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ABSTRACT. The aim of the present paper is twofold:

(1) We carry on with developing an abstract method for deriving growth
estimates on the semigroup associated to non-symmetric operators in Banach
spaces as introduced in [8]. We extend the method so as to consider the
shrinkage of the functional space. Roughly speaking, we consider a class of
operators writing as a dissipative part plus a mild perturbation, and we prove
that if the associated semigroup satisfies a growth estimate in some reference
space then it satisfies the same growth estimate in another — smaller or larger
— Banach space under the condition that a certain iterate of the regularizing
part of the operator combined with the dissipative part of the semigroup maps
the larger space to the smaller space in a bounded way. The cornerstone of
our approach is a factorization argument, reminiscent of the Dyson series.

(2) We apply this method to the kinetic Fokker-Planck equation when the
spatial domain is either the torus with periodic boundary conditions, or the
whole space with a confinement potential. We then obtain spectral gap for the
associated semigroup for various metrics, including Lebesgue norms, negative
Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W7.
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1. INTRODUCTION

1.1. The question at hand. This paper deals with the study of decay properties
of linear semigroups and their link with spectral properties as well as some appli-
cations to the Fokker-Planck equations with various types of confinement. It con-
tinues the program of research in [15] [§] where quantitative methods for enlarging
the functional space of spectral gap estimates were developped with application to
kinetic equations; specifically in [8] spectral gap estimate were obtained in Lebesgue
spaces for Boltzmann and Fokker-Planck equations in the spatially homogeneous
and spatially periodic frameworks.

Our approach is based on the following abstract question: consider two Banach
spaces E C £ with E is dense in £, and two unbounded closed linear operators
L and L respectively on E and £ with spectrum (L), 3(L) C C which generate
some semigroups (.77 (t))i>0 on E and (£ (t))i>0 on & respectively and so that
L|g = L; can one deduce quantitative informations on ¥(£) and .#.(t) in terms of
informations on X(L) and .7 (t) (enlargement issue), or can one deduce quantita-
tive informations on (L) and .7 (t) in terms of informations on 3(£) and .7, (t)
(shrinkage issue)?

We prove under some assumptions (i) that the spectral gap property of L in E
(resp. of £ in &) can be shown to hold for £ in the space £ (resp. for L in E)
and (ii) explicit estimates on the rate of decay of the semigroup .7~ (t) (resp. the
semigroup .77 (t)) can be computed from the ones on .77 (t) (resp. #,(t)). This
holds for a class of operators £ which split as £ = A+ B, where B’s spectrum is well
localized and some appropriate combination of A and the semigroup .#5(t) of B
has some regularising properties. This last condition is reminiscent of Hérmander’s
commutator conditions [13].

The Fokker-Planck equations we consider are then shown to belong to this gen-
eral class of operators by extending the hypocoercivity results —usually obtained in
L? spaces with inverse Gaussian type tail- to a larger class of Lebesgue and Sobolev
spaces.

1.2. The abstract result. We denote €(E) the set of closed operators on a Ba-
nach space E, #(F) the set of bounded operators on E, and ZA(E,E) the set of
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bounded operators between two Banach spaces. We say that P € €(FE) is hypodis-
sipative if it is dissipative for some norm equivalent to the canonical norm of E and
we say that P is dissipative for the norm || - || on E if

Y f € Domain(P), f* € E*; (f, f*) = |fl5 Re(Pf, f*) <0

where the (-, -) denotes the duality bracket between E and its dual E*. Finally we
denote A, :={z € C; Re z > a}.

Theorem 1.1 (Change of the functional space of the semigroup decay). Given E,
E, L, L defined as above, assume that there are A,B € €(E), A,B € €(E) so that

and a real number a € R such that
(i) (B — a) is hypodissipative on E, (B — a) is hypodissipative on &;
(ii) Ae B(E), Ac B(E);
(iii) there isn > 1 and Cq > 0 such that

H(AyB)(*n)(t)H@(s,E) + H(yBA)(*n)(t)”@(s,E) < Cae™.

Then the following two properties are equivalent:

(1) There are distinct &1, ...,& € Aq and finite rank projectors 11, 1 € B(E),
1 < j <k, which commute with L and satisfy %(L, ) = {§;}, so that the
semigroup L (t) satisfies for any a’ > a

k
(1.1) VE>0, |Zt) =) L) < Cpae®!
=1 B(E)

with some constant Cr, o+ > 0.

(2) There are distinct &1,...,& € Ag and finite rank projectors I1; » € B(E),
1 < j <k, which commute with L and satisfy %(Lim, .) = {§;}, so that the
semigroup S (t) satisfies for any a’ > a

k
(1.2) V>0, | Zot) - L), < Crae®?
=t B(E)

with some constant Cr o > 0.

Remarks 1.2. (a) The constants in this statement can be estimated explicitly

from the proof.

(b) The same result holds in the case {&1,...,&} = (), that we denote as a
convention as the case k = 0.

(c) The condition “F C &” can be replaced by “ENE is dense in E and & with
continuous embedding”.

(d) Note that one of the two terms of the LHS in condition (iii) can be omitted,
because it can be deduced (at order m + 1) from the other one and the
assumptions (i) and (ii).
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1.3. The main PDE results. Let us briefly present the evolution PDEs of Fokker-
Planck types for which we will be able to make use of the above abstract Theorem
to establish exponential asymptotic stability of the associated familly of steady
states.

(a) “Flat” confinement. Consider the kinetic Fokker-Planck equation
(1.3) Ohf+v-Vaof =V, - (Vo f +V, @ (),

on the density f = f(t,z,v), t > 0, z € T¢ the flat d-dimensional torus, v € R%, for
a friction potential ® = ®(v) satisfying ® =~ |v|?, v > 1, for large velocities.

Remark 1.3. Observe that this model contains as a subcase the (spatially homoge-
neous) Fokker-Planck equation

(1.4) Ouf = Ay f 4+ divy (V@ f),

when the probability density f = f(¢,v) is independent of the space variable, t > 0,
v € R% for a friction potential ® = ®(v) satisfying the same assumptions as above.

(b) Confinement by a potential. Consider second the kinetic Fokker-Planck equation
in the whole space with a space confinement potential

(1.5) Of+v-Vof = Vol - Vof =V, (Vof 0 1),

on the density f = f(t,x,v), t > 0, z € RY v € R? for a confinement potential
¥ = U(x) which behaves like |z|?, 3 > 1, for large values of the vector position.

For these models, we prove semigroup exponential decay estimates in weighted
Sobolev spaces with weight function increasing like polynomial function or a stretch
exponential function, so much slower than the usual inverse Gaussian used in pre-
vious works.

Theorem 1.4. Consider L the Fokker-Planck operator as defined above in (a) or
(b), and p the unique positive associated steady state with mass 1. Consider the
weighted Sobolev space € := WP(m) with o € {—1,0,1} and p € [1, 0], where the
precise conditions on the weight m are given in Theorems[3.1] and [{1]

Then there exist a < 0 and C, > 0 so that

(1.6) VieX, [7:()f—Tct)glle < Cae™ |If —glle

between two solutions with same mass; this implies the exponential convergence
towards the projection on the first eigenspace Ry (higher eigenvalue 0).

In the case (a) (periodic confinement), we also establish a similar decay estimate
in Monge-Kantorovich- Wasserstein distance:

Wi (S2(t) fo, 2 (t)g0) < Cae® Wi(fo, 90)

between two solutions with same mass.

This theorem is proved by combining:

e the spectral gap property of the Fokker-Planck semigroup which is clas-
sically known in the space of self-adjointness L?(;~'/?) in a spatially ho-
mogeneous setting (Poincaré inequality) and has been recently proved in a
series of works about “hypocoercivity” in the spaces L?(u~'/2) or H (u=1/?)
for the kinetic Fokker-Planck semigroup with periodic or potential confine-
ments [12] 20, [6];

e an appropriate decomposition of the operator with:
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— some additional dissipativity estimates adapted to each cases for the
target functional spaces, for the “dissipative part” of the decomposi-
tion (this is the main difficulty in the case of confinement by a po-
tential and we introduce specifically weight multipliers inspired from
commutor-like estimates at the level of weights);

— some additional regularisation estimates adapted to each cases in the
usual L?(pu~1/?) space (inspired from ultracontractivity estimates in
the spirit of Nash’s regularity estimate [I8] in the spatially homo-
geneous case and Hérau-Villani’s quantitative global hypoellipticity
estimate [T1]-[20, section A.21.3];

— an application of Theorem (whose assumptions are established by
the previous estimates) which establishes the decay estimates of the
semigroup in the target functional space;

— finally the W7 estimate is obtained by some additional technical efforts
in estimating the decay in weighted W 1! type spaces.

Remark 1.5. Some decay estimates for kinetic Fokker-Planck semigroups with flat
confinement had been already established in [8]. In this setting this new paper
improves on these previous paper as follows: we use new integral identity in order
to deal with any integrability exponent p € [1, 00] and we introduce an appropriate
duality argument in order to deal with the regularity exponent o = —1.

1.4. Plan of the paper. The outline of the paper is as follows. We prove the main
abstract theorem in Section We prove the decay estimates on kinetic Fokker-
Planck semigroups with periodic (or spatially homogeneous) confinements in Sec-
tion [3| Finally we prove the decay estimates on kinetic Fokker-Planck semigroups
with confinement by a potential in Section [4]

Acknowledgements. We thank José Alfrédo Canizo and Maria P. Gualdani for
fruitful comments and discussions. The first author’s work is supported by the
french “ANR blanche” project Stab: ANR-12-BS01-0019. The second author’s
work is supported by the ERC starting grant MATKIT.

2. FACTORISATION OF SEMIGROUPS IN BANACH SPACES AND APPLICATIONS

The section is devoted to the proof of Theorem After having recalled some
notation, we present the proof of Theorem [I.I] that we split into two steps, namely
the analysis of the spectral problem and the semigroup decay.

