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Abstract
In order to describe the firing activity of a homogenous assembly

of neurons, we consider time elapsed models, which give mathematical
descriptions of the probability density of neurons structured by the
distribution of times elapsed since the last discharge. Under general
assumption on the firing rate and the delay distribution, we prove the
uniqueness of the steady state and its nonlinear exponential stability
in the weak connectivity regime. The result generalizes some similar
results obtained in [10] in the case without delay. Our approach uses
the spectral analysis theory for semigroups in Banach spaces developed
recently by the first author and collaborators.
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1 Introduction

In nervous systems, neuronal circuits carry out tasks of information transmis-
sion and processing. Many neurons generate trains of stereotyped electrical
pulses in response to incoming stimulations. Following each discharge, the
neuron undergoes a period of refractoriness during which it is less responsive
to inputs, before recovering its excitability [11]. The main carrier of infor-
mation is the discharge times or some statistics of the discharge times. In
this work, we consider a simple neuronal model which neglects the mecha-
nisms underlying spike generation and focusses on describing the neuronal
dynamics in terms of discharge times. More precisely, we consider a model
which has been introduced and studied in [3, 10, 11] and which describes
the post-discharge recovery of the neuronal membranes through an instan-
taneous firing rate that depends on the time elapsed since the last discharge
and the inputs by neurons. We refer to these papers for biologic motivation
and discussions. We also refer to [1, 2, 13, 12] where these models (or similar
ones) are obtained as a mean field limit of finite number of neuron network
models.

The neuronal network is described here by the density number of neurons
f = f(t, x) ≥ 0 which at time t ≥ 0 is in the state x ≥ 0. The state of a
neuron is a local time (or internal clock) which corresponds to the elapsed
time since the last discharge. The dynamic of the neuron network is given
by the following nonlinear time elapsed (or of age structured type) evolution
equation

∂tf = −∂xf − a(x, εm(t))f =: Lεm(t)f, (.a)
f(t, 0) = p(t), f(0, x) = f0(x). (.b)

Here a(x, ε µ) ≥ 0 represents the firing rate of a neuron in the state x for
a network activity µ ≥ 0 and a network connectivity parameter ε ≥ 0.
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The function p(t) represents the total density of neurons which undergo a
discharge at time t and is defined through

p(t) := P [f(t);m(t)],

where
P [g, µ] = Pε[g, µ] :=

∫ ∞
0

a(x, εµ)g(x)dx.

The function m(t) represents the network activity at time t ≥ 0 resulting
from earlier discharges and is defined by

m(t) :=

∫ ∞
0

p(t− y)b(dy),

where the delay distribution b is a probability measure which takes into
account the persistence of the electric activity in the network resulting from
discharges (synaptic integration). In the sequel, we will consider the two
following situations :
• The case without delay, when b = δ0 and then m(t) = p(t).
• The case with delay, when b is a smooth function.
We observe that in both cases, the solution f of the time elapsed equation

(.) satisfies

d

dt

∫ ∞
0

f(t, x)dx = f(t, 0)−
∫ ∞

0

a(x, εm(t))f(t, x)dx = 0.

As a consequence, the total density number of neurons (also called mass in
the sequel) is conserved and we can normalize that mass to be 1. In other
words, we may always assume

〈f(t, .)〉 = 〈f0〉 = 1, ∀t ≥ 0, 〈g〉 :=

∫ ∞
0

g(x)dx.

A (normalized) steady state for the time elapsed evolution equation (.)
is a couple (Fε,Mε) of a density number of neurons Fε = Fε(x) ≥ 0 and a
network activity Mε ≥ 0 such that

0 = −∂xFε − a(x, εMε)Fε = LεMεFε, (.a)
Fε(0) = Mε, 〈Fε〉 = 1. (.b)
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It is worth emphasizing that for a steady state the associated network activity
and discharge activity are two equal constants because of the normalization
of the delay distribution, i.e. 〈b〉 = 1.

Our main purpose in this paper is to prove that solutions to the time
elapsed evolution equation (.) converge to a stationary state under a weak
connectivity assumption. Before stating that result, let us present the precise
mathematical assumptions we will need on the firing rate a and on the delay
distribution b.

We make the physically reasonable assumption

∂xa ≥ 0, a′ = ∂µa ≥ 0, (.)

0 < a0 := lim
x→∞

a(x, 0) ≤ lim
x,µ→∞

a(x, µ) =: a1 <∞, (.)

as well as the smoothness assumption

a ∈ W 2,∞(R2
+). (.)

In the delay case, we assume that b(dy) = b(y) dy satisfies the smoothness
and lost of memory conditions

∃δ > 0,

∫ ∞
0

eδy (b(y) + |b′(y)|) dy <∞. (.)

Under the same assumption as above, the proof of existence (and unique-
ness in the weak connectivity regime) are presented in the companion paper
[16]. The main result we establish in the paper is the following long-time
asymptotic result on the solutions.

Theorem 1.1. We assume that the firing rate a satisfies (.), (.) and
(.). We also assume that the delay distribution b satisfies b = δ0 or (.).
There exists ε0 > 0, small enough, such that for any ε ∈ (0, ε0) the steady
state (Fε,Mε) is unique. There also exists some constants α < 0, C ≥ 1
and η > 0 such that for any connectivity parameter ε ∈ (0, ε0) and any
initial datum 0 ≤ f0 ∈ L1 with mass 1 and such that ‖f0 − Fε‖L1 ≤ η/ε, the
(unique, positive and mass conserving) solution f to the evolution equation
(.) exhibited in [16] satisfies

‖f(t, .)− Fε‖L1 ≤ Ceαt, ∀ t ≥ 0.
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Theorem 1.1 extends some similar results obtained in [10, 11] in the case
without delay and for a firing rate given by

a(x, µ) = 1x>σ(µ), σ, σ−1 ∈ W 1,∞(R+), σ′ ≤ 0.

It is worth mentioning that the above firing rate does not fall in the class of
rate considered in the present paper because condition (.) is not met. On
the other hand, we are able to tackle the case with delay, what it was not
the case in [10, 11].

Our proof follows a strategy of “perturbation of semigroup spectral gap”
initiated in [7] for studying long time convergence to the equilibrium for the
homogeneous inelastic Boltzmann equation and used recently in [8] for a
neuron network equation. More precisely, we introduce the linearized equa-
tion for the variation functions (g, n, q) = (f,m, p) − (Fε,Mε,Mε) around a
stationary state (Fε,Mε,Mε), which writes

∂tg = −∂xg − a(x, εMε)g − n(t) ε(∂µa)(x, εMε)Fε, (.a)
g(t, 0) = q(t), g(0, x) = g0(x), (.b)

with
q(t) =

∫ ∞
0

a(x, εMε)g dx+ n(t) ε

∫ ∞
0

(∂µa)(x, εMε)Fε dx (.)

and
n(t) :=

∫ ∞
0

q(t− y)b(dy). (.)

