,
1
(4.3) sup (+— + (z)) [VVe(2)| < C,
zER? |:C‘
and
(4.4) sup |AV.(z)| < C.
zER?

Proof of Lemma 4.1.

Step 1. The estimate (4.2) has been proved in [3]. More precisely it is a consequence of equations
(26) and (49) in [3], and

G(0)=b, 0<M(eb) <4m min(2,b).
Here the parametrization of G is made in function of € and b = G(0) instead of € and M because

this dependence is more tractable. Observe that the estimate above guarantees that the mass is
subcritical, i.e. M(e,b) < 8.

Step 2. Since V; and G. are radially symmetric functions the equation on V. writes

1 1

(4.5) VE"—&—(;—i—gsr)V;—i—Gazo Vr >0,
where we abuse notations in writing V.(r) = V.(z), Go(r) = G<(|z|), » = |z|. The function V.
is smooth and the equation is complemented with the boundary conditions V/(0) = V/(c0) = 0.
Defining w := (rV/)?, we find

w’ 1 , o r ) 3

5 = TgErw-— G.VIr* < C’\/EW7 C:= iligGE (r)°.
As a consequence

r

d
- < (O ——
dr Vw0 ()3’
Vw < C(1AT)?,
from which the inequality sup,[(z) |VVi(z)|] < C of (4.3) follows. O

and then
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Step 3. We rewrite (4.5) as

1 1
-(VIrY =w:= -G, — iar‘/;' € L™,

r €
/ sw(s)ds
0

This completes the estimate (4.3) and coming back to (4.5) we also obtain
VIl <¢,

which implies

V! (r)r| = < Cr2.

which gives (4.4) and completes the proof.
Corollary 4.2. There hold

G. =G in W*P Vpe(1,00),
and

VVe > VV in LY, AV, = AV 4n L™

Proof of Corollary 4.2. Coming back to (1.18) and using Lemma 4.1 it follows, for any p € (1, 00),
that
LG, =VG.-VV.+G. AV, € LP,

where L denotes the operator LG, := AG, —V - (%sz). By elliptic regularity we obtain that G.
is unifomly bounded (with respect to e € (0,1/2)) in W?2P.

Thanks to previous estimates and Lemma 4.1 there exists (G, V) and a subsequence (still denoted
as (G-, V.)) such that G. — G, V. — V. We may pass to the limit (in the weak sense) in the
system of equations, and we find

_ 1- _ _ _
V" + ;V’ +G=0, V'(0)=V'(x)=0.
We conclude that (G, V) is a solution to the stationary equation (4.1) and complete the proof. [

4.2. Splitting structure for the linearized operator. The evolution equation in self-similar
variables writes (see (1.15) and (1.16))

1
Org = A9+V(§mg—ng),

(4.6) ) ,
Opv = E(Av—i—g) + §x~VU,

and the associated linearized equation is given by

Of = Mio(fyu) = AT+ V(50 f— fVV. — G. V),
(4.7)
O =Doclfow) = Z(But )+ 5oV,

which we also denote 0;(f,u) = A(f,u) = (Al,a(f7 u), Ao (f, u)) We restrict ourself to a radially
symmetric setting.

We introduce the Hilbert space
(4.8) X=X\ xXo, X1:=L4yNLigCLy,, k>T7, Xo=L2

rad>

associated to the norm
(4.9) ICF )% = 11172 + lullZe.
We now state a property of the spectrum of A, in X that is the main result of this subsection.

Proposition 4.3. There exist €*,r* > 0 such that in X
Ve e (0,e) Y(A)NA_y3 CEa(Ac) N B0, 7).
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We define the bounded operator A by
(4.10) Ai(f,u) == Nxrlfl = N(xrf — xi(xrf)), A2(f,u):=0,

for some constants N, R > 0 to be chosen later and a smooth non-negative and radially symmetric
cut-off function xg(z) := x(z/R) with x =1 on By, Suppx C Bz and (x1) = 1. We can split
the operator A, = A+ B, and we shall investigate some properties of A and B. in the next lemmas
before proving Proposition 4.3.

Lemma 4.4. In the above splitting, we may choose N, and R, large enough in such a way that
for any N > N,, R > R., the operator B. is a-hypo-dissipative in X for any a € (—1/2,0) in the
sense that

IS8, ()]l #(x) < Cae™ Yit>0,

for some constant C, > 0.

Proof of Lemma 4.4. First of all, thanks to (A.1) we see that in X the norm of L? x L? is equivalent
to the norm defined by

(4.11) 1wl = 1£12: +nllu — sl3s,

for any fixed > 0. We now consider the equation 9;(f,u) = Bo(f,u) = Ac(f,u) — A(f,u) and
split the proof in several steps.

Step 1. First of all, we write the equation satisfied by f as
o f = Af—i—V( xf— fVV. — G Vu) — Nxgrlf].

Then we compute, using that (f) =0 and the notation x% =1 — xr,

th/f2 /Aff 2k 4 /V (zf) f /V (fVVe) f(x)**
S ARCACICES / Nxrlf1f ()

(4.12)
=~ [IV1P@ + [{o@) - Nxn@)} £
—/V~(G8Vu )2 N/fX1 Fda (xR f)
where
oa) = (GAG = G- T 4 17 (@lo)®) = 5T+ (TVala)) 4 TV, V(o ) ()

= (k= 1)+ B2k 4 1/2)(a) 7 — k(2k — 2)(@)* — LAV. + K(VVz - 2)(a)

Thanks to Lemma 4.1 we have (VV - ){x)~2 — 0 as |z| — oo and from (1.18) we have that

1 1 €
with Ge — 0 as |z| = oo from (4.2) and |z - VV,| < Cy, from (4.3). It follows then
1
(4.13) plr) ~ —=(k—1-eCy./2).
For the third term in (4.12), for any ¢ > 0, thanks to Holder’s inequality and using that G.(z) <
Cel21*/4 < C(z) = (see (4.2)), we get