2.1. Notations and definitions. We denote by 4(E) C € (FE) the space of semi-
group generators and for A € ¢(E) we denote by .75 (t) = e’t, ¢t > 0, its semigroup,
by 2(A) its domain, by .4 (A) its null space, by

AM(N) = Ug>14(AY)
its algebraic null space, and by Z(A) its range. We also denote by X(A) its spec-

trum, so that for any & € C\X(A) the operator A — ¢ is invertible and the resolvent
operator

Ry(€) == (A&
is well-defined, belongs to #(E) and has range equal to Z(A).
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We recall that £ € ¥(A) is said to be an eigenvalue if A (A—¢) # {0}. Moreover
an eigenvalue £ € X(A) is said to be isolated if

SA)N{z€C, |z—¢& <r}={¢} for somer > 0.
In the case when £ is an isolated eigenvalue we may define ITp ¢ € ZA(E) the spectral
projector by

(2.1) e = — (A—z)"'dz

o |z—¢|=r
with 0 < 7/ < r. Note that this definition is independent of the value of r’ by
Cauchy’s theorem as the application
C\X(A) = B(E), 2+ Rx(2)
is holomorphic in B(z,r). It is well-known [14] III-(6.19)] that H%,g =1Ilp¢is a
projector, and its range Z (Il ¢) is the closure of the algebraic eigenspace associated
to £&. Moreover the range of the spectral projector is finite-dimensional if and only
if there exists ag € N* such that
dim A (A = &) < o0, A (A== A (A= forany a > oy,
so that
AR =€) = MA—€) = N ((A—E)).
In that case, we say that £ is a discrete eigenvalue, written as £ € ¥4(A). Observe
that Ra is meromorphic on (C\ X(A)) U X4(A) (with non-removable finite-order
poles). Finally for any a € R such that X(A) N A, = {&,..., &} where &1, ..., &
are distinct discrete eigenvalues, we define without any risk of ambiguity
Mpa = Tag + -+ 1ag,.

We need the following definition on the convolution of semigroup (corresponding

to composition at the level of the resolvent operators).

Definition 2.1 (Convolution of semigroups). Consider some Banach spaces X;,
X5, X3. For two given functions

A € LNRy; B(X1, Xo)) and S € LYR,; B(Xa, X3)),
we define the convolution % * .71 € L' (R, ; %B(X1, X3)) by

WES0, (Fe.A) () = /Ot S(5) FA(t — 5) ds.

When .¥ = . = .% and X; = X, = X3, we define inductively .#*! = .# and
S0 = & 5 EED) for any € > 2.

2.2. Factorization and spectral analysis when changing space.

Theorem 2.2. Consider E,E,L, A, B, L, A, B as above and assume that
i) Z(B)NnA,=%2(B)NnA, =0 for some a € R;
(ii) Ae B(F) and A€ B(E);
(iii’) there is n > 1 such that for any & € A,, the operators (A Rp(§))" and
(Rp(&) A)"™ are bounded from & to E.

Then the following two properties are equivalent, with the same family of distinct
complex numbers and the convention {&1,...,&} =0 if k =0:
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(1) Z(L)NA, ={&,..., &} CXg(L) (distinct discrete eigenvalues).
(2) Z(L)NAL ={&,..., &} C Za(L) (distinct discrete eigenvalues).

Moreover, in both cases, there hold
(8) For any z € Ay \ {&1,...,&k} the resolvent operators Ry, and Ry satisfy:

n—1

(22)  Re(2) = ) (~1)'Rp(2) (ARg(2) + (~1)"Ry(2) (ARs(2))"

(23)  Rip(z) = ) (—1)"(Rp(2)4)" Rp(2) + (-1)" (Rs(2)A)" Re(z).

(]

(4) For any j=1,...,k, we have
W(L*fj)a = JV(E*fj)a, Vazl

M(L=§&) = ML=E)
Meg)e = Ipg,
Sre;(t) = Srt)ee, = ()L,
Remarks 2.3. (1) In this theorem, the implication (1) = (2) has been estab-

lished in [8, Theorem 2.1]; since E C &, this is a recipe for enlarging the
functional space where a property of localization of the discrete spectrum
holds. The implication (2) = (1) is a recipe for shrinking the functional
space where a property of localization of the discrete spectrum holds.

(2) In the simplest case where A € #(E, E), the assumption (iii’) is satisfied
with n = 1.

(3) The hypothesis (i)-(ii)-(iii) (for some a € R) in Theorem imply the
hypothesis (i')-(ii)-(iii’) above, for any a’ > a.

(4) A similar result holds when we replace the assumption E C & by the as-
sumption that £ N & is dense in both F and &.

Proof of Theorem[2.2. Because of Remark (1), we only have to prove the im-
plication (2) = (1). Let us denote  := A, \ {&1, ..., &} and define for z € Q

n—1

U(z) =Y (-1)" (Rp(2)A) Rp(z) + (=1)" (Rs(2)A)" Re(2).

£=0

Observe that thanks to the assumptions (i')-(ii)-(iii’) and (2), the operator U(z)
is well-defined and bounded on E.

Step 1. U(z) is a left-inverse of (L — z) on . For any z € {2, we compute

n—1

> (-1 (Rp(2)A)" Rp(z) (A+ (B - 2))
+(=1)" (R(2)A)" Re(2) (L - 2)
n—1
= > ()" Be()A) T+ (-1 (Rp(2)A)"
=0

+(=1)" (Rp(2)A)" = Idp.

U)(L = 2)
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Step 2. (L — z) is invertible on ). Consider zg € . First observe that if the
operator (L — zp) is bijective, then composing to the right the equation

U(Zo)(L — Zo) = IdE

by (L —20)~! = Rp(z0) yields R (z9) = U(z0) and we deduce that the inverse map
is bounded (i.e. (L — 2p) is an invertible operator in E) together with the desired
formula for the resolvent.

Since (L — zp) has a left-inverse it is injective. Let us prove that it is surjective.
Consider g € E. Since L — zq is invertible and therefore bijective there is f € £ so
that

(L —2)f =g and thus Id 4+ Rp(20)Af = Rs(z0)9g = Rp(20)g.
We denote g := Rp(z0)g € E and G(z0) := Rp(29).A and write

= G0)f = 3 (1)G(0)'7 + (~1)"G(z0)" .
=0

Because of (i')-(ii)-(iii’), it implies that f € E, and in fact since 2(B) = 2(L),
we further have f € 9(L) C E. We conclude that (L — z9)f = g in E, and the
proof of this step is complete.

Step 8. Spectrum, eigenspaces and spectral projectors. On the one hand, we have
N(L—=&)*CAH(L-&), j=1,....k, aeN,

so that (L) N A, C {&,...,&}. On the other hand, consider §; € (L) N A,
aeN*and fe A (L —E)™
(L—=¢&)* f=0.
Denote gg := (£ — fj)ﬁ fy, B=0,...,a and argue by induction on § decreasingly
to prove that gg € E. The initialisation f = o is clear. Assume gg; € F and
write (£ —&;) gg = gp+1. Using £L = A+ B and composing to the left by Rg(§;),
we get
(G(&) +1d) gg = Rp(&j)gp+1 € E with G(§;) == Rg(§;)A.

We deduce that

n—1

95 = (=1)"G(&)"gs+1+ Y _ G(&)  RB(&;)g841-

k=0
Since G(&;)" is bounded from & to E, and G(§;) is bounded from E to F, with in
each the range included in Z(B) = Z(L), we deduce that gs € Z(L) C E, and
the proof of the induction is complete. Finally g9 = f € Z(L) C E. Since the
eigenvalues are discrete, this completes the proof of (1).

Finally, the fact that Il ¢ |z = Il ¢, is a straightforward consequence of Rz (z)f =

R (2)f when f € E and the formula (2.1) for the projection operator. This con-
cludes the proof of (3)-(4). O

2.3. Factorization and semigroup decay when changing spaces. We now
prove Theorem [T} First we notice that the assumptions of Theorem [2.2] are met
since (i') follows from (i) and (ii)-(iii) imply (iii’). Because of Theorem we
know that Z(Ilz ) = Z(1lL,) C E, and then for any fo € Z(I1L ), there holds

k
Fr(t) fo=S1(t) fo= Ze“t Iz ¢, fo,

Jj=1
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where L := L|x,, X; := Z(IlL ¢,). By linearity, it is enough to prove the equivalent
estimates (1.1) and (1.2)) in the supplementary space of the subspace Z (I, ,). We
split the proof into two steps.

Step 1. Enlargement of the functional space. We give here an alternative presen-
tation of the proof of (1) = (2) in Theorem [1.1| which is in the spirit of [I] while
the original (but similar) proof in [§] uses an 1terate Duhamel formula. We assume
(1.1) and denote f; := Sc(t)fo the solution to the evolution equation 0,f = Lf.
We decompose

f=Tpafi+g" +¢*+--+g",
gt =Bg', g5 = fo—TLafo,
oig® = Bg" + Agh~t, gk =0, 2<k<n,
Org" = Lg" T+ Ag", ggtt =0,

and we remark that this system of equations on g, 1 < k < n + 1, is compatible
with the equation satisfied by f. Moreover, by induction

Agi(t) = (AS) "0 (t)(fo — Mrafo), 1<k <n,

so that Ag,(t) € E, because of assumption (iii), and thus the equation on g, is
set in F and writes

atgn+1 = Lg, + Agna gn+1(0) =0.

We deduce successively the estimates (for a’ > a)

lgx (@)l S t5e [l fo ~Mrafolle, 1<k<n,
g ®)lle Sar el fo —Mrafolle, 1<k <n,
[Agn()llE < t"e™ [ fo — Mra folle,
[(Id = r,a)gn+1(D)lle S NAd =L a)gn1(#)|E Sar € o — Tz afolles

and since, from the definition of the decomposition,

Iz agny1 = —Hrpeg1 — - — 1 agn

we have, using the previous decay estimates,

||HL7ag’rL+1 ”g Z ”HL agk(t )”g Sar € 't | fo— T, afOHg )
k=1

which concludes the proof of ([1.2]) by piling up these estimates on f.

Step 2. Shrinkage of the functional space. We assume (1.2)) and fo € E and write
the following family of operators depending on time on E through a factorization
formula:

n—1

F(t) = Setpq + > (1) (FB(1H)A)) Fp(t)(1d — 11, 4)
=0

+ (=D (S A L ()(1d ~ T, ,).
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Using the assumptions and (1.2]) one gets
”yﬁ(t)(ld - HL,a)“gg(E,E) Sar € ¢
[CAGEIS

’
<a/ ef t

~

B(E,E)
1780 Al gz, Sar e’

which proves that
Hy*(z) - SL<t)HL7a||Q(E,E) Sar e g

Therefore the Laplace transform U, (z) of ¢t — (F(t) — Sp(t)I1L o) is well-defined
on Rez > d/, and is

n—1
U.(2) = SO(=1) (Rp(2) A)’ Rp(2)(1d—T11 )+ (~1)" (Re(2)A)" Re(2)(1d—T1,)

=0
which is exactly U.(z) = Rp(2)(Id — Iy, ,) from Theorem By uniqueness of
the Laplace transform we deduce that .7, (¢t) = (), and this proves the decay

(). O

2.4. A practical criterion. We finally prove a criterion implying both (iii’) in
Theorem [2.2| and (iii) in Theorem

Lemma 2.4. Consider two Banach spaces E and £ such that ENE is dense into B
and € with continuous embedding. Consider L an operator on E + & so that there
exist some operators A and B on E+ & such that L splits as L = A+ B. Denoting
with the same letter A, B and L the restriction of these operators on E and &, we
assume that there hold:

(a) (B —a) is hypodissipative in E and £ for some a € R;

(b) A€ B(E) and A€ B(E);

(c) for some b € R and © > 0 there holds || A-S5(t)||ze 5 < Ce’t~° and

|75 (t)All ze.m) < Ce®t=©.