We associate to that linear evolution equation a generator Λε (which acts on
an appropriate space to be specified in the two cases without and with delay)
and its semigroup SΛε . It turns out that we may split the operator Λε as

Λε = Aε + Bε,

for some α-hypodissipative operator Bε, α < 0, and some bounded and Bε-
power regular operator Aε as defined in [15, 4, 9, 6]. In particular, the
version of the Spectral Mapping Theorem of [9, 6] and the version of the
Weyl’s Theorem of [15, 4, 9, 6] imply that the semigroup SΛε as a finite
dimensional dominant part. Moreover, the semigroup S0 being positive, we
may use the Krein-Rutman Theorem established in [9, 6] in order to get
that the stationary state (F0,M0,M0) is unique and exponentially stable.
Using next a perturbative argument developed in [7, 14, 6], we get that the
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unique stationary state (Fε,Mε,Mε) is also exponentially stable in the weak
connectivity regime. We conclude the proof of Theorem 1.1 by a somewhat
classical nonlinear exponential stability argument.

Let us end the introduction by describing the plan of the paper. In
Section 2, we introduce the strategy, we prove the stationary state result and
we establish Theorem 1.1 in the case without delay. In section 3, we establish
Theorem 1.1 in the case with delay.

Acknowledgments. The research leading to this paper was (partially)
funded by the French "ANR blanche" project Kibord: ANR-13-BS01-0004.

2 Case without delay

The present section is devoted to the proof of our main result Theorem 1.1
in the case of without delay.

2.1 The stationary problem

Theorem 2.1. Assume (.)-(.)-(.). For any ε ≥ 0, there exists at least
one solution (Fε(x),Mε) ∈ BV (R+) × R+ to the stationary problem (.).
Moreover, there exists ε0 > 0, small enough, such that the above solution is
unique for any ε ∈ [0, ε0).

Proof. Step 1. We prove the existence of a solution. We set

A(x,m) :=

∫ x

0

a(y,m)dy, ∀, x,m ≥ 0.

For any m ≥ 0, we can solve the equation (.a), by writing

Fε,m(x) := Tme
−A(x,εm),

where, Tm ≥ 0 is chosen in order that Fε,m satisfies the mass normalized
condition, namely

T−1
m =

∫ ∞
0

e−A(x,εm)dx.
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In order to conclude the existence of a solution, we just have to find a real
number m = Mε such that m = Fε,m(0) = Tm. Equivalently, we need to find
Mε ≥ 0 such that

Φ(ε,Mε) = 1, (.)

where
Φ(ε,m) = mT−1

m := m

∫ ∞
0

e−A(x,εm)dx.

From the assumption (.) of a, there exists x0 ∈ [0,∞) such that
a(x, µ) ≥ a0

2
, for any x ≥ 0, µ ≥ 0, and therefore

a0

2
(x− x0)+ ≤ A(x, µ) ≤ a1x, ∀x ≥ 0, ∀µ ≥ 0. (.)

We deduce that Φ(ε, .) is a continuous function (from the Lebesgue dom-
inated convergence theorem) and that Φ(0) = 0, Φ(∞) = ∞. From the
intermediate values theorem, we immediately conclude.
Step 2. We prove the uniqueness of the solution in the weak connectivity
regime. Obviously, there exists a unique M0 := (

∫∞
0
e−A(x,0)dx)−1 ∈ (0,∞)

such that Φ(0,M0) = 1. Moreover, we compute

∂

∂m
Φ(ε,m) =

∫ ∞
0

e−A(x,εm)(1−mε∂A
∂m

(x, εm))dx,

which is continuous as a function of the two variables because of (.). We
then easily obtain that Φ ∈ C1. Since moreover

∂

∂m
Φ(ε,m)|ε=0 =

∫ ∞
0

e−A(x,0)dx > 0,

the implicit function theorem implies that there exists ε0 > 0, small enough,
such that the equation (.) has a unique solution for any ε ∈ [0, ε0).

Remark 2.2. In the above proof, we do not need (.) but only the weaker
smoothness assumption that A and ∂mA are continuous.

2.2 Linearized equation and structure of the spectrum

To go one step further, we introduce the linearized equation around the
stationary solution (Fε,Mε). On the variation (g, n), the linearized equation
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writes

∂tg + ∂xg + aεg + a′εFεn(t) = 0,

g(t, 0) = n(t) =

∫ ∞
0

(aεg + a′εFεn(t)) dx, g(0, x) = g0(x),

with aε := a(x, εMε), a′ε := ε (∂µa)(x, εMε). Since there exists ε0 > 0, small
enough, such that

∀ ε ∈ (0, ε0) κ :=

∫ ∞
0

a′εFεdx < 1,

we may define

Mε[g] := (1− κ)−1

∫ ∞
0

aεg dx, (.)

and the linearized equation is then equivalent to

∂tg + ∂xg + aεg + a′εFεMε[g(t, .)] = 0, (.)
g(t, 0) =Mε[g(t, .)], g(0, x) = g0(x). (.)

To the above linear evolution equation, one can probably classically as-
sociates a semigroup acting on L1(R+). Here we use another approach by
considering the boundary term as a source term, and then rewriting the
equation as

∂tg = Λεg := −∂xg − aεg − a′εFεMε[g] + δx=0Mε[g], (.)

acting on the space of bounded Radon measures

X := M1(R+) = {g ∈ (C0(R))′; supp g ⊂ R+},

endowed with the weak ∗ topology σ(M1, C0). We also denoted by BV (R+)
the space of bounded variation measures.

Theorem 2.3. Assume (.)-(.)-(.) and define α := −a0/2 < 0. The
operator Λε is the generator of a weakly ∗ continuous semigroup SΛε acting
on X endowed with the weak ∗ topology σ(M1, C0). Moreover, there exists a
finite rank projector ΠΛε,α which commutes with SΛε, an integer j ≥ 0 and
some complex numbers

ξ1, ..., ξj ∈ ∆α := {z ∈ C, <e z > α},
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such that on E1 := ΠΛε,αX the restricted operator satisfies

Σ(Λε|E1) ∩∆α = {ξ1, ..., ξj}

(with the convention Σ(Λε|E1)∩∆α = ∅ when j = 0) and for any a > α there
exists a constant Ca such that the remainder semigroup satisfies

‖SΛε(I − ΠΛε,α)‖B(X) ≤ Cae
at, ∀ t ≥ 0.