/v (G.Vu) f /Vf Vu G, (@) + /Gw V((z)?) f

<OV LIZ: + CONVulZ + ClfIZ
<O|IVIILe + CONV(u—rp)lLz + COIFIZ: + ClAIL,
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for some ¢ € (3,k). For the fourth terme, we have

—N/fX1 ()% dx (X% f) < N |xallrz

2k—2¢

I (@)l 1125
<N R Co|fIf3s
We conclude this step by gathering the previous estimates to obtain

1d

372z <~ =9)VFIL: + COIV(w— k)l

(4.14)
+ [ {o@)+(€@)+ €N R@P - Nxa(a) } £ ()

Step 2. On the other hand, from the second equation in (4.7), we get

(4.15)
%%/(u—nff = /(u—ﬁf) {i(Au—i—f)—&-;x-V(u—fq)—i—;x-an —8t/<;f}

—i/V(’UJIﬁlf)F;/(Ulﬁf)2+/(7.tl€f){;x'VI€f8t/€f}a

and we shall estimate the last integral. Since 0k = K * O, f, we write

/(’LL—I{f) {;x-V&f —8t/£f} = %/(u—/{f){x~v,‘if}
- [ e {ars n - VTV - V(GT0) - Nalrl].

and we estimate each of these terms. It follows that

I :=%/(U—Kf){%"wf}:%/(U—Hf){x'(’c*f)}

< 0ll(u = rp)llz2 + CONK £l
< 8ll(u—rp)lZ2 + COIFI:,

where we have used Lemma A.2 in the last line with 3 < ¢ < k since f € X7 C Lﬁ)l. Moreover we
get

L ::—/<u—nf>m{Af}:/<u—nf>f
< 61— )25 + C) |12

Arguing as for the term I; and using Lemma A.2, we also obtain (we denote here K = (K;)i=12
and use the convention of summation of repeated indices)

I3 = *%/(u—ﬁf)ﬂ*v(l’f):*%/(“*”f)lci*(xif)

< dll(u—rp)lZz + COIFIL,

with 3 < ¢ < k. Furthermore, since fVV. € Lj ,, we can apply Lemma A.2 with the same £ € (2, k)
and use that VV, € L to obtain

I, = /(u— kf)k* V(fVVZ) = /(u— Kp) i (f0; V)
<0l (u—rp)lze + CONFVVEIL
< 8ll(u = kg)ll72 + COIFIT-
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For the next term we get, using (A.2) since G.Vu € L} ; and the bound G. € L;°,

I5 = /(u — Kkp)k* V(G:Vu) = /(u — k) K; * (Ge O7u)
< Oll(u = kp)lIZe + CO)IK * (GeVu)|72
< 8l (u = k)72 + COGVull7
< Oll(u— wp)lIZ2 + C(6)[[VulZ
<8l (u = k)72 + CONV(u—rp)lZs + CONfIZ:-
For the last term and thanks to Lemma A.1

o= N [ (g {xrlfl} < C = slin N el 1z,
< Sllu — rsl3s + CONfIs.

Putting together all the estimates of this step it follows
1d

1 1
(4.16) 32 llu—rslie < —(2 = CO) IV —rpllie = (5 = 8)lu— sl + CEONIFIZ.

Step 3. Conclusion. Gathering (4.14)-(4.16), we obtain

. %%”(f, W%, < / {g@(m) + [+ NBCE) + %} ()20 — NXR(w)} RG

1 1
— (5 = 8)llu=rslis = 0= O)VSIZ: = (2 = CO)) IV —rp)2
Taking then first § € (0,1) small enough and next ¢ € (0,1) small enough, it follows that for
n=N"3and R= N we have
1d _
SYTALCE wllk. < /{SON(x) — Nxgr(@)} (@) + a|| Vf]|72
+anlu— ksl +an|[V(u— kgl

for any a > —1/2 and where @x () = p(x) +C(1+ N1+ N27)(2)2~k) has the same asymptotic
behavior as ¢(x) when |z| — oo and @ decreases as N increases. We can choose N large enough
such that

¢n(z) = Nxgr(z) <a, VaeR?

which yields that B. is a-hypo-dissipative for any a > —1/2. O
We introduce the space
(4.18) Y=Y xYy, Yi:=H.NL,NL,, Yo:=H'NLZ,,

endowed with the norm
(4.19) (£ = 1CF w)lix + IV FIZ2 + [ValZ..

A consequence of the definition of the operator A in (4.10) is the following result.
Lemma 4.5. There hold A € B(X) and A€ B(Y).

Proof. The proof is straightforward so we omit it. O

Lemma 4.6. We can choose N and R large enough such that B, is a-hypo-dissipative in'Y for
any a € (—1/2,0), i.e.
1S5, ()| z(v) < Ce™.
Moreover we also have
158, ()l zx,y) < CtH2 e,
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Proof. We introduce the following norm,
(4.20) ICFwlE, = 1wk, +ml VT +mlVie—kp)lzs,
which is equivalent to (4.19) thanks to (A.2), for any 7; > 0. Observe that
IVullgz <IV(u—=rp)llze + Cll fllzz,
with the same ¢ € (2, k) of Lemma 4.4, and also that
IV2ullze < IV (u = fp)llze + Vgl < V2 (u = sip)llze + [1f] 22
Consider now the equation 9 (f,u) = B-(f,u) = Ac(f,u) — A(f,u).
Step 1. For i = 1,2, 0;u verifies

1 1 1 1
We have then
0t~ )l = / 01— )0 {0 — D)

/3 (u—kp)A{Oi(u—Kf)}+ = /3
/a Vo - V{1 — rp)} + = /a k) - V{0ims}

- [ ot rpki<@up)
=T +To+T5+ Ty +Ts.