Then for any a’ > a, there is some constructive n € N, Cyr > 1 such that
VIS0, [(ASE) 0o + I(FaA) 0 e,y < Cure™
As a consequence, (A Rg(2))" and (RgA)™ are bounded from € to E for any z € A,.

Remark 2.5. It is necessary to include the non-integrable time factor in (c) for
later application since (c¢) will be proved by hypoelliptic regularity which has this
possibly non-integrable behavior at time zero.

Proof of Lemma[2.]] When © > 1, we denote by J the integer such that © < J <
© + 1 and we set 6 := ©/J € [0,1). We define the family of intermediate com-
plex interpolation spaces &; = [E, £];,;. Thanks to the Riesz-Thorin interpolation
theorem, we have

AT(t) : Ess = [0, E1lss Eols — MY = [[€0, E1ls, E1s

with the following estimate on the operator norm

—8)(1—6' 5(1-¢6" ’
IASs(1)lg, ,ess < IALB@E N IASOIE50) AT O]12 e, -
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Since
Es,50 = [[€o, E1ls, (€05 Elols = [Eo, E1l(1—67)s
2% = [€0. E1ls. (€0, Exlilsr = [E0. Er] 1-57)54.
by taking ¢’ =1/J and § = j/(J — 1), we get

IATB B e, < IASBO o 178D AT ik 5y

< L a-1/navo/ e
Nte *

We define now n := £.J so that (A.5)0™ = 9}*6) with 7 := (A75)*7). From

the assumptions and the previous estimate, for any a” > a

175 BsE Sav ety 11O lleme S e, [ T5t)lese Sar e

As a consequence, we obtain
IAZ8) ™ ()l s 5 Sar el1-0 012,

which concludes the proof by fixing ¢ large enough so that (1 —1/¢)a” +V' /¢ < d'.
The estimate on (/5.A)*™ is proved by the same argument. O

3. THE KINETIC FOKKER-PLANCK EQUATION WITH FLAT CONFINEMENT

This section is dedicated to the proof of semigroup growth estimates for the
kinetic Fokker-Planck equation confined either by spatial homogeneity (hence re-
ducing the simpler “Fokker-Planck equation”) or confined by spatial periodicity, in
a large class of Banach spaces, including the case of negative Sobolev spaces. We
deduce growth estimates in Wasserstein distance as well.

3.1. Main result. Consider the Fokker-Planck equation
(3.1) Ohf=Lf:=Vy - (Vof+Ff)—v-V,f,

on the density f = f(t,z,v), t > 0, x € T? (the torus’ volume is normalised to
one), v € R, where the (exterior) force field F' = F(v) € R? takes the form

1
(3.2) F=V,® with V|v|> Ry, ®(v)=—-(v) +
v

for some constants Ry > 0 and v > 1. Here and below, we denote (v) := (1+|v|?)'/2.
We define p(v) := e~ ®®) with ®; € R such that p is a probability measure.
Observe that p is a steady state for the evolution equation . We shall consider
separately along this section the case where f does not depend on z, commenting
on the simpler proofs and sharper estimates in this case.

Let us now introduce the key assumptions:

Assumptions on the functional spaces
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Polynomial weights: For anyy > 2, 0 € {—1,0,1} and p € [1, 00|, we introduce the

weight functions
1
(3.3) m:= ()* k> o]+ |o|Vd(y - 2) + (1p) (d+~v-2)

and the abscissa

lo|+(1=1/p)d—k ify=2,
ay(p,m) ::{

—00 if vy > 2.

Stretched exponential weights: For any v > 1, 0 € {—1,0,1} and p € [1,00], we
introduce the weight functions

(3.4) m = e with s € [2—7,7), k>0, s >0,
or with s =, k€ (0,1/7),

and the abscissa

K2—k ify=s=1,
ay(p,m):=< —Ks fy+s=2, s<7,
—00 in the other cases.

Definition of the spaces: For any weight function m, we define LP(m), 1 < p < oo,
as the Lebesgue weighted space associated to the norm

[f e my = [1f mllze,

and WHP(m), 1 < p < 0o, as the Sobolev weighted space associated to the norm

1 llw o ony == (lm fI1%, + Im V£I[2,)""

when p € [1,00) and

[ fllwroe(my := max {[|m f|[Le, [m V fL=}.
We also define W=1P(m), p € [1,00], as the weighted negative Sobolev space asso-
ciated to the dual morm

(3:5) 1 llw—somy = If mllw-e = sup (f,dm), p'i=——,
181l 1,5 <1 P

wlp/ >

where it is worth insisting that in this last equation the condition |||y < 1
refers to the standard Sobolev space wtr' (without weight).

Observe that for ¢ € {-1,0,1}, p € [1,00] and m satisfying or (3.4),
the Sobolev space W7P(m) defined as above is such that 1 € W7 * (m~!) with
o' = -0 € {-1,0,1} and p’ := p/(p — 1) € [1,00]. As a consequence, for any
f € WoP(m), we may define the “mass of f” by

(D) = Vst = (mfo )

weo.p We'.p'
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where the double bracket recalls that there are two variables z and v. In the case
o = 0,1, there holds WP(m) C L' (here L' denotes the usual Lebesgue space
without weight) and therefore the “mass of f” corresponds to the usual definition

((f)) = /W y f(z,v)dzdv

and else this is the mass of the associated measure. Observe also that when f does
not depend on x, this reduces thanks to the normalisation of the torus volume to

W»ﬂﬂ:éﬁmm.

We finally define the projector II{ on the orthogonal supplementary of the first
eigenspace:

VfeWT(m), Iif:=f—((f))n

Theorem 3.1. Consider o € {—1,0,1} and m, p € [1,+0o0] that satisfy conditions

(3.3) or (3.4) above (this implies ax(p,m) < 0). For any a > max {a,(p,m), —A},
there exists C, = Cy(o,p,m) such that for any fo,g0 € WoP(m) with the same
mass, there holds

(3.6) 172(0)Jo = Z2O)0llwon(my < Cae® 1o = gollwo i
which implies in particular the relaxation to equilibrium
(3.7) 172 (t) fo = (fo)tllwaw(my < Cae™ [ fo = (fo)ttll o (my -

where X := \(d, o,p,m) > 0 is constructive from the proof.

Moreover, when v € [2,241/(d—1)), there exists a(y) < 0 and for any a > a(vy)
there exists Cy € (0,00) so that for any probability measures fo, go with bounded
first moments, there holds

(3.8) W1 (S2(#) fo, 2 (t)g0) < Ca e Wi(fo, 90)
which implies the relaxation to equilibrium
(3.9) Wi (L2 (t) fo, (fo)u) < Cae® Wi(fo, (fo)n)-

Remarks 3.2. We first list the remarks in the spatially homogeneous case.

(1) Form = w2 p=2and o =0, reduces to the classical spectral gap
inequality for the Fokker-Planck semigroup in LQ(AL*V 2). In that case the
semigroup spectral gap is equivalent to the Poincaré inequality. Denoting
as Ap the best constant in the Poincaré inequality, the estimate holds
with a = —Ap and C, = 1.

(2) Our proof in the general case is based on the above mentioned semigroup
spectral gap estimate in L?(u~'/?) and on the abstract extension Theo-
rem [I.1] More precisely, our approach allows one to prove an equivalence
between Poincaré’s inequality and semigroup decay of the Fokker-Planck
equation in Banach spaces, including the case of negative Sobolev spaces.
The meaning of the sentence is that the functional inequality

(3.10) Va' >a, (Lf )22y <a [0 FlF2 000

is equivalent to the semigroup growth estimate (3.7) for a large class of
weight function m.
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For v > 2, it has been proved recently in [4] that a semigroup growth esti-
mate similar to holds for the Monge-Kantorovich-Wasserstein distance
W, or in other words that for any probability measure fy with bounded
second moment, there holds

Wa (L2 (t) fo, (fo)u) < C et Wal(fo, (fo)p)-

In the above inequality C' = 1 and —« is the optimal constant in the “W.J
inequality” (introduced in [, Definition 3.1]), which corresponds to the
optimal constant in the “log-Sobolev inequality” for convex potential and
in particular —« is smaller than the optimal constant Ap in the Poincaré
inequality . Our estimate can be compared to (3.11)).

It is worth emphasizing that in Theorem the function space can be
chosen smaller in term of tail decay than the space of self-adjointness
L?(u='/?): one can choose for instance L?(u~%/?) with 6 € (1,2).

Note that this statement implies in particular that for a strong enough
weight function, so that the essential spectrum move far enough to the left,
there holds

S(L) € {z € C| Re(z) < —Ap} U {0}

and that the null space of L is exactly Rpu.

Moreover, thanks to Weyl’s Theorem, we know that in the L2 (,u_l/ 2) space
the spectrum is constituted of discrete eigenvalues denotes as &y, £ € N, with
£ — Re&y decreasing. In any Banach space WP(m), exactly the same proof
as for Theorem [3.1| (same splitting £ = A + B and same application of the
abstract extension Theorem yields to the more accurate description of
the spectrum

)Y (‘C) N Aa(,(pm%) = {557 %e(gé) > aa(pa m)}

as well as the more accurate estimate for any a > a,(p,m) and with
k defined by k = sup{¢; Re(&) > a,(p,m)}.
As a consequence of the preceding point, we may improve the intermediate
asymptotic for the heat equation established in [3]. Consider g the solution
to the heat equation

atg = A'UQ? 9(0) = 9o,

with go € LP(m), m = (v)¥, k > d/p' +n—1, n € N*. Assume furthermore
that

VleN: |4 <n-—1, / go Hydx =0,
Rd
where (Hy) stands for the family of Hermite polynomials (see [3] and the

references therein). In particular (go) = 0 since Hy = 1. We observe that
the function f defined thanks to

g(t,z) = R f(logR,v/R), R=R(t)=+1+2t,
is a solution to the harmonic Fokker Planck equation
Of =Lf=Auf+divy(vf), f(0)= go,

and that (H) is an orthogonal family of eigenfunctions associated to the
adjoint operator L£* (Hy is associated to the eigenvalue [£| = ¢ + -+ + {4
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for any ¢ € N%). An immediate application of our method implies
1fell Loy < Capon €™ llgoll pomy V=0,

which improves (3.7)) (which holds in that context with a = —Ap = —1)
whenever n > 2. Coming back to the function g we obtain the optimal
intermediate asymptotic estimate

Cd7p7n
||gt||Lp(m) S (1 +t)n/2+d/(2p’) ||go||LP(m) vt > 0.

That last estimate improves [3| Corollary 4] because the range of initial
data is larger and the rate in time is better (it is in fact optimal).

Remarks 3.3. We now list the remarks specific to the spatially periodic case.