The proof of the result is a direct consequence of the fact that the operator
Λε splits as Λε = Aε + Bε where Aε and Bε are defined on X by

Aεg := µεMε[g], µε := δ0 − a′εFε, (.)
Bεg := −∂xg − aεg, (.)

for which can apply the Spectral Mapping Theorem of [9, 6] and the Weyl’s
Theorem of [15, 4, 9, 6]. The picture is not that simple, because Λε does not
generates a strongly continuous semigroup on X and then does not lie in the
framework developed in [9]. However, we may apply the theory to an operator
and its semigroup acting on C0(R) and then deduce the result by duality or
simply observe that the above results extend straightforwardly to a weakly ∗
continuous framework. We refer for full details to the companion paper [16]
as well as to [6] where the weak ∗ continuous framework is discussed.

We recall the definition of hypodissipativity introduced in [4]. We say
that the generator L of a semigroup of bounded operators on a Banach space
X is α-hypodissipative if there exists an equivalent norm ||| · ||| on X such
that

∀ f ∈ D(Λ), ∃ϕ ∈ F|||·|||(f) <e 〈ϕ, (L− α) f〉 ≤ 0,

where, for any f ∈ X, the associated dual set F|||·|||(f) ⊂ X ′ is defined by

F|||·|||(f) := {ϕ ∈ X ′; 〈ϕ, f〉 = |||f |||2X = |||ϕ|||2X′}.

We also recall that L is α-hypodissipative if, and only if, there exists a
constant M ≥ 1 such that the associated semigroup SL satisfies the growth
estimate

‖SL(t)‖B(X) ≤M eα t, ∀ t ≥ 0,

where B(X) denotes the space of linear and bounded operators on X. We
will sometime abuse by saying that SL is α-hypodissipative when it satisfies
the above growth estimate. We refer to [4, 6] for details.

We start with the properties of the two auxiliary operators.
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Lemma 2.4. Assume that a satisfies conditions (.)-(.). The operators
Aε and Bε satisfy the following properties.

(i) Aε ∈ B(X, Y ), where Y = Cµε ⊂ X with compact embedding.

(ii) SBε is α-hypodissipative in X.

(iii) The family of operators SBε ∗ AεSBε satisfies

‖(SBε ∗ AεSBε)(t)‖X→BV ≤ Ceαt, ∀t ≥ 0.

Proof. In order to shorten notation, we write a(x) = a(x, εMε) and A(x) =
A(x, εMε).

(i) We obtain Aε ∈ B(X, Y ) from the fact that Nε[·] ∈ B(X,R) be-
cause ‖a‖∞ ≤ a1 from (.).

(ii) We write SBε with the explicit formula

SBε(t)g(x) = e−A(x)g(x− t)1x−t≥0 =: S(t). (.)

From the inequality (.) on A, we have

‖SBε(t)g‖X = ‖e−A(x+t)g(x)‖X
≤ ‖e−

a0
2

(t−x0)+g(x)‖X
≤ Ceαt‖g(x)‖X ,

with C = e
a0x0

2 > 0 and α := −a0
2
< 0.

(iii) We have
AεSBε(t)g = µεN(t),

with

N(t) :=Mε[S(t)g] = (1− κ)−1

∫ ∞
0

a(x)e−A(x)g(x− t)1x−t≥0 dx ∈ Cb(R+),

because a e−A ∈ Cb(R+). Moreover, we have

|N(t)| ≤ C a1

∫ ∞
0

eαx |g(x− t)|1x−t≥0 dx ≤ C eαt‖g‖X ,
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for any t ≥ 0. We deduce

(SBε ∗ AεSBε)(t)g(x) =

∫ t

0

(SBε(s)µε)(x)N(t− s) ds

=

∫ t

0

e−A(x) µε(x− s)N(t− s)1x−s≥0 ds

= e−A(x) (µε ∗ Ňt)(x),

with the classical notation Ňt(s) = N(t− s). Next, differentiating the above
function, we get

∂x[(SBε ∗ AεSBε)(t)g](x) = −
∫ t

0

a(x)e−A(x) µε(x− s)N(t− s)1x−s≥0 ds

−e−A(x) µε(x− t)N(0)1x−t≥0

−
∫ t

0

e−A(x) µε(x− s)N ′(t− s)1x−s≥0 ds

= −a(x)e−A(x)(µε ∗ Ňt)(x)− e−A(x)(µε ∗ Ň ′t)(x)

−e−A(x) µε(x− t)N(0)1x−t≥0

with Ň ′t(s) = N ′(t− s). We also compute

N ′(t) = (1−κ)−1

∫ ∞
0

∂x[a(x)e−A(x)]g(x−t)1x−t≥0 dx = (1−κ)−1[(a e−A)′∗ǧ(t)

with ǧ(x) = g(−x), so that N ′ ∈ M1(R+), as a convolution of two bounded
measures (remind that ∂xa ∈ D′(R) and it is positive) and more precisely∫ ∞

0

|N ′|e−αt ≤ (1− κ)−1

∫ ∞
0

|(ae−A)′|e−αx
∫ 0

−∞
|ǧ|e−αx <∞.

From (.) and (µε∗Ňt)(x) ∈M1(R+), we get ∂x[(SBε∗AεSBε)(t)g] ∈M1(R+)
for any t ≥ 0. We deduce that

‖∂x(SBε ∗ AεSBε)(t)g‖X ≤ Ceαt‖g‖X ,

and the similar estimate for ‖(SBε ∗ AεSBε)(t)g‖X .

Proof of Theorem 2.3. In order to apply the Spectral Mapping Theorem [9,
Theorem 2.1] and the Weyl’s Theorem [9, Theorem 3.1] (see also the variant
results in [6]), we only need to check that the following assumptions are
satisfied.
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(A1) Given some α ∈ R, for any a > α and ` ∈ N, there exists a positive
constant Ca,` such that the following growth estimate holds

‖SBε ∗ (AεSBε)(∗`)(t)‖B(X) ≤ Ca,` e
at, ∀t ≥ 0. (.)

It is obvious that (A1) is true for ` = 0 from Lemma 2.4−(ii). Since
(Bε− a) is hypodissipative in X for any a > α and Aε ∈ B(X), we get
that (A1) holds for all ` ∈ N.

(A2) The operator Aε is bounded and satisfies the estimate

‖SBε ∗ (AεSBε)(t)‖B(X,D(Λ)) ≤ C ′a,1e
at, ∀t ≥ 0, (.)

holds for any a > α and a positive constant C ′a,1. That is nothing but
Lemma 2.4−(iii) observing that D(Λ) = BV (R+).