For the first term we easily get
T, = —2 V{0 — ) HiZ,
moreover for the second one we obtain
Ty < OV (u—kip)lZ2 + ClIVulZs < CV(u—kp)Z2 + ClIfIIZ2.
We easily see that
Ty = — 50w — sp)l3 <0,
and also that, for the fourth term,
Ty < OV (u— kg)|22 + O D?ksll72 < ClV(u— rp)ll72 + ClIfl|72-

For the last term 75 we use the equation satisfied by f to write

- [atuwois {ar+ 59 - VYTV - V(G0 - Nxalf]}
=: Ty + T2 + T53 + T54 + 55,
and we estimate each term. We have
T51 < C|V(u—&)|z2 + CIVFIZ2
and
T52 < C|V(u— k)2 + CIV (2 f)|22 < ClIV(u— k)22 + ClIf]75-
Moreover, using that VV, € L*> we get
Ty < ClV(u - k)|a + CI V25 5 (FVVL) 22
< CIV(u—rp)la + CIFVVE s
< CIV(u - )3+ Clf12,
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and arguing as above with G. € L* we also obtain
Tsa < C|V(u = rp)lZ2 + ClIVZh x (G Vu) 72
< CV(u—p)llLs + CllGVul L
< CIV(u = kp)llEs + Cl[VullZ
< CIV(u—rp)l22 + ClIFIIZ:-
For the last term, using Lemma A.2 we have
Tss < C||V(u = ip)lz2 + CN?[K = xr[f]72
< CIV(u—rp)lz> + CN?|f]Z,

Gathering previous estimates we finally obtain

(4.21)
1d

1
5V @ = rp)llze < =2V (= rp)lIZe + CO+ N)|fIIZz + CIV T2 + ClIV (1 = k)22

Step 2. The equation satisfied by 0 f is
1
0:(0if) = Bea(0if, Oyu) = 50if = V(fV(9iVe)) = V(9;GeVu) = N(dixr) f + N{xrf)dix1,

hence it follows

i1 = [ Beatout 0w ot 0 = 10uf1E; - [ VUv@V) 0 0 - [ VE,6.Tuaf (o)

2dt
N [@xn)fout @ + Nixed) [(@0) 0if ()
=1 Ay + Ax + Az + Ay + As + As.
Arguing as in Lemma 4.4 (step 1) we obtain for any § > 0,
A1 < =1 =8)IV@if)IIZz + CONV(u — kp)lI7
+ [ {o@) +100) + O N R0 - Nxw(o) 07 @)
Next we compute
Avi= [ 190V @ + [ 190V Vo
<eCEONfIZ: + IV T + VA FIL:,
using that AV, = =G, — (¢/2)z - VV. and Lemma 4.3. We also have
Ay = /ai(;ew SV (0, f)(x)?* + /aiGEVu V(x)?* 0, f
<COVulis +0IVFITa_ | +0lIVAFIT
< COV@u—=rpliz +COIIL; +0IVIIL: | | +IV I,
and we easily get
A5 < N% / 1r/o<izi<ar f2(2)% + N% / Lr/a<|ai<2r |0i f 1 (2)?F.
For the last term
As < N(xr/[) /(@‘Xl)aiﬂ@%
< ON||fllz2 10if 2 < CON? [ fl72 + 110, f117: -
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Finally, putting together the above estimates, we obtain
(4 22)

5 dtvaHL? < -1 =9IV flLz + CONV(u— rp)ll7z + CEONIV(u - rp)l1Z

+ [{e00)+ NG tnacican + CO@HD + CON ) 720

1 C
+ [{o) = 5 +0+ NG 1npcicon + 00) + CNR- X = Ny | [91P)

Step 3. Gathering previous estimates (4.21) and (4.22) together with (4.17) it follows that
(4 23)

Licrwl

2 dt
< / {@(x) +meC(0) + nlc%lR/gmgm +mC(§)N?(x) 2k
4 NCE) + MO+ N2) + CO)(1 41N + O ()08 — N} 2 ()
b [ {ote) = 346+ O tapsciacan +00) + O )0+ 0a) % - Nua V1)

1
— (=891 =0 (5 =) = sl = m(a = V2SI,

(2= €0) - e®) IVt - gl —m (£ - €0)) 1950 np)lE,

Now we conclude as in step 3 of the proof of Lemma 4.4. We choose first § € (0,1) small enough
and next € € (0 1) small enough, then for 71 =7 = N3 and R = N it follows

/ {en (@) = Nxr} (@) +m / {ox (@) = Nxr} |V F[*(z)*
+ a||Vf||Li +anlu— k|7 +aml[VfII7

2dt (5> )
(4.24)
+am ||V (u = rp)IZ2 + am | V2 (u = k)|,
for any @ > —1/2, where
oi(7) == (@) +CN+CN 1 o<z <or+(CHCN T HON B+ CON? ) (2)2"H L ON ! () =2

and

X () = p(z) + Clg/a<|zj<2r + (C + CN>= 4 ()28 4 O (a) =2
have the same asymptotic behaviour as p(z) when |z| — co and @', is decreasing as a function of
N. Hence picking N large enough such that

o(x) = Nxr(z) <a, VzeR?

we deduce that, for some constant K > 0,
<

2dtH(ﬁ w3, < all(f, w3,

from which B, is a-hypo-dissipative in Y. Moreover, using the interpolation inequality

(4.25)

~K(IV? I + 1V = ) 32).

lgliZrs < gl mzllgll e
it follows from (4.25) that

thl\(f, w)ll3, < all(f Il IR

hence by standard arguments we get the estimate

1S5, () (f, w)lly < Ct=2e||(f, u)llx,

— K|[(f, w3
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concluding the proof. O

Proof of Proposition 4.3. The domain D(A;) of the operator A : D(A;) C X — X is given by
D(A)=H{NLigNLZyx H*NL?

rad

and we recall that X = Li,o NL2,,;x L2, ,andY = Hl N Li,o NL2,,x H' NL? , (see equations
(4.8) and (4.18)). We define a family of interpolation spaces

X" i=H"NLE N L2y x H N L2, nel01],

rad’

so that X© = X, X' = D(A.) and X'/2 = Y. Thanks to classical interpolation results we have
Y = X2 c D(A?) for any 1 € [0,1/2), see [22, 23, 26]. Now we fix some 7 € (0,1/2) and we have
Y CcD(AT) C X.