(1)

(3.12)

The value of X in our quantitative estimate is related to the hypocoercivity
estimate in L?(u~!) setting. However the best rate in general is the real
part of the second eigenvalue defined by

A= sup inf <—<£f’ f*>>

I~ llwoe oy FEC R\ [ITIE £l

where C2°(R%) denotes the smooth compactly supported functions, and
where the supremum is taken over all norms || - || on W?P(m) equivalent
to the ambiant norm, and where f* € W”/’p,(m) is the unique element in
W% (m) such that || f]|2 = ||f*||2 = (f*, f), where ||-|, is the correspond-
ing dual norm.

Our result partially generalize to a spacially unhomogeneous setting the
estimate on the Monge-Kantorovich-Wasserstein distance obtained recently
in [4].

Our proof is based on the semigroup spectral gap estimate in H'(u~'/?)
established in [I6] 20] and on the abstract extension Theorem. As a conse-
quence, it gives an alternative proof for the semigroup spectral gap estimate
obtained in [7, [6] for the Lebesgue space L?(pu~1/2).

Again, the proof holds for F := V® + U which fulfills the conditions of [8],
section 3]. In particular the associated Fokker-Planck operator does not
take the AA* + B structure of [20] (where the term V, (U f) is included in
the “B” part).

The proof of Theorem [3.1] is split into several steps:

(1)

We recall existing results for proving (3.7)) in the space of B = H'(u~1/?):

Lemma 3.4. ([16, Theorem 1.1]) The result in Theorem[3.1]is true in the
Hilbert space H'(p~1/?) associated to the norm

1/2
1 Wl 22 (u1r2) = (Hf”%z(,fl/z) + ||wa||iz(ufl/2) + ||va\|%2(,rl/2)) .

(2)

Such a result has been proved in [16], see also [12] 111 9, [7 [6].
We devise an appropriate decomposition £ = A+ B with B = L — Mg
where xpr is a smooth characteristic function of the set |v|] < R with
M|V, xr| small.
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(3) We need then to establish the dissipativity of B in the spaces WP (m) and
of B := Bjp in E. The coercivity of B in these spaces is established in
Lemma and The coercivity of B in E follows also from the
same Lemma since the weight m = p~1/? is allowed. The latter could be
proved by adapting the proof of [I6, Theorem 1.1]. Or finally it could be
checked more generally that the coercivity of B in F follows from that of
L combined with the strenghtened Poincaré inequality as described below.

(4) We prove that the semigroup .#5(t) is regularizing in L?(pu~1/?).

(5) We conclude by applying Theorem [1.1

Remark 3.5. Observe that since we need only applying regularization estimates for
the semigroup of B after a composition by the operator A, it is enough to prove
these regularisation estimates with the usual weight /2.

3.2. Simplifications in the spatially homogeneous case. Let us start by
pointing out the simplifications in the spatially homogeneous case. First the de-
cay (3.7) in the space E = L?(u~"/?) follows from the Poincaré inequality:

Lemma 3.6. There exists a constant A\p > 0 so that for f € D(R?) with (f) =0

s [ e ()

and moreover for A < Ap, there is (A) > 0 so that

/ U( ) 2
Rd K
+e /d <f2 |V1,<I>|2+ |va|2) pt(v) dv.

poyde > A [ f2umH(v)do
Rd
Proof of Lemma[3.6 The proof of Lemmais classical. We refer to [2] for a com-
prehensive proof of (3.13)). For the sake of completeness, we present a quantitative
proof of (3.14) as a consequence of (3.13]) in the spirit of [I7].
On the one hand, by developing the LHS term, we find

_ AP o
T'_/Rd v”(u) “(U)d”_/RdW”f| p~tdo /Rdf(Avq))u dv.

On the other hand, a similar computation leads to the following identity

T— /
R4
2 1 1
:/ ‘Vv(f/fl/z)’ dv+/ 12 <|VU<I>|2—AU<I>> ptdw.
]Rd Rd' 4 2

The two above identities together with (3.13) imply that for any 6 € (0, 1)

2
p)dv>xp [ f2 p~H(v)do
]Rd

—1/2y ,,1/2 —-1/2 1/22
Vo(fu )=+ (fum %) Vop ‘u(v)dv

T> (179)Ap/ f2u’1dv+0/ f? i|v,1<1>|27§Avq> ptdv
Rd Rd 16 4

0 0
big [ Pl tavs d [ gL et
16 Rd 2 ]Rd

Observe that |[V®|? —12A® > 0 for v large enough, and we can choose § > 0 small
enough to conclude the proof. [



STABILITY OF SLOWLY DECAYING SOLUTIONS. .. 17
We define
(3.14) Af = Mxr/, Bf :=Lf— Mxgrf

where M > 0, xr(v) = x(v/R), R > 1, and 0 < y € D(RY) is such that x(v) = 1
for any |v| < 1. The dissipativity estimates are proved as in the spatially periodic

case in Lemmata Finally the regularisation estimates are proved
by using Nash’s inequality:

Lemma 3.7. For any 1 <p < ¢ < oo and for any R, M as in the definition (3.14))
of B, there exists b =b(R, M) > 0 so that for any o € {—1,0,1}

bt

e
(3.15) vte [0, 1], [t fllweam) S G- I fllwere(m)
and for any —1 <o <s<1

bt
(3.16) vie[0.1], NSO Masom) S 5= I llae o)

Proof of Lemma[3.7] The proof is classical and is a variation around Nash’s in-
equality, together with Riesz-Thorin interpolation Theorem. We refer for instance
to [8, Lemma 3.9] for some similar results. O

3.3. Dissipativity property of B. We define
(3.17) Af = Mxrf, Bf :=Lf—Mxgrf

where M > 0, xyr(v) = x(v/R), R > 1, and 0 < x € D(R?) is such that y(v) =1
for any |v| < 1.

Lemma 3.8. For any exponents v > 1, p € [1,00], for any weight function m given

by (3.3) or (3.4) and for any a > ag(m,p), we can choose R, M large enough in
the definition (3.17) of B such that the operator B — a is dissipative in LP(m).

Proof of Lemma[3.8 We start by establishing an identity satisfied by the operator
L. For any smooth, rapidly decaying and positive function f, we make the splitting

/ (Lf)fp_lmpdxdvz/ P imP (AL f 4 divy (F f)) dedv =: Ty + T.
Td x R4 Td xRd
For the second term T5, we use integration by part in v:
T, = / Pt mP div, (F f)de dv
Td xRd

- / PPl (divoF 4 F -V, f)dedo
Td xR2

1
/ fP(div, F)ymP dv — — / fPdivy, (FmP)dz dv
Td x R4 D Jrixrad

1 v
/ fp [(1— p) div,F — F - vﬁﬂ m? da dv.
TdxR4
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For the first term T}, we use integrations by part in v and the identity mVm =1 4
m~'Vm = 0 in order to get with the notation h = fm

T = / Wt mA, (hm™") dzdo
TdxRe
- / Vo (RP71) - (Vyh + hmV,m™!) dzdv
Td xR4

—/ hP=IV,m - (Vvhm_1 + hvvm_l) dz dv
Td xR4

2
_/ V,hP~ ! V,hdedo + (1 — ) / (Vo h? - V,m) m~Ldzdo
Td x R4 p Td x R4

7/ hP (va . vafl) dz dv
Td xR4

—(p— 1)/ |Voh|> hP=2 da dv
TdxRd

2
+/ W KQ = 1) v, <V”m> 4 el ] dz dv
T4 xR% p m m

C(p-1) /TW IV ()2 (Fm)P~2 d do

2
+/ (fm)P [(2—1> A“m+2<1—1) |V””§| } dz do.
T4 xRd p m p m

All together, we then have established

(3.18) /Td Rd(Bf) Pt mP dx dv

——o=1) [, VR dedos [ e, ded

d R
with
2 A, 1\ |[V,m[? 1 Ve
o ( - 1> o <1 - > Noml” (1 - ) div, F— F -~ _ M xp.
’ p m P m P m
Introducing the notation s := 0, x := 1 when m = (v)* and k := s when m :=

s
e" ()" we have

W = (5 1) (k) b = 2l 4 Y

2 1
+(2=2) el et 4 (12 1) (@2 4+ (= Dl )
—#k [v]* (v) 7T — M xR
which gives the asymptotic behaviors

¢9n,p(11) o k25?0572 — ks |v[1T572 ifs>0
v|—00

0 ) ~ Kl—;) (d+7—2)—k] o if s =0.
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As a consequence, when m = """ v > 5> 0,y +5>2, k>0 (with s < 1/5
if s =) we obtain

0 2 .

— VK — K ify=s=1
wm’p vV—00 v ’
wgnp—>—ﬁs ify+s=2, s<7,

o v—oo
v p————> =00 in the other cases.
o v—o0

When v > 2 and m = (v)*, we get

1 .
217p V—00 (1p> dik lf’Y:Q’
1
0 .
wm,pm—oo ify>2 and k><1—p>(d+”y—2)-

Observe that in all cases when v + s > 2, we have

(3.19) '(/}2'7,,1) ~ =0 ()72 for some constant § > 0.
|[v] =00
We have then proved the following estimate: for any a > ap.m, 6/ € (0,a —

ap(p,m)) small enough and p € [1,00), we then can choose R, M large enough in
such a way that ¢, (v) < a— 0’ for any v € R?, and

(3.20) /Td Rd(Bf) P imPdede < a/ | f|P mP dz dv

Td xRe

—y / PP ()72 dedo — (1 p) / 9, (fm) 2 (fm)P = da dos
Td x R4 T

d wRd

As a consequence and in particular, throwing out the two last terms, we have
VfeLP(m), |IZB(t)flLrem) < e (I f]lLrm)-

Since p — ap(p, m) is increasing, we may pass to the limit as p — oo in the above
inequality and we thus conclude that B—a is dissipative in LP(m) for any p € [1, 0o]
and any a > ag(p, m). O

Lemma 3.9. For any exponents v > 1, p € [1,00], for any weight function m given
by (3.3) or (3.4) and for any a > a1(m,p), we can choose R, M large enough in the
definition (3.17) of B such that the operator B — a is hypodissipative in WP (m).