(A3) The family of operators (AεSBε)(∗2)(t) satisfies the growth and com-
pactness estimate∫ ∞

0

‖AεSBε ∗ AεSBε(t)‖X→Y e−atdt ≤ C ′′2,a, ∀a > α, (.)

for some positive constant C ′′2,a ≥ 0 and some (separable) Banach space
Y with compact embedding Y ⊂ X, what clearly holds true from
Lemma 2.4−(i)&(iii) and a > α.

2.3 The vanishing connectivity regime

When the network connectivity parameter vanishes, ε = 0, the linearized
time elapsed operator simplifies

Λ0g = −∂xg − a(x, 0)g + δx=0M0[g], (.)

whereM0[g] =
∫∞

0
a(x, 0)g(x)dx.

Theorem 2.5. There exist some constants α < 0 and C > 0 such that
Σ(Λ0) ∩∆α = {0} and for any g0 ∈ X, 〈g0〉 = 0, there holds

‖SΛ0(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0. (.)
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We denote
X+ := {g ∈M1(R+); g ≥ 0}

the space of bounded and nonnegative Radon measures.
We start with two elementary auxiliary results.

Lemma 2.6. SΛ0 is positive: SΛ0(t)g ∈ X+ for any g ∈ X+ and any t ≥ 0.

Proof. We introduce a dual problem of (.) defined on the space C0(R) by

∂tϕ = Λ̃ϕ = B̃ϕ+ Ãϕ (.)

with
B̃ϕ = ∂xϕ− a(x, 0)ϕ, Ãϕ = a(x, 0)ϕ(0).

A solution ϕ to (.) then satisfies

ϕ(t) = SB̃(t)ϕ0 + (SB̃ ∗ Ãϕ)(t).

Let us fix ϕ0 ∈ C0(R) such that ϕ0 ≤ 0 and let us prove that ϕ(t) ≤ 0
for any t ≥ 0. We obviously have that SB̃ is a positive operator and it is a
contraction in C0(R). Taking the positive part in (.) we get

ϕ+(t) ≤ SB̃(t)ϕ0+ + (SB̃ ∗ Ãϕ+)(t)

≤ a1

∫ t

0

SB̃(t− s)ϕ+(0) ds,

so that

‖ϕ+(t)‖L∞ ≤ C

∫ t

0

‖ϕ+(s)‖L∞ ds.

From the Grönwall lemma, we deduce that ϕ+(t) = 0 for any t ≥ 0 and then
ϕ ≤ 0. We conclude by observing that SΛ0 is the dual of SΛ̃.

Lemma 2.7. −Λ0 satisfies the following version of the strong maximum
principle: for any given g ∈ X+ and µ ∈ R, there holds

g ∈ D(Λ0) \ {0} and (−Λ0 + µ)g ≥ 0 imply g > 0.

Proof. Suppose that there holds (−Λ0 + µ)g ≥ 0 for g satisfying the above
conditions, it is only necessary to prove that g does not vanish in R+. Since
g 6≡ 0, there exists x∗ ∈ R+ such that g(x∗) > 0. Rewrite the assumption as

∂xg +
(
a(x, 0) + µ

)
g ≥ δx=0

∫ ∞
0

a(x, 0)gdx,
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and we observe that

∂x(e
A(x,0)+µxg) = eA(x,0)+µx

(
∂xg +

(
a(x, 0) + µ

)
g
)
≥ 0. (.)

(i) For x ∈ (x∗,∞), we have

eA(x,0)+µxg ≥ eA(x∗,0)+µx∗g(x∗) > 0.

(ii) For x ∈ (0, x∗), by integrate the same equation on (0, x), we obtain

eA(x,0)+µxg ≥
∫ x

0

δx=0e
A(x,0)+µx

∫ ∞
0

a(y, 0)g(y)dydx+ g(0)

≥
∫ ∞

0

a(y, 0)g(y)dy.

From the positivity assumption (.) on a and step (i), we have∫ ∞
0

a(y, 0)g(y)dy >
a0

2

∫ ∞
max{x0,x∗}

g(y)dy > 0.

Therefore, g does not vanish on (0,∞).

Proof of Theorem 2.5. First, we know from Theorem 2.1 that there exists
at least one nonnegative and non-vanishing solution F0 to the eigenvalue
problem Λ0F0 = 0 and the associated dual eigenvector is ψ = 1. Next, we
observe that, defining the signf operator for f ∈ D(Λ2

0) by

[(signf)∗ ψ](x) :=
1

2|f(x)|
[f̄(x)ψ(x) + f(x)ψ̄(x)], ∀ψ ∈ C0(R),

we have, for any ψ ∈ C0(R)+,

<e〈(signf)M0[f ] , ψ〉 = <e〈M0[f ] , (signf)∗ψ〉

= <e
[ ∫

a0f dx
]<ef(0)

|f(0)|
ψ(0)

≤
∫
a0|f |dxψ(0) = 〈M0[|f |] , ψ〉,

which is nothing but the complex Kato’s inequality

∀ f ∈ D(Λ2
0), <e(signf) Λ0f ≤ Λ0|f |. (.)
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We also observe that D(Λ2
0) ⊂ Cb(0,∞), and, as a consequence, g ∈ D(Λ2

0)
and |g| > 0 implies g > 0 or g < 0. We then may use exactly the same
argument as in [9, Proof of Theorem 5.3] (see also [6]):

- Kato’s inequality (.) and the strong maximum principle imply that
the eigenvalue λ = 0 is simple and the associated eigenspace is Vect(F0);

- together with the fact that SΛ0 is a positive semigroup, one deduces
that λ = 0 is the only eigenvalue with nonnegative real part.

We conclude to the spectral gap estimate (.) with the help of Theo-
rem 2.3.

2.4 Weak connectivity regime - exponential stability of
the linearized equation

We extend the exponential stability property which holds for a vanishing
connectivity to the weak connectivity regime.

Theorem 2.8. There exist some constants ε0 > 0, α < 0 and C > 0 such
that for any ε ∈ [0, ε0] there hold Σ(Λε) ∩∆α = {0} and

‖SΛε(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0, (.)

for any g0 ∈ X, 〈g0〉 = 0.

The proof uses the stability theory for semigroups developed in Kato’s
book [5] and revisited in [7, 14, 6]. Now, we present several results needed
in the proof of Theorem 2.8.