Recalling the results from Lemma 4.4, Lemma 4.5, Lemma 4.6 and (4.10) we have, for any
a>—1/2,

Sp.(t): X = X, with | Sk, (t)Hgg(X) < Ceat7
SBE (t) Y =Y, with HSBE (t)||@(y) < C@at,
Sp.(t): X =Y, with |[[Sa.(t)]lzxy) < Ct 2,

moreover A € Z(X)NA(Y) and
ASp.(t): X =Y, with [ ASs.(t)|zx.y) < Ct™ e
First of all, we already obtain from previous estimates that
(4.26) V>0, |Ss. * (ASE.) ()]l zx) < Ce™,
Moreover, from [18, Lemma 2.17] there exists n € N such that
1(AS5.)" ™ () z2(x,v) < C e,

which together with the fact Sp_(t) : D(AZ) — D(A?) with [|Sp, ()|l Dz < Ce** (by interpo-
lation of the same results in X and Y'), yield

(4.27) 1S5, * (ASE.) "™ ()| s(x.pan)) < C e

Gathering that last estimate with (4.26), we can apply [26, Theorem 2.1] which yields, for some
r* >0,

Y(A)NA, C B(0,7*) on X.

Now we define Y = Hy N L} ;N L2, x Hi N L2,; CY. From previous estimates we also obtain
(4.28) |18 @)y et <
0

where Y C X with compact embedding. Hence, thanks to (4.26)-(4.27)-(4.28), we are able to
apply [26, Theorem 3.1] that implies

S(A) NA, CXa(Ae),

and that concludes the proof. O
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4.3. Localization of the spectrum for the linearized operator in a radially symmetric
setting. We recall that we consider a radially symmetric setting and we have already defined the
space X in (4.8). We establish in this subsection the following localization of the spectrum of A..

Theorem 4.7. There exists €* > 0 such that in X there holds
YA)NA_3=0 forany e (0,e%).
As a consequence, there exists C' such that
[1Sa. ()]l z(x) < Ce 3 Yit>0, Ve e (0,e%).

The difficulty is that A. is not a perturbation of some fixed operator A and we cannot apply
directly the perturbation theory developed in [25, 32]. However, we are able to identify the limit
of Ra_ as € — 0 which is enough to conclude.

We introduce the notations

Af = Af+V(%xf—fVVs), Bu = —V(G. Vu)

Cu:=Au, Du:= %x - Vu,

so that the linearized equation writes
(4.29) o f = Af + Bu, Oru = é(C’u#—f)—FDu.
The important point is that at a very formal level, the limit system (as € — 0) is the linearized
parabolic-elliptic system
(4.30) of=Aof+Bou, Cu=-—f,
where .

Aof = Af + V(§ xf—fVV), Bou:=-V(GVu),
with G and V defined in (4.1), which simplifies into a single equation
(4.31) O f = (Ao+ Bo(—=C)™ 1) f =: Qf.

Observe that the last equation is nothing but the linearized equation associated to parabolic-
elliptic Keller-Segel equation which has been studied in [8, 9, 14] and it has been proved therein
that the associated semigroup is exponentially stable in several weighted Lebesgue spaces. In the
sequel we explain why the linearized parabolic-parabolic system inherits that exponential stability
at least for € > 0 small enough.

We recall the following result which is an immediate consequence of [9, Section 6.1] and [14,
Theorem 4.3].

Theorem 4.8. There exists a constant C' such that
Vhe Li,o Hemhlng < O€7t|\h||L§7

hence it follows
Ra € H(A_1; B(X1)) and then L(Q)NA_; =0.

In order to formalize the link between the linearized parabolic-parabolic equation and the lin-
earized parabolic-elliptic equation we write the linearized parabolic-parabolic system (4.29) into

the matrix form p
1\ _ / _( A B
dt ( u | Ae u )’ Ae = el e Cc+D )

In order to analysis the spectrum of A., for any z € C, we denote
a b
As(z)—As—z—<c d>

a=A(z)=A—z b=B, c=c'I, d:=c'C+D(2), D()=D-z

with
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One can readily verify that for z € C such that d = d(z) is invertible as well as its Schur’s
complement

se=5.(2):=a—bdtc=A~B(C+eD)!
is invertible, the resolvent of A, is given by
-1 —1p9-1 A A
_ -1 _ Se —Se bd . le RlQE
Ra.(2) = Ae(2)7 = ( —d tes7! d7l+d lesstbd ! ) o ( ’R/Q\f RQ\QE '

Then at least formally, we see that

(4.32) RAE(Z)E:;< B C@% " 8 )

Indeed, on the one hand, we have
Ry =s'={A—2-B('C+D-z)tetr}!

={A—2-B(C+eD—ez) '} — (Ag — BoC™! — 2)7t = Rq(2).

and RA: = g les = (e 'O+ D—2) e {A— 2~ B(C+eD—ez) 1)t
=—(C+eD—e2) H{A-2z—-B(C+e(D—2) '}
—— =C7 Ao~ BoC™! = 2) 7 = ~C ' Ro2).

In the same way, we have

R = —s7bd ' = —e{A—2— B(C+¢eD —e2) "'} 'B(C+eD —e2)7!
as well as
Ris =d ' +d s bd ™!
=e(C+eD—e2) ' +e(C+eD—e2) " {A—2—-B(C+eD —e2)"'}7'B(C +eD —e2)7,
and then both last terms vanishes in the limit € — 0.

In fact, we will not try to prove that convergence (4.32) rigorously holds, but we will just prove
the following result. We define
Op = A—1/3 N B(O, p)

Proposition 4.9. For any p > 0 there exists €, > 0 such that in X there holds
Ra. € H(Op; B(X))  for any € € (0,¢}).
Before proving Proposition 4.9 we establish some estimates on the terms involved in Ry .

Lemma 4.10. Define
5(z) == B(C +eD(2)) " (=D(z)) CL.