Proof of Lemma[3.9 The decay of V,.%53(t) f = .#5(t)V, f is poved as in Lemma/3.§]
since z-derivatives commute with the equation. We hence have

/ (Bf)fpflmpdxdvga/ [f|P mP dx dv,
TdxRd Td xR

/ Op,(Bf) Oy, f10x, fIP"2mP dz dv < a/ |0z, fIP mP da dv.
Td xR4 Td xRd
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For any i € {1,...,d}, we compute

/ (avz‘cf) 8’Uif|avif‘p_2 mp dz dv
Td xR4

d
_ / Do, f10n, FIP2 P | A0, + 3 00,00, (F ) | dodo
Td x R4

j=1
- / Oy fO0.f
Td xR2

Oy, fIPImP dxdv =: Ty + Ty + Ts.
For the first term 717, proceeding exactly as in the proof of Lemma we find

P72 qzdv

Tim—p=1) [ Vom0, D lmd,f

2 A, 1\ [V,m|?
e {21 2 a1 1) T,
Td xRe p m p m

For the second term T3, we have

Oy, fIP~2mP dz dv

d
T2:/ Z(aylay]F]f-i-amF](%]f) avlf
T x R4

Jj=1

m

1 \Y%
—|—/ |0, f17 {(divvF) (1 — ) —F. Um} mP dz dv.
Td x R4 p
For the third term T3, we use Young inequality to split it as

T3 S 8_1/ |8w1f
Td xR2

where € will later be chosen small.
Using the Young inequality, we get

S [ @uBNoo P aras
5 JTIxR4

pm”dxdv+5/ |0y, f|P mP da dv
Td xR

O, f

:Z{T1+T2+T3—/ 0o, (M xR [)Ou, f

Td xR4

P d
o ] (o) s
dX d

TéxRE P P

d
+et /Ed y (Z |8xif|”> mP dz dv,
X

i=1

P=2 P dxdv}

with
d

Z =Y 185,85, F| + (M/R) |(div,X) |
ij=1

and

1 1 1
rln,p ZZEZ‘*‘HSQP E |8'UiFj|+];Su_p E |a’UiFj|+w21,p+E‘
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On the one hand, the function Z is always negligible with respect to the dominant
term in 9, , (which is F' -V, Inm). On the other hand, we compute

sup > 100, F| < (1+vd(r=2)) )2,
Sgpz 00, F5] < (1+Vd(y = 2)) @)~

We deduce y
lim sup ’(/}'rln,p < lim sup w;%p

with

1. 2

= (14 VA( =2)) ()2 445, +e.
_ When m = ey > s >0, vy+s>2 v >1, k> 0, we observe that
Lo oo WO and when m = (v)¥, v > 2, we observe that
Vmp m,p v

vV—00

1
llmsupz/}mpgl—i— <1—) d—k+e ify=2,
p

~ 1
limsup ¢y, , = —o0 ify>2 and k>1+\/g('y—2)+<1—> (d+~v—2).
' p

vV—00

Summing up, for any a > ai(p,m), n € (0,a — a1(p,m)) and p € [1,00), we can
choose R, M large enough and e small enough in such a way that ¢}, ,(v) <a—n
for any v € R%. We then have established the following estimate

d

Z/ (aquf) avif|8vif‘p72 mP dxdv <

N Td xRd

§C/ | f|P mP <U>W*2dzdv+0/ <Z|8 f|;0> mP dz dv
Td x R4 Td x R4
d
+a Oy, fIP ] mP dz dv
/’I[‘dled <Z| ) | )

i=1

/ <Z|5‘ fp> mP (v)7* 2 dz dv
TdxRa \

=1

_ _ 2
DY [ @ nmFa.s

i,j=1

Dy, fIP2mP da dv

where C' depends on M and R.
As a consequence, any solution f to the linear evolution equation

of =Bf, f(0)=focW"(m)

satisfies

Oy
/]I‘dx]R” <lz_:| lf
d
+C’/ <Z|8 fp> mpd:rdv—&—a/TdXRd <;|3vifp> mP dz dv.

mP
—dzdv < C | [P mP (v)72 dz dv
p T x R4
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Defining the equivalent norm || - [|y31,5(,,) thanks to

p
Lr(m)

d d
||f‘|%/1p(m) = Hf”zl),p(m) + Z ”azlf'”ip(m) + CZ ”amf
i=1 i=1

and choosing ¢ > 0 small enough, we conclude thanks to Lemma [B.§ and the
estimate (3.19) that (B — a) is dissipative in W1P(m) for any a > a1(p,m) and
p € (1,00), and therefore in W?(m) for any a > a;(p, m) and p € [1, c0]. O

Lemma 3.10. For any p € [1,00], for any force F given by (3.2)), any weight
function m given by (3.3) or (3.4)), and for any a > a_1(m,p), we can choose
R, M large enough in the definition (3.17) of B such that the operator B — a is
hypodissipative in W—1P(m).
Proof of Lemma[3.10. We split the proof into three steps.
Step 1. We first observe that if

Cfi=Af+B-V,f+A,f—v-V,f,

and we make the change of unknown h := fm with m = m(v), then the corre-
sponding operator C,,h = mC(m~1h) writes

Cmh:=A,h+ B, -Voh+Ay,h—v-V,h
with

A, = A-B

A,m |V.,m|? Vom
Sy g Iy AL
m m

. B, = [B—Zv”m].

m

We also observe that the dual operator C* writes

C'o:=A"p+B* -Vydp+A,p+0v-Vyo
with
A* .= (A —div, B), B* := —B.
Defining
Bf i= (divyF — Myg) f+ F -V, f +Agf —v -V, f

and using the two above identities, we get

(3.21) B¢ = {A”m : v”m} $— {F _ g Y
m m

:| Vop+A,¢+v-V, 0.
Besides, any solution g to the equation
dhg=ag+p-Vog+Ayg£v-Vyg
satisfies at least formally (by performing two integrations by parts) the identity

d lg[” _ 2 ,P—2
~—dxdv=—-(p—1) |Vg|*|g|P™* de do
TdxR4

dt TdxRd P
div,
+/ (oz Wﬂ) || dz dv.
Td xRe p

As a consequence, for ¢ solution to the equation

(3.22) O = B,,9,
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we have
d P
— ﬂdxdv < / |p|P b2, dadv,
dt Jraxge P Td x R4 P
with
2\ A, 1 2 |Vym/|? v
(3.23) 2 (o2 Aum Ly py 2VemE p Vem
P, ) m » p m2 m

Recalling that

A,
T kk(d4s— 2l TR 022 divF ~ (d4y —2) o]
V— 00

m v—o0

2
|Vv7;1| K22 0|22, F. Vym ~ krfo[rte2,
m vV—00 m v—0oo

we have for an exponential weight function (so that s > 0 and k = s)

Upom o 1787 [0 — safu| 772,

and for a polynomial weight function (so that s = 0), we have

d -2
2 ~ < +'Y k> ‘v|'yf2,
p

m
LS TRENSS

with again 92, (v) ~ —0(v)?*572 for large v when 7 4+ s > 2. In both case, we
conclude that for any a > a,

B2) 6l < Al O o2
for some small #’, uniformly when p — oo.
Step 2. Now, we write
0(0v,0) = 0u,B,¢
d
— A(D,0) — ;aw (Fj 9 a:im) By, 6 — |F —2 V;Lm Vo (80, 0)
N {A;%m _F Vom MXR} D06+ O, {A;lm _ 7. V;',%m MXR} p
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By integration by parts, we deduce
Ld S ool dxdv—Z/ (0400,) Do, B0, B2 da v
pdt S — v ’UL ’Ul V4
1
</ (Afn+divUB,*n> S ool ) dods
Td xR p i1
+z i

((90,43,) 6 = (00, By,.;) 0, 6] Du, 010, 6172

dXRd

0y, 0|0y, P~ 2dxd
+;/dewax,¢a%¢|al¢| dz dv

d
eP 3 1
< — + + = sup |0, AF Op. &P | dazdv
<[ <p Bty s [0, m|> (p 6 )
1 ¢ 1
+ — Oz, | dzdv+ — O, AT, olP da dv
plgp /IdeRd <;| i | ) p/ d xRd <;| | | ‘

where

1
3= sup Z|6].Bfn’i|+A:T+§diva:n.

p,m
’ i=1,...,d
‘We have

sup Z|6B ( +(y —2)¢&) 0|72 + 2k (1+(s—2)¢&) v]*=2,

i=

as well as
2\ A 2 2
A (0) + + div B, (v) ~ (1 - ) B 200E 4 L 2 T g0
b p;, m p m? m ’
and
k(y—=2)(k+d—3)
when v > 2 and m(v) = (v)*,
Oy, AY, ~

[2/1252 + k252(2s — 4)] vi|v]2 4 = [26s + Ks(y + s — 4)] v v T4
when v > 1 and m(v) = e

which yields
00 A S W), W(0) o= f)mexi2eesn) =3
For an exponential weight function (so that s > 0), we have thus
pom (V) ~ 05 1 (0) ~ w22 0] 272 — ko] TTT2

and for a polynomial weight function (so that s = 0), we have

d -2
limsup ¢ ,,, < (1 +(y—2)Vd+ % — k) lo|772.
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In both case, we conclude that for any a > a1(p,m) and for M, R large enough

pdt<2” vl ’iv)<a<le% )+C(Zna >+cn¢||

for some C depending on a, uniformly when p — co. Defining again the norm

d d
||¢HW1P(m) = H¢||Lp(m) + Z ||811¢HLP(m) + CZ ||8U1¢

i=1 i=1
for ¢ small enough, equivalent to W1?(m), and using that W < C(v)7+572 we
obtain the following differential inequality

| L2 (m)

R L LA
uniformly as p — co. We have thus proved
Vi>0, Ve W, | S5, (Ddllwir < Ce™|d]win
for some C' > 0 (depending on a), uniformly as p — co.
Step 3. For any h € W1 and ¢ € Wl’p/7 we have
(B, (R, @) = (b, IB; (t)¢)
[Bllw =10 178, ()l < Ce™ [|Allw-10 [Blly10r

m

IN

so that
Vhe WP, |, (6) hllw-rs < C e Al
Then, coming back to the operator B, we conclude with
15(8) Fllw-m(my < O™ Tl -2n(m)-
so that B — a is hypodissipative in W=7 (m) for any 1 < p < cc. O

We introduce for ¢ > 0 the norm

Y]l 7 = maX{||w<v>_1|Lw; sup [0z, ; ( sup ||5vi¢||Loe},

1=1,... yeoey

and the associated space
Foo 1= {0 € Wi 5. <0
and its dual (F)'. Observe that

£l () = sup / W) f ¢dzdv
Td xR

L, [|pllLoe <1

- sup / [y dzdo,
YELRS illth(v) | oo <1 JTdxRA
so that L'((v)) C (Fao)'
Lemma 3.11. Assume that v € [2,2+ 1/(d — 1)), then for any
>y = (d-10y-2) -

(observe that a < 0 from the assumptions), we can choose R, M large enough in

the definition (3.17) of B such that the operator B — a is dissipative in (Fu)'.
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Proof of Lemma[3.11l The proof is an adaptation of the proof of Lemma [3.10} and
we sketch it briefly, writing only the needed formal a priori estimates.