Proof of Theorem 2.8. With the definitions (.), (.) and (.) ofMε, Aε
and Bε, we have

(Bε − B0)g = (a(x, 0)− a(x, εMε))g

and

(Aε −A0)g = (Mε[g]−M0[g]) δ0 − ε(∂µa)(x, εMε)FεMε[g].

Together with the smoothness assumption (.), we deduce

‖Bε − B0‖B(X) + ‖Aε −A0‖B(X) ≤ C ε, ∀ ε ≥ 0. (.)
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We then argue similarly as in the proof of [14, Theorem 2.15] (see also [5, 7, 6])
and therefore just sketch the proof. For the generator L of a semigroup SL
we define the resolvent set ρ(L) and the spectrum set Σ(L) by

ρ(L) := {z ∈ C; L− z is a bijection }, Σ(L) := C\ρ(L),

as well as the resolvent (operator) RL(z) := (L− z)−1 for any z ∈ ρ(L). We
now define

Kε(z) := (Λε − Λ0)RΛ0(z)AεRBε(z),

and we deduce from (.) and the estimates (i) and (ii) in Lemma 2.4 that
for ε0 > 0, small enough, and C > 0, we have ‖Kε(z)‖B(X) ≤ Cε < 1 for any
z ∈ ∆α\B(0, η), η < |α|, and ε ∈ (0, ε0). That implies

RΛε = (RBε −RΛ0AεRBε)(I +Kε)
−1

on ∆α\B(0, η) and for any ε ∈ (0, ε0). In particular, Σ(Λε) ∩∆α ⊂ B(0, η).
Using the definition of the eigenprojector Πε on the eigenspace associated to
the spectral values of Λε lying in B(0, η) by mean of Dunford integral (see
[5, Section III.6.4] or [4, 6]), namely

Πε :=
i

2π

∫
|z|=η

RΛε(z) dz,

we get
‖Πε − Π0‖B(X) < 1.

From the classical result [5, Section I.4.6] (or more explicitly [14, Lemma 2.18]),
we deduce that there exists ξε ∈ ∆α such that

Σ(Λε) ∩∆α = {ξε}, ξε is a simple eigenvalue,

for any ε ∈ [0, ε0] (up to take a smaller real number ε0 > 0). We conclude
by observing that ξε = 0 because 1 ∈ X ′ and Λ∗ε1 = 0 (which is nothing but
the mass conservation).

2.5 Weak connectivity regime - nonlinear exponential
stability

Now, we focus on the nonlinear exponential stability of the solution to the
evolution equation (.) in the case without delay. We start with an auxiliary
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result. We define the function Φ : L1(R+)× R→ R by

Φ[g, µ] :=

∫ ∞
0

a(x, εµ)g(x) dx− µ.

We denote byW1 the optimal transportation Monge-Kantorovich-Wasserstein
distance on the probability measures set P(R+) associated to the distance
d(x, y) = |x− y| ∧ 1, or equivalently defined by

∀ f, g ∈ P(R+), W1(f, g) := sup
ϕ,‖ϕ‖W1,∞≤1

∫ ∞
0

(f − g)ϕ.

Lemma 2.9. Assume (.). There exists ε0 > 0 and for any ε ∈ (0, ε0)
there exists a function ϕε : P(R) → R which is Lipschitz continuous for the
weak topology of probability measures and such that µ = ϕε[g] is the unique
solution to the equation

µ ∈ R+, Φ(g, µ) = 0.

Proof of Lemma 2.9. Step 1. Existence. For any g ∈ P(R) we have
Φ(g, 0) > 0 and for any g ∈ P(R) and µ ≥ 0, we have

Φ(g, µ) ≤ ‖a‖L∞ − µ,

so that Φ(g, µ) < 0 for µ > ‖a‖L∞ . By the intermediate values theorem and
the continuity property of Φ, for any fixed g ∈ P(R+) and ε ≥ 0, there exists
at least one solution µ ∈ (0, ‖a‖L∞ ] to the equation Φ(g, µ) = 0.
Step 2. Uniqueness and Lipschitz continuity. Fix f, g ∈ P(R+) and consider
µ, ν ∈ R+ such that

Φ(f, µ) = Φ(g, ν) = 0.

We have

ν − µ =

∫ ∞
0

a(x, εν)(g − f) +

∫ ∞
0

(a(x, εν)− a(x, εµ))f,

with ∣∣∣∫ ∞
0

a(x, εν)(g − f)
∣∣∣ ≤ ‖a(·, εν)‖W 1,∞W1(g, f),

and∣∣∣∫ ∞
0

(
a(x, εν)− a(x, εµ)

)
f
∣∣∣ ≤ ‖a(·, εν)− a(·, εµ)‖L∞ ≤ ε ‖∂µa‖L∞|µ− ν|.
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We then obtain

|µ− ν| (1− ε‖∂µa‖L∞) ≤ ‖a(·, εν)‖W 1,∞W1(g, f), (.)

and we may fix ε0 > 0 such that 1− ε0‖∂µa‖L∞ ∈ (0, 1), ε ∈ [0, ε0]. On the
one hand, for f = g, we deduce that µ = ν and that uniquely defines the
mapping ϕε[g] := µ. On the other hand, the function is Lipschitz continuous
because of (.).

We also recall the following classical Grönwall’s type lemma.

Lemma 2.10. Assume that u ∈ C([0,∞);R+) satisfies the integral inequality

u(t) ≤ C1e
at u0 + C2

∫ t

0

ea(t−s)u(s)2 ds, ∀ t > 0,

for some constants C1 ≥ 1, C2, u0 ≥ 0 and a < 0. Under the smallness
assumption

a+ 2C2u0 < 0,

there holds
u(t) ≤

(
1 +

C1u0C2

|a+ 2C2u0|

)
C1 e

at u0, ∀ t ≥ 0.

Proof of Lemma 2.10. We fix A ∈ (C1u0, 2C1u0), so that C1u(t) ≤ A at
least on a small interval, that is for any t ∈ [0, τ ], τ > 0 small enough, and
then the integral inequality implies on the same interval

u(t) ≤ C1e
at u0 + C2C

−1
1 A

∫ t

0

ea(t−s)u(s) ds.

The classical Grönwall’s lemma (for linear integral inequality) and the small-
ness assumption a+ C2C

−1
1 A ≤ 0 imply

u(t) ≤ C1 u0 e
(a+C2C

−1
1 A)t ≤ C1 u0 < A

on that interval. By a continuity argument, the first above inequality holds
on R+ and then with A := C1u0. Next, replacing that first estimate in the
integral inequality we started with, we get

u(t) ≤ C1e
at u0 + C2C

2
1u

2
0e
at

∫ t

0

e(a+2C2u0)s ds, ∀ t > 0,

from which we immediately conclude.