For any p > 0, there exists €, > 0 such that

sup  sup [|5(2)]|ls(x,) < C.
2€0, e€(0,3)

Proof of Lemma 4.10. On the one hand, from Lemma A.1 and Lemma A.2 we have
(—D(2))C": Li,o NL i = Liga
is bounded uniformly for z € O,. More precisely, for f € Li,o we write
f=lo+t i+l fi=NFi, i=12,

where we define the coefficients by

/\lz/oof(r)TQTdT, /\2=/Oof(r)r4rdr,
0 0
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and the functions F; by

1 5 3 2 1 1 1 2
F — (= 4 v .2 _ Y —r?/2 F — 4 2 - —r</2
1(r) < 5" +47" 2)6 ,  Fs(r) e’ T g" —|—8 e ,

so that it holds
/ Fu(r) (1,720 rdr = (0,1,0), / Fy(r) (1,7%,r%) rdr = (0,0, 1),
0 0

and hence fo € Lj 5.
We may solve the equation
Cu= Au=f, wuradially symmetric, «'(0) = u'(c0) =0,
by writing
u=ug+u +uz, Au;=f;, u,(0)=ui(c0)=0
where u;, 1 = 1,2, is defined by ther relation

i) = | o fi(o) do,

so that (r)juj| < C and |u] < Clog(l + (r)), and ug € L%, N L2, Vuy € L2 is the unique
solution to the above Poisson equation as given by Lemma A.1 and Lemma A.2. As a consequence,
go := D(2)ug € Lil and g; := rul + zu; satisfy the estimates g; e "2 ¢ L for i = 1,2. Thanks
to Lemmas B.1 and B.2 and using the notation of appendix B, we have v; := L-1g; which satisfy
lvoll g1z < C llgollz | while v; satisfy the estimates, for i = 1,2,

v e DT oo 4 o] e OFEED7 | oo < Ol gi €772 oe
Finally we solve the equation w; := Bv; which means
1
w; = G:Av; + VG, - Vv; = G (v]' + . v;) +rGluy,

then the previous estimates togheter with the bound (4.2) yield w = wo +wy +wp € L{ (N L2, =
X;. O

Lemma 4.11. With the above notations, for any p > 0, there exists C, such that
(4.33) sup [[d7(2)l|z(x,) < Cp
2€0,
Proof of Lemma 4.11. Consider the equation
1
(4.34) d(z)v =" Av + 3% Vo —zv=u,
for z € A, N B(0, p). Multiplying the equation by v and the conjugated equation by v, we find

UL o (! e 1]
(4.35) E/|V’u|+(§+§}%ez)/|v| . z/vu Q/W

[l 22 (ol 22

IN

and then
1
(5 + %62) H’U”L2 S ||U||L2

Lemma 4.12. With the above notations, for any p > 0, there exists Cy q,, > 0 such that

(4.36) sup 16d™ ()| B (x2,x1) < Crap VE = 0.
z€0,p
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Proof of Lemma 4.12. Consider the equation (4.34) again. Coming back to (4.35), we have

(4.37) Vo]l < [l 2

_c

% + Rez

Next, multiplying the equation (4.34) by = - Vo and the conjugated equation by « - Vv, we find
/ o Vo2 = /(u —20) (- V) + (i — 70) (2 - Vo)

which in turn implies
- Vol L2 < Ca,p-
Coming back to (4.34) and together with (4.37), we have proved

(4.38) |Avlls + [Vl s < Capvllulze.
We then immediately conclude to (4.36). O
Lemma 4.13. With the above notations, for any p > 0, there exists Cy , > 0 such that
(4.39) sup ||cd_1(z)\|@(xlyx2) < Ch,p-
2€0,
Proof of Lemma 4.13. We use appendix B. O

Proof of Proposition 4.9. We split the proof into four steps.
Step 1. We prove that

(4.40) Vee (0,e)) Rif =s' €H(O,B(X1)).
We write
5:(2) = A(2) — BCT! — [B(C +eD(2)) ™t — BC™'] =: 50(2) — £3(2)
and then
se(2) = (2) = [s0(2) — Q(2)] — €5(2)
with

s0(2) = A(z) = BC™Y, Q(2) =Q—2= Ag(2) — BoC™', 3(2):= B(C+eD(2)) (—=D(2))C~ 1.
Remark that
s0(2) = Q(2) =50 — Q= =V(V(Ve = V)) = V((G: - G)V(A™1))
does not depend on z, and thanks to Corollary 4.2 we easily get
llso — QU zrvi,x,) <nle) with n(e) = 0ase — 0,

rad’

where we recall that Y = H} N Li,o N L2, ., see (4.18). Moreover, using Lemma 4.10 we get that

sup  sup [|3]|gx,) <C
2€0, c€(0,e3)

from which we deduce, for any z € O, and ¢ € (0,¢})
Ise(2) = Q=) z(vi.x1) < nle) + Ce,
Then, arguing as is [32, Lemma 2.16], the operator
Te(2) = (=1)"(sc = QRa(2) (AuRT; (2))",

satisfies
1Tz(2)lzx) <n'(€) YzeO, n'()—=0 as e—0,

_( R R _( A O
RBE'(R% ®5 ) AT 0 0 )

and the integer n is defined in the proof of Proposition 4.3. As a consequence, the operators
I +7.(z) and s.(z) are invertible for any z € O,, and furthermore

Rt (2) = 5:(2) 7 = Ue(2) (1 + Te(2)

where
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where
Us(z) = D> (-1 RF; (2)(AnRT; (2)) + (—1)"Ra(2) (A RE; ()"
j=0

We immediately conclude to (4.40) because X(Q2) N A, = 0 on X; and ||Ra(2)||zx,) < C for any
z € O, from Theorem 4.8.

Step 2. We have

(4.41) Vee (0,e5) Ris:=—s-'bd™' € H(O,; B(X2, X1))
as an immediate consequence of Lemmas 4.10 and 4.12.

Step 3. We also have

(4.42) Vee (0,6]) Raf=—d 'es;' € H(O, B(X1, X))
as a consequence of Lemmas 4.10 and 4.13.