Step 1. For any ¢ € LY., we denote by 9 := .#~(t)1) the solution (when it
exists) to the dual evolution equation

(3.25) Oy = By, abo = 1),
with
By = Ayp — F - V) — M xptp +v- Vi
Introducing the new unknown ¢ := 1(v)~1, we observe that when v, is a solution
to , then the associated function ¢, is a solution to the rescaled equation

(3.26) Brpr = (v) 1O = (v) T B*((v)¢r) =1 Bydr, o =9,
where B?} is defined by .
Step 2. We calculate
00y, = 0u, B = Ay Oyt — (0u, Fy) Ouy1h — Fj 0y, 00,1
— M xR Op, 0 + M (Op,xR) ¥+ vV (0y,0) + 0,7,
with Fj ~ v;(v)?"2 and 9, Fj ~ §;; (v)772 + (v — 2) v;v; (v)7~%. We deduce

d
1d
o /de]Rd <Z| ) dz dv

i=1
/ [ 2 (v = 2) vy (v)7H) Oy, — vj (v)772 Oy, 0y,
Td xR4

— M xR O+ M (D, XR) ¥ + 8%.1/}] 8o |0 P2 dzdv =: Ty + - + T,

with the convention of summation of repeated indices. We compute

d
T = - / (v)772 <Z|avi¢|p> dz dv
T xR i—1

d
o< =302 [ el Pl dedo
i—1 Td xR
1
+0-2) [ pe (|avjw|p+1,laviwl”) da dv
i£] xRet p P
< @-vo-2 [ ke (me)dxdv
Td x R4
1 d
T, = —= / 0 (V)77 Dy, |0y, [P da dv
P 521 JTixRY
1 d
= o> [ @ =20 @) PP dedo
pi’jzl Td xRd
d d
< —(y—-1 V)72 Op,|P | dxdv
< Se-nf W <Z| m)

i=1
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and

o= [ o M@0/

d
C M |[vo{v) =" || e <Z IauﬂbII]Z?l)

i=1

(v) ¢

2
57 (v)] O; Y| 0y, P~ = da dv

IA

and

Ts g%p <Z|5vﬂ/f|p> da:var / (Z |0, 0P ) dz dv.
TdxRe \ ;55

All in all, we have proved

Ld Zd:|6 Y|P | dedo
pdt Td xR i—1 v

dy—1) er d »
< [p‘i‘p—F(d—l)(’Y_Q)_l:l /deRd <Z|8uﬂ/)| ) da dv

i=1

d d
1
—— O P | dzdv+CM ! IRl e
+p’€pl /11‘d><Rd <;| xl¢| ) T dv + ||1/’<U> ||Lp (; [ vﬂﬁ”L >
We recall that any solution ¢; of (3.26]) satisfies (3.24). Fixing a > (d — 1)(y —
2) — 1, next (o > 0 so that a — (o > (d — 1)(y — 2) — 1, and then fixing M and R

so that (3.24) holds with the choice a — (y, M, R, we have for any ¢ € (0,(p) and
K > 1 the differential inequality

1d d d
t[||¢||’zp+2||ax,¢|’zp+<Z||aw||'zp] (o <||¢| +Z||a Il )
=1 =1
d(~ — d
(-6 -2 -1) (Zamip) o Z o,
=1

e (; ||axi¢ip> ]

Taking K, p large enough and then ( small enough, we deduce

d d
1d
" lllqbn’zp + D 102,610 +¢ D 1008117
i=1 i=1
d d
<a [umzp + D102 0llE +¢ D ||8viw||%p]
i=1 i=1

uniformly for p large. As a consequence, we get by Gronwall lemma and then
passing to the limit p — oo

78OVl 7 = 1Well 7 < e 1W]| 7 -
We conclude the proof by duality. (I

+¢
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3.4. Regularisation in the spatially periodic case. We prove a regularization
property of the kinetic Fokker-Planck equation related to the theory of hypoellip-
ticity. It can be considered well-known and “folklore”, but we include a sketch of
proof for clarity and in order to make explicit the estimate. The argument follows
closely the methods and discussions in [I1] and [20}, Section A.21].

Lemma 3.12. The semigroup /g satisfies (with no claim of optimality on the
exponents) first (gain of derivative in L? spaces)

1
" o0 1B fll k172 S EIYE) £l 22172,
1) Vvtel0,1], Vk e N*

1
1-78(t) fllL2(u-172) S Ry £l =5 (u=1/2)-

second (gain of integrability at order zero)

1
1SB(t) fllL2(u-12) S G2 1Nl L =172y

(2) vie,), 1
|-B(E) fllLoe (u-172) S PG EEYYo) £l L2(u-1/2)

third (gain of integrability at order one)
< 1
||VyB(t)f||L2(u*1/2) ~ t(5d+1)/2 ||Vf||L1(u*1/2)7

1
IVIBE) fllpoe(u-1/2) S a2 IV fllp2u-1/2)

(3) Vtelo,1],

fourth (gain of integrability at ordre minus one)

1
|78 () fllw =100 (u=1/2) S (a2 I Fllw=12(u=1/2)5

(4) vtel[o,1], .
1) fllw-12(u-172) S Bat1/2 I Fllw -1 (u-1/2)-

Proof of Lemma[3.14 We only sketch the proof which is similar to the arguments
developed in [T1], see also [20, A.21.2 Variants|, and in Lemma

Step 1. Proof of inequality (1). We only prove the case k = 1, higher exponents k
are obtained by differentiating the equation and applying the same argument. We
write down the energy estimates for the solution f, its first derivatives, and the
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product of the first derivatives

d 2
—|If - S—/ Vo (f /)| pdxdv
Wiy <= [ 190

d
et <= [ @) e do

Td xR4

d
10Tl <= [ V@0t /0 wdady

Td x R4

2 ptdzdo

_/ 8vifamifp,_1 dl‘d’l)—’-/ |6U1f
T xR4

Td xR4
M

t5 02 xr| 1 fPp~ ! dzdo
T xRe

d
7/ amifavifu_ldxdvg—/ Vo f|? ot da dv
dt Td xRd Td x R4

2 / Vo (o /1) - Vi (B, £/ 1) e o
Td x R4
+2M XROp fOu fru~t da dv
Td x R4

M [ 10Xl 10 da do.
R

Td x

Observe also that

2
/ \Vol(g/p)|* pdadv = / IVog|® =t dxdv+/ |lg|? (2 - d) ptde do.
TdxR4 Td xRd Td xRd

Define the energy functional

F(t, fr) == A||ft||2L2(u—1/2) + at”vvft”%z(u—lm)
+ 20t2<VUft, Vlft>L2(/1f1/2) + bt3||V£ft||2LQ(”_1/2)
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with a,b, ¢ > 0, ¢ < Vab (positive definite) and A large enough, and compute from
above

G F(tf) <-4 Vo (fi/ @) pdadv + al| Vo fill 72,12
Td x R4

+4et(Vo fo, Va fo) 12 (u-1/2) + 308 [V fell 72172y

_thZ/ o V0@ /10 dedv—atZ/ V0@ /)] prdadv

—atz O, fOp, funt da dv + at |va\gu_l dz dv
Td xRd

Td x R4

M
+ at E / ’33.)(13| Vi dxdv—2ct2/ |fo\zu—1 dx dv
2 = Jraxga

TdxR4
d
— 4et? Z Vo (O, f/11) - Vo (O, /1) pdxdv
TdxR4

i=1

d
NiOs [0, fu ! Az dot2eM 2 S / sl 70,7l de o
i=1 x

d
+4cMt? Z /
=1

Td xR4

which implies when the compatible conditions ¢ < Vab, 2¢ > 3band A >> a,b,c, M
are satisfied:

d 2 2 2 2, —1
SF L) €K (IV0fillausrey + EIVell2agrr)) +C Pt dedo

T4 xR?
for some constants K, C > 0. Since the L?(~1/2) norm is decreasing over ¢ € [0, 1]
we deduce that

vte[0,1], F(t fi) < F(0, fo) + Cllfoll p2(u-1/2) S F(0, fo)

which yields the first part of (1) by simple iteration of this gain.
For the second part of (1) we first establish in a similar manner as above

1
|8+ @) fll g (u=1r2y S LTy £l L2172

which means

H‘SﬂV”zB*(M”Q hH 2| 2

H*k N t3k/2 |

and by duality

1
H'ylfl/zli(ul/2 hHL2 ~ 13k/2 Il e —»

which means (according to our definition of weighted dual spaces)

1
15O L2 u-172) S a7z 1 l-ru-rr2)-

Proof of inequality (2). Since the norms we consider are propagated by the flow
it is no loss of generality to reduce to t € [0,n], 0 < n << 1. We introduce the
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quantity

g(t, f)
ﬁ(ta ft)

Bl fII7 112y + 17 F(t, f2)
(10 sy + @2V 12
+2Ct4<vxf7 va>L2(;r1/2) + bt6‘|vxf“%2(u—l/2))

with B >> A >> a,b,c and ¢ < Vab and Z = (d + 3)/2.
A similar calculation as above yields, for well-chosen A, a,b,c > 0:

d T 2 4 2 2, -1
@7 ) < K (Vo flagum + IV fillfagoam) +C [ fPutdede

and we deduce

d dB 1s
S6(1) < TSI sy + 27 TF ()

= K2 (IVufiliaurrny + E 1V fill3aguir2) ) + CH /T L P
X

We choose 7 small enough so that Zt?+! << Kt#, and deduce
d dB K
G0 < U sy = 5t (IVodel a7y + IV il

2
JrC'tZ*l/ f2u~tdz do.
TdxR4

for some other constant C’ > 0.
The Nash inequality implies
(3.27)
2d

.
/ f2:u_1 dx dv ,Sd (/ |f|u—1/2 dl’d’l}) 2d+2 (/ |Vm,'u(f,u_1/2)‘2 dl‘dv) 2d+2
TdxRe TdxRe Td xRe
and using the Young inequality we have
112212y < Cestt™ W12 ey + 8 1V F I

for € small and C; 4 depending on € and the dimension d. Taking ¢ small we deduce
d dB 1
79t ) < MLy + O NS I sy

for some constant C” > 0. Finally choosing Z = 5d + 1 we conclude that

Vte[0,m), G(t f) < G0, fo) + Cllfolfr 12y S GO, fo)

which yields the first part of (2). The second part can be proved either by duality,
or by using the inequality (1) with & = d and Sobolev embedding (the constant is
then slightly better: t~3%/2 which has no consequence for the rest of the paper).