We come to the proof of our main result Theorem 1.1 in the case without
delay.
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Proof of Theorem 1.1 in the case without delay. We split the proof into two
steps.
Step 1. New formulation. We start giving a new formulation of the solutions
to the evolution and stationary equations in the weak connectivity regime
ε ∈ (0, ε0], where ε0 is defined in Lemma 2.9. For a given initial datum
0 ≤ f0 ∈ L1(R+) with unit mass the solution f ∈ C([0,∞);L1(R+)) to the
evolution equation (.) and the solution Fε to the stationary equation (.)
clearly satisfy

∂tf + ∂xf + a(εϕ[f ])f = 0, f(t, 0) = ϕ[f(t, ·)],
∂xF + a(εM)F = 0, F (0) = M = ϕ[F ],

where here and below the ε and x dependency is often removed without risk
of misleading.

We introduce the variation function g := f − F which satisfies the PDE

∂tg = −∂xg − a(εM)g − εa′(εM)FM[g]−Q[g] (.)

with

Q[g] := a(εϕ[f ])f − a(εϕ[F ])F − a(εϕ[F ])g − εa′(εϕ[F ])FM[g],

whereM = Mε is defined in (.). The above PDE is complemented with
the boundary condition

g(t, 0) = ϕ[f(t, ·)]− ϕ[F ],

and we may write again

ϕ[f ]− ϕ[F ] =

∫ ∞
0

a(εϕ[f ])f −
∫ ∞

0

a(εϕ[F ])F

=

∫ ∞
0

(
a(εM)g + εa′(εM)FM[g]

)
+

∫ ∞
0

Q[g] dx

= M[g] +Q[g], Q[g] := 〈Q[g]〉.

As a consequence, we have proved that the variation function g satisfies the
equation

∂tg = Λεg + Z[g], Z[g] := −Q[g] + δ0Q[g]. (.)

Step 2. The nonlinear term. On the one hand, we obviously have

〈Z[g]〉 = 0, ∀ g ∈M1(R+). (.)
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On the other hand, in order to get an estimate on the nonlinear term Z[g],
we introduce the notation

ψ(u) = a(x, εmu)fu,

where, for some fixed g ∈ P(R+), 〈g〉 = 0, we have set

f := F + g, fu := uf + (1− u)F, mu := ϕ[fu].

We first notice that ψ(0) = a(εϕ[F ])F and ψ(1) = a(εϕ[f ])f . Second, we
have

ψ′(u) = a′ε(mu)fum
′
u + aε(mu)g. (.)

In order to compute m′u, we differentiate with respect to u the identity

mu =

∫ ∞
0

aε(mu)fudx,

and we have

m′u =

∫ ∞
0

a′ε(mu)fudxm
′
u +

∫ ∞
0

aε(mu) gdx,

which implies

m′u =
(
1−

∫ ∞
0

a′ε(mu)fudx
)−1
∫ ∞

0

aε(mu) gdx. (.)

We may thus observe that m′0 = M[g], so that ψ′(0) = a′ε(M)FMε[g] +
aε(M)g, and therefore

Q[g] = ψ(1)− ψ(0)− ψ′(0).

Third, from (.), we have

ψ′′(u) = a′′ε(mu)fu (m′u)
2 + 2a′ε(mu)gm

′
u + a′ε(mu)fum

′′
u,

and from (.), we have

m′′(u) = 2
(

1−
∫ ∞

0

a′εfu

)−2
∫ ∞

0

aεg

∫ ∞
0

a′εg

+2
(

1−
∫ ∞

0

a′εfu

)−3
∫ ∞

0

a′′εf
(∫ ∞

0

aεg
)2

.
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In the small connectivity regime ε ∈ (0, ε0], ε0‖a′‖∞ < 1, we get the bound

‖ψ′′(u)‖X ≤ ‖a′′ε‖∞ |m′u|2 + 2‖a′ε‖∞‖g‖X |m′u|+ ‖a′ε‖∞ |m′′u|

≤ ε2 ‖a′′‖∞‖a‖2
∞

(1− ε‖a′‖∞)2
‖g‖2

X + 2ε
‖a′‖∞‖a‖∞
1− ε‖a′‖∞

‖g‖2
X

+2ε2 ‖a′‖2
∞‖a‖∞

(1− ε‖a′‖∞)2
‖g‖2

X + 2ε3‖a′′‖∞‖a′‖∞‖a‖∞
(1− ε‖a′‖∞)3

‖g‖2
X

≤ εK ‖g‖2
X ,

for some constant K ∈ (0,∞). Using the Taylor expansion

Q[g] = ψ(1)− ψ(0)− ψ′(0) =

∫ 1

0

(1− u)ψ′′(u)du,

we then obtain

‖Z[g]‖X ≤ 2‖Q[g]‖X ≤
∫ 1

0

(1− u)‖ψ′′(u)‖Xdu ≤ C ‖g‖2.

Step 3. Decay estimate. Thanks to the Duhamel formula, the solution g to
the evolution equation (.) satisfies

g(t) = SΛε(t)(f0 − F ) +

∫ t

0

SΛε(t− s)Z[g(s)] ds.

Using Theorem 2.8 and the second step, we deduce

‖g(t)‖X ≤ C eαt ‖g0‖X +

∫ t

0

C eα(t−s) ‖Z[g(s)]‖X ds

≤ C eαt ‖g0‖X + C εK

∫ t

0

eα(t−s) ‖g(s)‖2
X ds,

for any t ≥ 0 and for some constant C ≥ 1, α < 0, independent of ε ∈
(0, ε0]. Observing that ‖g(t)‖X = ‖g(t)‖L1 ∈ C([0,∞), we conclude thanks
to Lemma 2.10.

3 Case with delay

This section is devoted to the proof of our main result, Theorem 1.1, in
the case with delay by following the same strategy as in the case without
delay but adaptation the functional framework. We have already proved in
Theorem 2.1 the existence of a unique stationary solution (Fε,Mε) in the
weak connectivity regime and we may then focus on the evolution equation.
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3.1 Linearized equation and structure of the spectrum

In order to write as a time autonomous equation the linearized equation
(.)-(.)-(.), we introduce the following intermediate evolution equation
on a function v = v(t, y)

∂tv + ∂yv = 0, v(t, 0) = q(t), v(0, y) = 0, (.)

where y ≥ 0 represent the local time for the network activity. That last
equation can be solved with the characteristics method

v(t, y) = q(t− y)10≤y≤t.