Step 4. We finally have

(4.43) Vee (0,e)) Rps=d ' +d tes;'bd! € H(O,; B(Xa))

as an immediate consequence of Step 1 together with Lemmas 4.12 and 4.13. (]

Proof of Theorem 4.7. The proof is a consequence of Proposition 4.3, Proposition 4.9 and Theo-

rem 4.8 togheter with [26, Theorem 2.1]. O
5. NONLINEAR EXPONENTIAL STABILITY OF SELF-SIMILAR SOLUTIONS

5.1. Linear stability in higher-order norms. Define

(5.1) Z =171 xZy, Zy:=HyNL{¢NL Zo:=H"NL},,

associated to the norm

(5.2) (£ wlZ = 1wl + IVl 22

We shall prove that the same linear stability estimate in X from Theorem 4.7 also holds in Z,
as stated in the following result.

Proposition 5.1. There exists €* > 0 such that there holds in Z
YA)NA_3=0, Vee(0,e").
As a consequence we have
15a. ()|l z(z) < Ce 3, Vt>0, Ve e (0,e%).

Lemma 5.2. (1) Ae #(Z).
(2) There exist N, R large enough such that the operator Be is a-hypodissipative in Z, i.e.

1S5, ()| 2(z) < Ce™.
Moreover we have the following estimate
198, ()| #(x,2) < Ct~' e

Proof. Point (1) is straightforward from (4.10) and we omit the proof. For point (2), consider the
equation O:(f,u) = B.(f,u). First of all, observe that the norm | - ||z is equivalent to

(5.3) ICF )z, = 1(f )
for any ne > 0. We write

V. Tl VA (u = kg2

1 1
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and then we compute

23 [ ot =) = [0t )
/aw A(0;j(u — Ky)) /('“)” Oiju
/8” x V(0i(u—Ky)) /8” ’U,—Faf>1(E V(0ijk¢)
/8” Kf)0ijk * (Of)
= DB;+---+ Bs.

We easily obtain
1
By = ——[IV{y(u = £)} 72,

moreover
By < C|IV?(u = #¢)ll72 + CIV?ullZe < CIV(u — ky)l72 + ClIfIIZ2,
by integration by parts B3 < 0 and also
By < OV (u = kp)ll2 + CIV3kx fl72 < CIV2(u—kp) |22 + CIV 72

For the last term we get

1
/6” &ﬂi*{Af—i—2V(mf)—V(fVVE)—V(GSVu)—NXR[f]}
=: Bs1 + -+ + Bs4 + Bss.
We have
Bs1 < C(O)|IV*(u— kg2 + 0|V Fl1Z2
and

By < C|[V(u = ig)ll72 + CIVEx V(@ f)[12 < CIV(u = kp)lI72 + CIIV ST + ClFIIZ-
Moreover, using that VV,, AV, € L™ we get
Bss < C||V*(u = kg)||72 + ClIV2k % V(fVVE) |72
< CIVP(u = rg)ll72 + CIV(FVV) 72
< CIV*(u = kg)llLz + CIV ST + ClAL2,
and arguing as above with G, VG, € L* we also obtain
Bss < ClV?(u— rp)|[32 + C|[ V2 % V(G.Vu) 22
< CIVZ(u = sp)ll72 + CIV(Ge V)72
< CIV*(u = kg)ll72 + ClIV2ul[f2 + C||Vulf-
< CIV(u—rp)llze + ClIZ:,
where we recall £ € (2,k) is the same as in Lemma 4.4. For the last term we easily obtain
Bss < C||V*(u = #¢)|I72 + ClINx&fIlI72 < CIIVZ(u—kp)lZ2 + CN?| fl72.
All the above estimates yield

1d

*(u— 2 <—* 3(u— 5 200 22
(5.4) !V =l IV3u = kp)l72 + COIV (= k)7

+ CIIfHLg +CN?|flZ> + CIV Iz + IV
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Putting togheter last equation with (4.23) we get
(5. 5)

5 dt” u)||7,
N
< / {sﬁ(z) +meC(8) + WlCEIR/Qg\MSQR + U10(5)N2<$>72k + e CN?(z)~2F
+ C@) +mC(1+ N?) + CO)(1+N?) + Oy +meCl@) ™) = Ny } 2 ()

J(z) 20

REl

1 N
+m / {<P(»T) -3t d+ CﬁlR/2§\z|§2R +[C00) +Co

+O@) 7 4 RO Nxg {1V 120
1

Rél

(=91 =0 (56 ) Iu sl = (15— Z6) 92
?7(10(5) ’2())||v<unf>||pm(c<5> ch@))nv?(unf)%z

S NIRRT

We can now conclude exactly as in Lemma 4.4 and Lemma 4.6, and we obtain that for any
a>—1/2,

(5.6)

SNl < al(F g, — KOUV2FI% + 19°0 - sp)lE),

for some constant K > 0, from which B, is a-hypodissipative in Z.
From (5.6) and the interpolation inequalities

4/3 2/3
s S ANz ez Nelde S Nl Nl

it follows that
2

(f W)l

5 dtll(f, u) (Frw)lz. = KNIl

from which we obtain by standard arguments

I1S5. () (f,w)llz < Ct=Fe™ [I(f,u)]x-
O

Proof of Proposition 5.1. From Lemma 4.4, Lemma 4.5, Lemma 5.2 and [18, Lemma 2.17] it follows
that there is n € N such that

1(ASB.) " ()| (x.2) < Ce™
Then the proof of the linear stability result in Z is a consequence of last estimate, Lemma 5.2,

Theorem 4.7 and the “extension theorem” [24, Theorem 1.1].
O

5.2. Dissipative norm. We define the new norm

ICF, )iz = nll(f, )% + /OOO 1Sa. (7)(f, u)|% dr

for some n > 0. Thanks to Proposition 5.1, the norm || - ||z is equivalent to || - || z for any n > 0.
Moreover, considering the equation 9;(f,u) = A:(f,u) we obtain from Proposition 5.1, Lemma 5.2
and arguing as in [18, 14] that, for some 1 > 0 small enough, it holds

d
(5.7) G0z < =K wllz = KLV + [1VPulz} = —KlI(fw)lZ,

for some constant K > 0.
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5.3. The nonlinear problem : Proof of theorem 1.4. We focus now on the nonlinear parabolic-
parabolic Keller-Segel system (1.15)-(1.16) in self-similar variables and we prove Theorem 1.4.
Consider g € H} N L%md and v € H> N L2, then define f := g — G. and u := v — VL, so that
(f,u) € Z and satisty

hf =Aea(fiu) =V - (fVu)

(5.8) Oy = Aca(f,u),

with the initial condition (f,u)=0 = (fo,u0) = (go,v0) — (Ge, V), that satisfies moreover
1(g0, v0) = (Ge, V)|l z < 67

We split the proof into three parts.