Proof of inequality (3). The proof of the first part is similar to the proof of the
first part of inequality (2) after differentiating the equation to get

6t3111;f +v- vxavlf = vv : (vvavzf + 'Uavif) - 83:1f + 8111]0

(observe that it involves no term of order zero derivative). The second part is
proved by applying inequality (1) to the differentiated equation for k = d together
with Sobolev embedding.
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Proof of inequality (4). It follows from (3) by duality. d

Corollary 3.13. For any a > ag, there exist n > 1 and a constant such that for
any spaces E and & of the type WP (m) as defined above, there holds

(3.28) Vt>0, [Tu(t)fle<e™lIfle-

Proof of Corollary[3.13 The proof follows from the application of Lemma[2.4] and
Lemma that implies that A.75(t).A maps any WP (m) to Hé(u='/?) with
some constant Ct~® with some © > 0. |

3.5. End of the proof of Theorem In the cases 0 > 0,1 <p < oo and o =
—1,1 < p < oo estimate is an immediate consequence of Theoremtogether
with Lemma Lemma Lemma Lemma Lemma Lemma [3.7
and Lemma 24

In the case 0 = 0, p = 0o so that L°°(m) is not dense in L?(p~1/2?) (for any
choice of the weight m), we remark that for any € > 0 (small enough) there exists
pe and m, so that L (m) C LP(m.) for any p > p., so that estimate holds in
L?(m,), then in L*(m,.) by passing to the limit p — oo and finally in L°°(m) by
passing to the limit ¢ — 0. We handle the two last cases in in a similar way.

In order to prove , we first observe that combining Theorem together
with Lemma Lemma Lemma and Lemma [2.4] we have established

|2 (@) fo — L) goll (7o) < Cae®™ [l fo — goll(Fy -

Next, for any two probability measures f, g with bounded first moment, we have

Wi(f,g) = sup (f—9)odv

IVo|lroe <1 JRE

— e / (f=9) (@ 6(0)dv

IVl Lo <1

- sup / (f — ) dv,
max{|[(v) =1 ¢| poo,||V| Lo} <1 JRE

where we have used the Kantorovich-Rubinstein theorem (see for instance [I9, The-
orem 1.14]) in the first line, the mass condition in the second line and the change of
test functions 1) := ¢ — #(0) on the last line. As a consequence the W; distance and
the distance associated to the duality norm || - ||z are equivalent, which ends
the proof.

4. THE KINETIC FOKKER-PLANCK EQUATION WITH POTENTIAL CONFINEMENT

4.1. Main result. Consider the kinetic Fokker-Planck equation in the whole space
with a space confinement potential

of=Lf=Cf+Tf,
(4‘1) Cf=V,- (vvf+vf)a
Tf=—v-Vof+G-V,f,
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on the density f = f(t,z,v), t >0, 2 € R% v € R%, where the (exterior) force field
G = G(x) € R? is given by

(4.2)  G(z) =V, U(z):=2 @) with V|z|> Ry, U(z):= = (2)’ + T,

| =

for some constants Ry > 0 and 8 > 1.
The unique stationary state of the kinetic Fokker-Planck equation (4.1]) is

p(z,v) = exp(—=¥(z) - [v[*/2),
with the choice of the constant ¥y € R so that p is a probability measure.
We define the Hamiltonian function
2
H(z,v):=14+T(z)+ %,
and we consider the following assumptions:

Assumptions on the functional spaces

Polynomial weights: For > 2 and p € [1,+00], we introduce the weight functions
m = H* with k > k(d,p) for some explicit k(d,p) > d/p’ from the proofs.
Stretched exponential weights: For any 8 > 1 and p € [1,+00], we introduce the
weight functions m = e* " with s € (0,1) and x > 0.
Definition of the spaces: We then define on R?xR? the associated weighted Lebesque
spaces € := WP (m), o € {—1,0,+1}, p € [1,400], in the same way as in the pre-
vious section in the case of T? x R%.

For any f € &, the terms (f), ((f)) and II{ f are defined as before.

Theorem 4.1. Consider one of the spaces £ defined above. Then there exists
a = a(€) < 0 such that for any fo, g0 € & with same mass, the associated solutions
ft, gt of the kinetic Fokker-Planck equation (4.1)) satisfy

Ilfi — gille < Cae™ |l fo— golle,

which implies the relazation to equilibrium

I1fe = (fo) plle < Cae™ [lfo — (fodrlle,

for some constructive constant C, > 0.

Remarks 4.2. (1) Such a semigroup spectral gap result for the kinetic Fokker-
Planck equation in the whole space with a confining potential (and the
same harmonic potential for the friction force acting on velocities) has been
proved in the Sobolev spaces H(u~'/?), ¢ € N* in [10, 12, 20] and in
the Lebesgue space L?(p~'/?) in [7, 6] (inspiring from [I0]). These last
references provide also constructive estimates.

(2) We did not include it in the statement for the sake of clarity but our method
of proof can recover the semigroup growth estimate in L?(x~'/?) as a con-
sequence of the known growth estimate in H'(p~1/2) proved in [10} 12} 20],
which provides an alternative argument to those in [7, [].

(3) We believe that Theorem can be extended to to Sobolev space WP for
o = =£1 by combining the new estimates in this section with the strategy
of the previous section.
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The strategy of the proof follows the same structure as in the previous section,
and we start from the following H' spectral gap estimate that has been established
in [20] for potentials ¥ under our assumptions, with constructive proof. See also
[5, 12, @] for previous results in that direction.

Theorem 4.3. ([20, Theorem 35]) The result in Theorem [].1] is true in the Hilbert

space H' (n=1/?), and satisfy quantitative hypodissipativity estimate for the equiva-
lent morm

1/2
(||f||22(,f1/2) +allVafll7zg-172) + 0V f 72,12y + 2¢(Va f, va>L2(,r1/2))

for appropriate choice of a,b,c > 0 with ¢ < \/ab.
4.2. Dissipativity property of B. We define A and B as follows:
(4.3) Af :==Mxgrf,  Bf:=Cf+Tf—Mxgrf
where M > 0, xr(z,v) = x(H(z,v)/R), R > 1, and 0 < y € C°(R? x RY) is such
that x(z,v) = 1 for any |x|? + |v|? < 1.
We start with Lebesgue spaces:
Lemma 4.4. We have:

e (Polynomial weights) For any 8 > 2, p € [1,+0o0] and k > k(d,p) for some
k(d,p) > d/p’ from the proof, there is a < 0 such that the operator B — a is
dissipative in the space LP(HF).

e (Exponential weights) For any 8 > 1, p € [1,00] and s € (0,1] (with the
extra condition k < 1 in the case s = 1), there is a < 0 such that the
operator B — a is dissipative in the space LP(e"H").

Proof of Lemmal[{.4} The proofs in the two cases will be similar: we give full details
for the first case and less for the second case.

Step 1: Polynomial weight. Let us first consider 8 > 2 and m(x,v) = H*, and the
following weight multiplier:

lz-v ()% 1|2

W(z,v) :=mw, w:= <1+2Ha>, H, :zl—i—aT—i—a 5
Observe that (z - v) < H, by Young’s inequality (for any a > 0 and 8 > 2), which
proves that w € [1/2,3/2] and (1/2)m < W < (3/2)m. We then consider a solution

to the equation 0;f = Bf and compute

1d
-— fPWPdzdo = fPriefwP dz dv
dt
p R4 xR Re x R4
+ / P fWPdedv — M fPWP xgdzdo.
Rd xRd Rd x R4

On the one hand, we recall the following computation picked up from the proof of
Lemma, [3.§]

/ fPicfwr da dv ::/ FIfP2(CH) WP dxdv
R4 xRd Rd xRd

=--1 /Rd R |v“(Wf)|2 |Wf|p72 dzdv

2 |V, WP 2 AW d v V,W
D w o

PP | L Ve Gad
+/Rdxw'f‘ [p’ w2 - W
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where p’ = p/(p — 1), and we compute
Vom kv Aym _ kd n k(k —1)v|?

m H m H H?
V., W  V,m n Vw v-V,W v-V,m n v - Vyw
W om w w o om w
‘VUWP \va|2 |va|2
W2 <2 m2 +2 w2
We deduce
2 |V, W |? AW d vV, W
+(=-1 +o -
p/ W2 p W p/ W
41|V, m|2 Aym d o v-Vym
— ——1 + — -
p m? m p m
4 |va\2 ww v Vyw 2 Vom - Vyw
+ = oS —n) 2 el
P w? w P muw
(4,01 o), 1 (o)l b
- p’ VH H, 2a H? H

for some constant C; > 0. The RHS is not negative at infinity, where infinity means
H >> 1. This explains the need for the additional correction term w in W. We
compute

/ AT WP da dv = 1/ T(fP)WPdxdv
R x R4 D JrdxRrd

= —/ fPWPTITW do dv == —/ fPWPE da dv
R x R4 R x R4 w
where we have used TH = 0. We have then
. 2 B
Tw_,, Gl 1@
w o2 H 4 H,
by differentiating and using Young inequality and the form of the potential ¥(z)

at infinity, for some constants Cy, C's > 0. We deduce by taking R, M large enough
that for any 1 > 0 as small as wanted

1d
/ fPWPdx dv
pdt Jraxga

Cs |v|2 1 <$>ﬁ
< PN/ P =S L B o A
/dedf W {C(d,p)+( 5 k:) H 1H, Mxgr| dxdv

where we have used w ~ 1. Finally we restrict to H > R with R large enough,
and observe that we have either |[v|2/2 > H/3 or |v|?/2 < H/3, together with
[v|2/2 + (z)? /B > 2H /3. In the first case

for k large enough. In the second case we only have (Csa™2 —k)|v|?/H < 0 but we
can use the second negative term since now (x)?/8 > H/3 and H;' > 1/(aH):
1 (x)”

C(dvp) - ZHi < C(dvp) - <5
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for o small enough. All in all we deduce finally, for k large enough and « small
enough (depending on p and d) and M large enough:

1d
-— fPWPdedv < —K fPWPdedv
pdl Jrayga R xRd

for some constant K > 0, which concludes the proof.

Step 2: (Stretched) exponential weight. Let us now consider 8 > 1, s € (0,1], £ > 0

(with & < 1 in the case s = 1) and m(x,v) = e*" and the corrected weight:
la- B 1 o2
W(z,v) :=mw, w:= <1+2IH(:)>7 H, ::1+a%+5%

which satisfies again W ~ m. We compute as before

/ WP drde = —(p — 1)/ Vo (W)W fP~2 da dv
Ra x R4

Re xRd
V. W2 d V. W
—|—/ |f|P WP N +——v-——| dzdv
Rd xR w2 P’ m

where p’ = p/(p — 1), and we compute again

2 |V, W2 (2 AW d v-V,W
— +{--1)—+—- - ————
p/ W2 p W p/ W
4 |V,ml|? 2 A,m d  v-Vym
<|5 + (-1 += -
p/ m2 p m p/ m
4 |Vyw|? 2 A,w  v-Vyw 2 Vom - Vyw
+ |- +(2-1 - o s o) Y
P w? P w w P muw
with
4|Vym2 (2 Aom d v d 1
7@_1_ 29 m_’_i_v Vym Si_’_i[_HSIU|2H5+K/282|U|2H28—1]
p/ m2 D m p/ m p/ H
4 |V,w|? n 2 1 Ayw v Vyw 4o 2 1 Vom - Vyw
p w? p w w p muw
_ G 1@, 1 ()P

1
~VH 2 H, 2a H?
for some constant C; > 0. Since s € (0,1) we have 2s — 1 < s and the term

k2s%|v[?H?*~1 is dominated by the previous negative term for M large enough.