Therefore, equation (.) on the variation n(t) of network activity writes

n(t) = D[v(t)], D[v] :=

∫ ∞
0

v(y)b(dy),

and then equation (.) on the variation q(t) of discharging neurons writes

q(t) = Oε[g(t), v(t)],

with
Oε[g, v] := Nε[g] + κεD[v],

Nε[g] :=

∫ ∞
0

aε(Mε)g dx, κε :=

∫ ∞
0

a′ε(Mε)Fε dx.

As a consequence, we may rewrite the linear system (.)-(.)-(.), as the
autonomous system

∂t(g, v) = Lε(g, v), (.)

where the operator Lε = (L 1
ε ,L

2
ε ) is defined by

L 1
ε (g, v) := −∂xg − aεg − a′εFεD[v] + δx=0Oε[g, v],

L 2
ε (g, v) := −∂yv + δy=0Oε[g, v],

in the space
X = X1 ×X2 := M1(R+)×M1(R+, µ)

with µ(x) = e−δx and δ > 0 is the same as in the condition (.).

Theorem 3.1. Assume (.)-(.)-(.) and (.). The conclusions of The-
orem 2.3 holds true with α := max{−a0/2,−δ} < 0.
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The result follows from the Spectral Mapping theorem and the Weyl’s
Theorem established in [9, 6] by introducing a convenient splitting of the
operator Lε. More precisely, we write Lε = Aε + Bε with

Bε(g, v) =

(
B1
ε(g, v)
B2
ε(g, v)

)
=

(
−∂xg − aεg
−∂yv

)
and

Aε(g, v) =

(
A1
ε(g, v)
A2
ε(g, v)

)
=

(
−a′εFεD[v] + δx=0Oε[g, v]

δy=0Oε[g, v]

)
,

and we just check the properties enjoyed by the operators Aε and Bε. We
skip the rest of the proof and we refer to the proof of Theorem 2.3 for more
details.

Lemma 3.2. (i) Aε ∈ B(X, Y ), where Y = (Cδ0 + BV (R+))× Cδ0 ⊂ X
with compact embedding;

(ii) SBε(t) is α-hypodissipative in X;

(iii) the family of operators SBε ∗ AεSBε satisfies

‖(SBε ∗ AεSBε)(t)‖X→D(Λε) ≤ Ceαt, ∀t ≥ 0.

Proof. (i) It is an immediate consequence of the fact that D ∈ B(X2;R)
(because of (.)) and Nε ∈ B(X1;R) (because of (.)).

(ii) Since SB1ε is nothing but the semigroup SBε defined in (.) which
is −a0/2-dissipative thanks to Lemma 2.4-(ii), we just have to prove the
dissipativity of the translation semigroup SB2ε which is given by the explicit
formula [SB2ε(t)v](y) = v(y − t)1y−t≥0. That follows from

‖SB2ε(t)v‖X2 =

∫ ∞
0

|v(y − t)|1y−t≥0 e
−δy dy = e−δt‖v‖X2 ,

for any v ∈ X2 and any t ≥ 0.
(iii) On the one hand, we have

A1
εSBε(t)(g, v)(x) = µ(x)D(t) + δx=0N(t),
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with

µ(x) := κεδx=0 − a′ε(x)Fε(x),

N(t) := Nε[S1
Bε(t)g] =

∫ ∞
0

a(x)g(x− t)1x−t≥0dx,

D(t) := D[S2
Bε(t)v] =

∫ ∞
0

v(y − t)1y−t≥0b(dy),

and we observe that |D(t)| ≤ eαt ‖v‖X2 from (.). We also have

|D′(t)| ≤
∣∣∣ ∫ ∞

0

|v(y − t)|1y−t≥0 |b′| dy ≤ C eα t ‖v‖X2 , ∀ t ≥ 0.

Next, we denote

T1(t)(g, v)(x) := (SB1ε ∗ A
1
εSBε)(t)(g, v)(x).

We compute

A1
εSBε(t)(g, v) = −a′ε(x)Fε(x)Nε[S1(t)] + δx=0Oε[S1(t), S2(t)],

and then

T1(t)(g, v)(x) = (SB1ε ∗ A
1
εSBε)(t)(g, v)(x)

=

∫ t

0

SB1ε(s)A1
εSBε(t− s)(g, v)(x)ds

=

∫ t

0

e−Aε(x)A1
εSB1ε(t− s)(g, v)(x− s)1x−s≥0ds

=

∫ t

0

e−Aε(x){−a′ε(x− s)Fε(x− s)Nε[S2(t− s)]

+δx−s=0{Nε[S2(t− s)]
∫ ∞

0

a′εFεdx+

∫ ∞
0

aεS1(t− s)dx}1x−s≥0ds

= −
∫ t∧x

0

e−Aε(x)a′ε(x− s)Fε(x− s)Nε[S2(t− s)]ds

+1t≥xe
−Aε(x){Nε[S2(t− x)]

∫ ∞
0

a′εFεdx+

∫ ∞
0

aεS1(t− x)dx}.
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Next, differentiating the above identity, we get

∂xT1(t)(g, v)(x) = −1t≥xe−Aε(x)a′ε(0)Fε(0)Nε[S2(t− x)]

+

∫ t∧x

0

aε(x)e−Aε(x)a′ε(x− s)Fε(x− s)Nε[S2(t− s)]ds

−
∫ t∧x

0

e−Aε(x)a′′ε(x− s)Fε(x− s)Nε[S2(t− s)]ds

−
∫ t∧x

0

e−Aε(x)a′ε(x− s)F ′ε(x− s)Nε[S2(t− s)]ds

−1t≥xaε(x)e−Aε(x){Nε[S2(t− x)]

∫
a′εFε +

∫ ∞
0

aεS1(t− x)dx}.

−1t≥xe−Aε(x){Nε[S ′2(t− x)]

∫
a′εFε +

∫ ∞
0

aεS
′
1(t− x)dx}.

Similarly, we have

∂yT2(t)(g, v)(y) = ∂ySB2ε ∗ A
2
εSBε(t)(g, v)(y)

= −Nε[S ′2(t− y)]

∫
a′εFε −

∫ ∞
0

aεS
′
1(t− y)dx.

We easily deduce that

‖∂xT1(t)(g, v)(x)‖X1 ≤ Ceαt‖(g, v)‖X
‖∂yT2(t)(g, v)(y)‖X2 ≤ Ceαt‖(g, v)‖X ,

and the similar estimate for ‖(SBε ∗AεSBε)(t)(g, v)‖X . Thus, the announced
estimate holds for the family of operators SBε ∗ AεSBε .