5.3.1. A priori estimate.

Lemma 5.3. The solution (fi,u:) to (5.8) satisfies the following differential inequality

d
(5.9) S E Wz < (K + Cl(wllz2) 1wl
where || - || 5 is dedined in (5.7).

Proof. Since
ICF % = 11 + [lullZe,
we obtain from (5.8) that, denoting Q(f,u) = (—=V - (fVu),0),

310l =m0 A ) + [T IS0, SO ) dr
(0. QU+ [ TSSO dr = + 1o

For the first (linear) term we have already obtained in (5.7) that
Bi=nl(fow M) + [ (S)(). SIS ) dr
0

< K LNl + 19212 + IV%ul3: | = K7 )%

For the second (nonlinear) term we use the linear stability from Proposition 5.1 since (f,u) € Z
and Q(f,u) € Z to obtain

= ({0, Q) + | TS (), SQUfow) dr
<l ol QU wlz + [ S ISE )z ISR ) 2 dr

<nll(f, W)z 1Q(f, w)]z + C/O e[I(f, w2z e QS w)llz dr
< Cl(f wlz lQ(f, w)llz-

Now we have to compute
QU wlIZ ==V (fYu), 0)[IZ = IV - (fVu)|Zz + IV - (F V)l
We split V- (fVu) = fAu+ V[ - Vu and compute
If Aulz, = /fQIAUI2<x>2’“ S IV2ullzz [[(@)* FlI

S IVRullZe 1112 < ICAwllZ 10wl
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where we have used the embedding H?(R?) — L>°(R?). Moreover we get
IVf-Vullf, = / IVFEIVul*(2)* S (IVullie [V fIIZ2
S lullfs IV FI1Z: S I wlZ 1wl
Furthermore we obtain
V(A0 S [ PITSP @+ [ 197219 )
SAIVPullZ2 @)  Fll e + 1(2) Y F1174 (V2] 4
SAIVPullZe 117 + 1z 1Lz 1Vl e [VPulZ
Sl

where we have used Glagliardo-Niremberg-Sobolev inequality | A||? 1are) S IAlleze) (VA L2 Re).-
For the last term we get

IVVF -Vl S [19FPI9%uP )+ [ 92Vl )
S 1@ A 1V%ul3e + [ Vul IV3F1
< 1lez 1z 970l 22 [9%ul3e + llulld 1925122

SNl
Finally, gathering the above estimates, the solution (f,u) of (5.8) verifies

%Ill(f, Wl < =KI(f,wll% + CIf, wlz I(f. W)l < (K + Cl(f, wll2) I(£, w1

which concludes the proof.
O

5.3.2. Emistence. In this section we prove the existence of solutions to (5.8). They are solutions to
the Keller-Segel equation (1.1) which satsify some strong and uniform in time estimates.

Proposition 5.4. There is § > 0 such that if ||(fo,uo)ll|z < d then there exists a solution (f,u) €
C([0,T); Z) to (5.8) that verifies, for any t € [0,T],

(5.10) s IO+ K [ 1000 ar <25
Proof. We split the proof into several steps following the argument presented in [18, Theorem 5.3].
Step 1. Consider the iterative scheme
O(f"u") = Ae(f"u") + Q(f" " u"), Vn>1
and
0(f%,u”) = Ae(f°, %),
with initial condition (f",u");;—0 = (fo,uo) for all n € N and ||(fo,u0)|z < ¢ for some § > 0

small enough to be chosen later. For any n > 0, (f™,u") is well-defined in C([0,T]; Z) thanks to
Proposition 5.1. For any n > 0 we claim that the following estimate holds true

(5.11) ve>0, A"t = [I(f"umOZ +K/ I(f 7)|% dr < 26°.

It is true for n = 0 from (5.7). Now we assume that (5.11) holds for some n — 1 and we shall prove
that it implies (5.11) for n. From the proof of Lemma 5.3 we obtain

d
U wmIz < =K w1 + OIS ez 16wz 16w DIz
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then integrating from 0 to ¢ and using Holdér’s inequality it follows that

A0 < oy +C s 1)l ( / [ERRIo dr) ( / e, ”*)(ﬂﬂ%df)m

< |I(fo, uo)ll% + CA™(t) [A™~*()]*/?
< I(fo, uo)IZ + CIA™(t),
from which we conclude if § > 0 is small enough such that C'§ < 1/2.
Step 2. Denote (F™,U™) := (ft — f* untl — ™) that verifies
O(F™,U™) = A(F™,U™) 4+ Q(F" L, u"™) + Q(f"~1,U™), Vn>1

and
O (F°,U°%) = A(F°,U°) + Q(f,u'),
with initial condition (Fy, Up) = (0,0) for all n > 0. For any n > 0 we claim that

(5.12) vt>0, B"(t)=|I(F", UM ®)Z + K/O IE™, U™ )(1)|5 dr < (Co)*

When n = 0, arguing as above we obtain

d
%lH(FOv U ONZ + KINF, UG < CNE, Uz 1wz 1077wl z
which togheter with the bounds on (f*,u!) and (f°,u") obtained before yield