Then we have

B—2|..12
Te g g @)l
w H,

for two other constants Cy, C3 > 0. We deduce that
1d
- fPWPdxdv
pdt Jraypa

2y B—21,.2
S/ frwe C(d,p)—ﬁ;s|v| —Cg<x> i — Mxpg| dzdv
RdXRd’ H Ha

for some constant C(d,p) > 0. Finally we restrict to H > R with R large enough,
and observe that we have either |v|?/2 > H/3 or |[v]?/2 < H/3, together with
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[v|?/2 4 ()P /B > 2H/3. In the first case

‘|25

C(d,p) — s i

2 KksR? ksR?
<C(d,p) — sUL < O(d. p) — < _
< C(dp) = rsR* I < C(d,p) - 5 < =%
for R large enough. In the second case we use the second negative term since now
(x)?/B > H/3 and H;' > 1/(aH) and |z| > (H/3)'/# > (R/3)'/# is non-zero:
(@) 2|z Cs (x)’ Csp 3B
d,p) —C3—~———<C(d,p) — —-—<Cld,p) — — < ———
Cldp) = Gy < Cldp) = 5= = Cldp) = 5 = < =50
for v small enough. All in all we deduce finally, for R large enough and o small
enough (depending on p and d) and M large enough:

1d
f—/ fPWPdedv < —K fPWPdadv
pdt Jraxga R xRd
for some constant K > 0, which concludes the proof. ([l

Then, by arguing exactly similarly as in Section [3] and using the previous cal-
culations for the differentiated equation and the adjoint operators, we obtain the
following lemma. We omit the proof in order not the repeat closely related technical
estimates.

Lemma 4.5. We have:

e (Polynomial weights) For any 8 > 2, p € [1,+0o0] and k > k(d,p) for some
k(d,p) > d/p’ from the proof, there is a < 0 such that the operator B — a is
dissipative in the spaces WLP(H®) and W—1P(H¥).

e (Exponential weights) For any 8 > 1, p € [1,00] and s € (0,1] (with the
extra condition k < 1 in the case s = 1), there is a < 0 such that the
operator B — a is dissipative in the spaces WP (e*H") and W1 (eH").

Remark 4.6. Observe that the previous lemma implies the hypodissipativity of B
in H'(u='/?) (as needed in the application of our abstract theorem to this Fokker-
Planck equation with confinement). This result could also be obtained easily by
slightly modifying the proof of [20, Theorem 35]. It is also possible to deduce this
hypodissipativity from that of L together with estimates quantifying the gain of
decay at infinity in x and v. Since we could prove the latter estimates using the
ideas developped in this paper, and they seem of independent interest and not
available in the litterature, we include them in a short appendix.

4.3. Regularisation estimates. We prove a regularization property of the kinetic
Fokker-Planck equation with a confining potential. It is again related to the theory
of hypoellipticity, but is slightly less well-known due to the use of weighted norms
defined in the whole space. The argument follows the same method as before.

Lemma 4.7. The semigroup /g satisfies similar inequalities as in Lemma
where now p = e~ is the (z,v)-dependent equilibrium, and ¢ is a number large
enough (note the additional H® weight in L? and L' norms)

1
-8 fll ek u-172) S EIYE) Il L2 merzp-1r2)s
(1) Vte|o,1], Vk e N*

1
18 fllp2(m-er2p-172) S BR2 N F Il = 172y
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second (gain of integrability at order zero)

1
1-78(t) fll L2(p-1r2) S GaD2 | fllLxerep—1r2ys
(2) Vvtelo,1], )
1-<78() fll e (r-p-1/2) S PETESYYE I £l L2172y

third (gain of integrability at order one)

1
IVIBO) fllp2(u-1r2) S TGa2 IV Lo =172y,
(3) Vtelo,1], )
IVIB#) fll oo (r-ep-1r2) S TGai2 IV FllLzeu-1/2)

fourth (gain of integrability at ordre minus one)

1
H‘yB(t)f”W_L‘X’(H_[{M_l/Q) 5 +(5d+1)/2 ||f||W_1>2(;,L_1/2)7
(4) vie, 1
15O flw 2012 S smamye w2

Proof of Lemma[].7, We only sketch the proof which is similar that of Lemma[3.12

We begin with the first part of inequality (1), in the case k = 1. We write down
energy estimates for the solution f, its first derivatives, and the product of the first
derivatives. On the energy estimate for f we add up a certain (large enough) power
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¢ of the Hamiltonian to the usual weight p=!:

d

" fPH YAz de < — / Vol f/p)|> H pda dv + C fPH 1 dz do
R4 x R4

R4 xR Rd xRd

< — / Vo f? H p tdzdv 4+ C f2H N dz dv
R4 xR Rd xRd

d
0Tl <= [ Va0 /) e do

R4 xR4

p~tdz do

10w, f

+ / 100, F|[0s, f
Rd xR

d
10Tl <= [ 9@t/ pdedo

R4 xRd

2 p~tdz do

- / Dy, f0r, f~ " dr v+ / 10, f
R4 xR

Rd xR
M

+5 9 xr|fPp " dedo
R4 xR

d

Bl Dy, O, frn tdadv < —/ Vo f|” ' dzdo
dt JrdyRd

R4 xR

. / Vo (o /1) - Vi (B, £/ 1) o
R4 xRd

[ oo
R x R4

+2M XRrOz fOu fru ™t daz dv
R4 x R4

a0 de
R x R4

2t da do

We then define the energy functional

F(t, fr) = A||ft||2L2(HZ/2H—1/2) + at”vatHQLz(u—lm)
+ 20t2<vvft, fot>L2(M—l/2) + bt3||vl-ft||ig(”_1/2)
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with a,b, ¢ > 0, ¢ < Vab (positive definite) and A large enough, and compute from
above

d
—F(t, 1) < —A/ Vool H =t da do + 0/ fEH ytdado
de R xRd R xRd

+al[Vy ftH%z(lfl/z) +4et(Voy 1, Va fi) 12172y +3bt2‘|vzft”%2(u—l/2)

_btgz/ IV 8xlf//l)| /,ded’u—btgz/ |611F|‘6zlf||avlf‘/l_1dl‘dv

—atZ/dX d 81,1f/u)| ‘dedv_atZ/dXRd a’llifa$1,fp“71dxd’0

tM
vat [ 9P o+ Z Ol P20
R4 xR4 2 Rd xR4
—20152/ \Vaof|? p~ ' dadv — 4ct22/ Vo (Ou, f/1) - Vo (0, f/ 1) pda dv
Rd xR4 dx R4

+4cMt? Z /
i=1

R2 x R4

X fO f~ di do 22 S [ 10wl If10. ) dode
i—=1 YRIXR

2ct? /d , |0, F|| 0y, fI2p~* dz dw.
R4 xR

The additional terms as compared to Lemma [3.12] are treated as before using that
|V F|?, |V, F |4 < H* for ¢ large enough, and it implies when the compatible con-
ditions ¢ < Vab, 2¢ > 3b and A >> a,b,c, M are satisfied:

Ef(t f) < K(HV ft||L2(th/2,L 1/2) +1%|V, ft||L2(H—1/2 +C/dXRd p~tdardo
for some constants K, C' > 0. Since the L?(y~1/2) norm is decreasing over ¢ € [0, 1]
we deduce that

Ve (0,1, F(t, fi) < F(0, fo) + Cllfoll sy S FO, fo)

which yields the first part of (1) by simple iteration of this gain. The rest of the
proof of similar to that of Lemma [3.12 [l

The proof of the growth estimate on T,,(¢) and the completion of the proof of
Theorem are then done as in Corollary and Theorem

APPENDIX A. QUANTITATIVE COMPACTNESS ESTIMATES ON THE RESOLVENT

In this appendix we amplify the ideas of this article in order to give quantitative
estimates of compactness on the resolvent of the kinetic Fokker-Planck considered.
More precisely: One way to understand the compactness of resolvent is to split it
into a local gain of regularity and a gain of decay at infinity, and we focus here on
the gain of decay at infinity. The gain of regularity can then be recovered by local
hypoelliptic estimates along the theory of Hormander. Note that another route for
deriving estimates on the gain of decay at infinity is to use the global hypoellipticity
estimates as in [I1] and [20], Section A.21] with Gaussian weight and deduce the gain
of decay at infinity by applying some forms of “strenghtened” Poincaré inequality;
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however the fractional derivatives involved would likely create technical difficulties,
whereas our estimates based on weight multiplicators is elementary. Our estimates
also do not require regularity on the solution.

Let us first say a word on the case of the periodic confinement. In this case it is
enough to use the strenghtened Poincaré inequality in velocity only:

d1

—7/ fz,ufldmdvg—/ Vo f pdxdv
dt 2 Jyayga Td xRd p

<

-K A+ pPpt+C fPutdedo
Td x R4 Td xR4

for some constants C, K > 0, and therefore we deduce

—(Lf, ey = K/ A+ Pptdede - C fPutdado
Td xR Td xR

and finally
Lo PP dedo S LAy + 1 g
X

which gives the gain of decay at infinity on the resolvent. Combined with hypoco-
ercivity estimates that provide bounds ||f|[,2(,-1) S [[£f — &l 12,1, for certain

¢ € C, this allows to control [ f2(1+ [v]*)u~t.
Let us now turn to the more interesting case of the potential confinement. We
now differentiate the following norm

/ Pwup tdedv, W(z,v):= [a|sc|ﬁ/3 + b|w]? 4 2¢|z|?/ Y (2 - v) |,
R4 xR4

for some appropriate choice of a,b,c > 0 so that ¢ < vab. Then

d1 2(..18/3,,—1
—= dzd
dtQ/]I‘dX]Rdf =™ e
< —/ Vo <f> |m|ﬁ/3udxdv+00/ £z =8B |t da do
Td xR H T x R4
d1

20,,2,,—1
= dzd
dt2/ﬂ-d><]Rdf vl v

< —/ Vo (f) |v|2,udxdv—|—00/ A+ vP)ptdedo
Td x R4 2

Td x R4

d1

X

< —/ 2?3 da do + Co/ f? <1 + |$|—f3/3\q}|2) p~tdadv
Tdx R4 Td xRd

w0 fon 7 (5)

||/ 8|v|p da: dw
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for some constant Cy > 0, which implies by using Young’s inequality and adjusting
the constants a, b, c > 0 that

4 PWptdzdo :/ (LA fWptdedo
dt Jraypd Rd x R4
< -K Wi tdzdv+C fPutdado

R4 xRd R4 xRd

for some constants C, K > 0, and finally

_ 2 2
/Rd 2 f2W2M 1d$d’”§ ||£f||L2(;rl)+||f||L2(H—1),
"X

which is again a quantitative estimate of gain of decay at infinity for the resolvent.
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