3.2 The vanishing connectivity regime

When the network connectivity parameter vanishes, ε = 0, the linearized
operator simplifies into

L0

(
g
v

)
=

(
−∂xg − a(x, 0)g + δx=0O0[g, v]

−∂yv + δy=0O0[g, v]

)
, (.)

where O0[g, v] = N0[g] =
∫∞

0
a(x, 0)g(x)dx.
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Theorem 3.3. There exist some constants α < 0 and C > 0 such that
Σ(L0) ∩∆α = {0} and for any (g0, v0) ∈ X, 〈g0〉 = 0, there holds

‖SL0(t)(g0, v0)‖X ≤ Ceαt ‖(g0, v0)‖X , ∀ t ≥ 0. (.)

Proof of Theorem 3.3. Since L 1
0 = Λ0, we have already proved that there

exists some β < 0 such that g(t) := SL 1
0
(t)g0 satisfies ‖g(t)‖ ≤ Ceβt ‖g0‖X1

for any t ≥ 0 from Theorem 3.3. We then just focus on L 2
0 . The Duhamel

formula associated to the equation ∂tv = L 2
0 (g, v) writes

v(t) = SB20(t)v0 +

∫ t

0

SB20(t− s)A2
0

(
g(s), v(s)

)
ds.

Using the already known estimate on g(t), we deduce

‖SL 2
0
v0(t)‖X2 = ‖v(t)‖X2 ≤ ‖SB20(t)v0‖X2 +

∫ t

0

‖SB20(t− s)δ0N0[g(s)]‖X2 ds

≤ e−δt‖v0‖X2 +

∫ t

0

e−δ(t−s)C eβs‖g0‖X1 ds

≤ C eαt‖(g0, v0)‖X

for some 0 > α > max{β,−δ}, which yields our conclusion.

3.3 Weak connectivity regime - exponential stability of
the linearized equation

In this part, we shall discuss the geometry structure of the spectrum of the
linearized time elapsed equation in weak connectivity regime taking delay
into account.

Theorem 3.4. There exists some constants ε0 > 0, C ≥ 1 and α < 0 such
that for any ε ∈ [0, ε0] there holds Σ(Lε) ∩∆α = {0} and

‖SLε(t)(g0, v0)‖X ≤ Ceαt‖(g0, v0)‖X , (.)

for any (g0, v0) ∈ X such that 〈g0〉 = 0.

We present a technical result needed in the proof of Theorem 3.4.

Lemma 3.5. The operator Lε is continuous with respect to ε, and more
precisely

‖Lε −L0‖B(X) ≤ O(ε). (.)
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Proof. For all (g, v) ∈ X, we have

Lε

(
g
v

)
=

(
−∂xg − aεg − a′εFεDε[v] + δx=0Oε[g, v]
−∂yv + δy=0Oε[g, v]

)
, (.a)

L0

(
g
v

)
=

(
−∂xg − a(x, 0)g + δx=0O0[g, v]
−∂yv + δy=0O0[g, v]

)
. (.b)

By (3.3)-(.b), we deduce

(Lε−L0)

(
g
v

)
=

(
(a(x, 0)− aε)g − a′εFεDε[v] + δx=0(Oε[g, v]−O0[g, v])

δy=0(Oε[g, v]−O0[g, v])

)
.

Then we compute

‖(Lε −L0)(g, v)‖X = ‖(a(x, 0)− aε)g‖X1 + ‖a′εFεDε[v]‖X1 + 2|Oε[g, v]−O0[g, v]|
≤ 3‖(aε − a0)g‖X1 + 2‖a′εFεDε[v]‖X2

≤ 3ε‖a′‖∞‖g‖X1 + 2εa1‖a′‖∞(1− ε‖a′‖∞)‖Fε‖X1‖v‖X2

= Cε‖(g, v)‖X ,

which is nothing but (.).

Proof of Theorem 3.4. With the help of Lemma 3.5, we may proceed exactly
as in the proof of Theorem 2.8 (see also again [14]) and we conclude that

Σ(Lε) ∩∆α = {ξε},

with |ξε| ≤ O(ε) and ξε is algebraically simple. We observe that

L ∗
ε

(
ϕ
ψ

)
=

(
∂xϕ− aεϕ+ aε(ϕ(0) + ψ(0))

∂yψ + κεb ψ(0) + κεb ϕ(0)− b
∫
a′εFε ϕ dx

)
,

from which we deduce that L ∗(1, 0) = 0. Then 0 ∈ Σ(L ∗
ε ) and ξε = 0.

Moreover, the orthogonality condition 〈g0〉 = 〈(g0, v0), (1, 0)〉X,X′ = 0 implies
that the exponential estimate (.) holds.

3.4 Weak connectivity regime - nonlinear exponential
stability

We finally come back on the nonlinear problem and we present the proof of
the second part of our main result for the case with delay.
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Proof of Theorem 1.1 in case with delay. We write the system as

∂tf = −∂xf − aε(D[u])f + δ0P[f,D[u]]

∂tu = −∂yu+ δ0P[f,D[u]],

with
P[f,m] =

∫
a(m)f, D[u] =

∫
bu.

We recall that the steady state (F,U), U := M1y≥0, satisfies

0 = −∂xF − aε(M)F + δ0M

0 = −∂yU + δ0M, M = D[U ] = P[F,D[U ]].

We introduce the variation g := f − F and v = u− U . The equation on g is

∂tg = −∂xg − aε(D[u])f + aε(M)F + δ0(P[f,D[u]]−P[F,D[U ]])

= −∂xg − aε(M)f − a′εFD[v]−Q[g, v] + δ0O[g, v] + δ0Q[g, v]

= L 1
ε (g, v) + Z1[g, v],

with

Q[g, v] := aε(M)F − aε(D[u])f + aε(M)f + a′εFD[v]

= Φ(0)− Φ(1) + Φ′(0),

where Φ(k) = aε(D[k u+ (1− k)U ])(k f + (1− k)F ) and Q[g, v] = 〈Q[g, v]〉,
Z1[g, v] := −Q[g, v] + δ0Q[g, v]. The equation on v is

∂tv = −∂yv + δ0(P[f,D[u]]−P[F,D[U ]])

= −∂yv + δ0O[g, v] + δ0Q[g, v]

= L 2
ε (g, v) + Z2[g, v], Z2[g, v] := δ0Q[g, v].

We then write the associated Duhamel formula

(g(t), v(t)) = SLε(t)(g0, v0) +

∫ t

0

SLε(t− s)Z[g(s), v(s)] ds.

Because ‖Z[g, v]‖X ≤ C ‖(g, v)‖2
X we may conclude as in the proof of Theo-

rem 1.1.
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