BY(t) < C6* <5, Vt>0,

for 6 > 0 small enough. We now assume (5.12) for some n — 1 and prove it for n. Arguing in a
similar way as before, we estimate

B"(t) < ||(Fo, Uo)0)IZ + C/O IE =L 0D @l I w0 NER U™ ()2 dr

¢
+C/O 1= IE U@z IE T ()2 dr
< OB W] [B* ()2 + C B (),
and using the induction hypothesis
B"(t) < C 6™ [B"(t)]"/* + C 3 B"(t),
from which we conclude to (5.12) if § > 0 is small enough. ~
Therefore the sequence {(f™,u")}, is a Cauchy sequence in C([0,T]; Z) and in L?(0,T;Z) for

any T > 0. The limit (f, ) := lim, o (f™,u™) is a solution of (5.8) in a weak sense. Passing to
the limit n» — oo in (5.11) we get the stability estimate for the solution (f,u) constructed above

sup [|(f,u) ()% + K/ ICf, w) ()1 dr < 262,
>0

O

5.3.3. Sharp exponential convergence to the equilibrium. We now complete the proof of Theorem 1.4
(following [18]). Applying Lemma 5.3 to the solution (f,u) constructed above and using the
estimate (5.10) we obtain

%Hl(f, wllZ < (K +CIwll2) 1(F,wlF < (K +C0) [(fwllf < (-K +C"0) C”[[(f, w7

and if § > 0 is small enough so that —K + C'§ < —K /2, this implies an exponential decay to the

equilibrium
=)

ICw) @)z < e (fo, uo)ll z-
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Finally, we can recover the optimal decay rate O(e®) of the linearized semigroup in Proposition 5.1
by performing a bootstrap argument as in [18, Proof of Theorem 5.3], which concludes the proof.

APPENDIX A. ESTIMATES ON THE SOLUTIONS TO THE POISSON EQUATION

In this section, we give some technical (and we believe standard) estimates on the solutions to
the Poisson equation in R? that are useful in the paper. We recall the notations

1 =z

1
K(z) = —glog\zh K(z) :=Vk(z) = o TP

and
kr=rx*xf, Kp=Kxf,
so that there holds
Ky € CEHR?), |kf| < C(1+1log(x)), —Ary=f.
Lemma A.1. Forany k>3, j > 1, k> j+ 2, there exists Cy, ; such that

(A.1) Ix flliz <Clfle VFe LR,

Proof of Lemma A.1. Consider f € Lk]7 k > 3, so that f € C2, and 8?f(0) =0 for any |a| < j
thanks to the moments condition, hence

- ¥ 1;!a§f<n> &,
al=j7+

for some 1 between 0 and £. In Fourier variables the Laplace equation writes [£]24¢(£) = f(€), and

then
2 |f|2
Jinit = [ s e

2 2 p
/] / ﬂ+ / sup [DIf(n)|? dg
B

€ = BS €4 , n€By
< F12 +CIFIE,
<|If1Z- +C||f||2Lg < CHfHQLgv

where we used [|g[lz1 < [lgllz2 for r > 1 with g = (z)7*! f in the last line, which gives k > j+2. O

All together, we have

Lemma A.2. For any k> 2, j >0, k> j+2, there exists Cy ; such that

(A.2) 1K+ fll2 < Cllfllz Vf e Lk,

Proof of Lemma A.2. The proof is similar to the Lemma above, writing in Fourier variables |¢|?4¢(£) =

£(€), observing that
: ik
J19ns= [ieis = [

and using the moments conditions.
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APPENDIX B. ESTIMATES ON THE ¢~ 'd OPERATOR

With the notations of section 4.3, we consider the equation
(B.1) Leuw:=c tdu= Au+ gx~Vu—szu:f

with z € A—1/2'

Lemma B.1. For any f € Lﬁ,(w k>2,2€A_y, there exists a solution u € H? to the equation
Leue = f and there exists a constant C' (which does not depend on e > 0 and z € A_y/3\{0}) such

that
[Vul[z2 + [[Aul[2 < C[[f] L2

Proof. Multiplying equation (B.1) by @ and A% and its conjugate by u and Au, we find

/|Vu\2 -l-E(% +8‘Eez)/|u|2 = —%/(fﬂ—&-fu)

and
2 o 1 1 F
(B.2) |Au|® + (e Rez) [ |[Vul* = 5 fAT+ 3 fAu.
Writing
1
+/ Vu(zs) (x —y)ds, zs:=y+s(y—x),

0

we have

1
u(z) = (u)s + /B - / Vu(z) (& — y) dsdy, (u)y == /B ROL

and then from the first equation and the moment condition

Jrva < -/ [ - / ) Vul=) - (o — ) dsdyd
< /Rz/gm/ (2)2 |2 — y|? dsdyda
E/RZ /1/2 / o |Vu(sx+(15)y)|2dy}ds<;l>x%
/B(Ol)//2 [ IValsz +(1=s)y )|2d:r}dsdy
< a{/m) v} [ @) @2 o

1/2
/ / ds / |Vau(2)|? dz
]R2 1—8) R2
1
o ds
+—= / dy / — Vu(z)]? dz,
2{ B(0,1) } 1/2 52 R2| )l

Jrwp<e [ isp

and we deduce that

by choosing ¢ = k — 1 and a > 0 small enough. We conclude by gathering that last estimate

together with (B.1).

O
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Lemma B.2. There erists a constant C such that for any e € (0,1), any z € A_y/5 and any
radially symmetric function f the equation
Leu=f, w radially symmetric, u(0) ='(0) =0,
has a unique solution which furthermore satisfies
(B.3) e 0D e o = CHDT e < O 7712 g

Proof. We may write the equation as

(B.4) u”—i—(%—l—sr)u'—i—szu:f, Yr >0,
with the additional boundary conditions u(0) = u/(0) = 0. Defining U := |u|? + |u/|?, we have
U = wt' +v'a+u'a" +u"a
< 20t el ull] — (- +er) [ + 210 I
< @+el)U ISP
from which we immediately get (B.3) thanks to Gronwall lemma. O
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