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@ Aim of the talk

» quick introduction to mean field limit / propagation of chaos
» statement of our propagation of chaos result for the 2D viscous

Vortex model (example of “singular” McKean-Vlasov model)
» sketch of the proof

@ the results are taken from

» Hauray, M., “On Kac's chaos and related problems”, HAL-2012

» Fournier, Hauray, M., “Propagation of chaos for the 2D viscous vortex
model”, to appear in JEMS
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QOutlines of the talk

© Introduction

© Main result

© sketch of the proof - a priori estimates

@ sketch of the proof - probability argument

© Sketch of the proof - functional analysis argument
@ Sketch of the proof - PDE/SDE argument

@ Sketch of the proof - entropy argument
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@ Introduction

© Main result

e sketch of the proof - a priori estimates

e sketch of the proof - probability argument

© Sketch of the proof - functional analysis argument
@ Sketch of the proof - PDE/SDE argument

@ Sketch of the proof - entropy argument



Micro to macro

e How to go rigorously from a microscopic description to a statistical description?
how to derive (justify) the equation at the macroscopic level ?

how to get something (simpler) from a microscopic description with a huge
number of particles ?

e (Kac's) mean field limit (# Boltzmann-Grad limit) in the sense that each
particle interacts with all the other particles with an intensity of order O(1/N)
=> statistical description = law of large numbers limit of a N-particle system

e at the formal level the identification of the limit is quite clear when one assumes
the molecular chaos for the limit model

e main difficulty : propagation of chaos
> chaos for oo particles = Boltzmann's molecular chaos (stochastic independence)
> chaos for N — oo particles = Kac's chaos (asymptotic stochastic independence)
> propagation of chaos: holds at time t = 0 implies holds for any t > 0
> propagation of chaos is necessary in order to identify the limit as N — oo
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The Kac's approach (1956) for Boltzmann model and others - trajectories

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its state (position, velocity) Z{',..., Z\ € E, E = R?, which
evolves according to

N
1
=5 > a(Zi— 2)dt  (ODE)
j=1

N
1
dz =N JZ; a(Z; — Zj)dt + V2vdB; (Brownian SDE)
=N Z - 1 (Z; — 2)bdN(do,i,j) (Boltzmann-Kac)

ihj=1

where a is a pairwise interaction force field, B; Brownian motions,
N Poisson measure, Z’ (24, ...,Z,-’,...,ij, ..., Zn) represents the system after
collision of the pair (Z,,Z) b cross-section
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The Kac's approach (1956) for Boltzmann and others - Markov semigroup

The law GN(t) := L(Z]) satisfies the Master (Liouville or backward
Kolmogorov) equation

(G o) = (GN,NVy) Ve C(EN)

where the generator AV writes

N
(NVe)(2) - Z z—2z)-Vip  (ODE)

N N
(AVp)(Z) = N > a(zi—z) -Vip+vY Aip  (SDE)
ij=1 i=1

N
(/\N(p)(Z) = % Z / [@(Z&) — gp(Z)} B,J do (Boltzmann-Kac)

with b == b(zi — zj,0).
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What is the limit as N — oo

Is it possible to identify the limit of the law £(Z}) of one typical particle?

More precisely, we want to show that £(ZN) — f = f(t, dz) and that
f € C([0,00); P(E)) is a solution to

Of = div,[(a * f)f] (Vlasov)

Of =div,[(ax* )]+ vAf (McKean — Vlasov)

6tf:/RdXSd_l[f(z’)f(v’)—f(z)f(v)]bdzda (Boltzmann),

depending of the N-particle dynamics
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Why those equations are the right limits ?

Assuming that
L(ZN) = f=f(t,dz), L(ZN ZY)— g=g(t,dz dv),

we easily (formally) show by taking ¢(Z) = ¢(z1) in the Master equation
Of = div, [/ a(z — v)g(dz, dv)}
0:f = div, {/ a(z — v)g(dz, dv)} + vAf,

O f = / [g(z,v') — g(z,v)] bdzdo.
Rdxsd—l

We obtain the Vlasov equation, the McKean-Vlasov equation and the Boltzmann
equation if we make the additional

independence / molecular chaos assumption g(v,z) = f(v) f(z).
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Difficulty

e The above picture is not that easy because for N fixed particles the states
Z4(t), ..., Zn(t) are never independent for positive time t > 0 even if the initial
states Z1(0), ..., Zn(0) are assumed to be independent : that is an inherent
consequence of the fact that particles do interact!

e Equations are written in spaces with increasing dimension N — oo.
To overcome that difficulty we work in fixed spaces using:
empirical probability measure

N
1
XeEN sl = NZ5Xf € P(E)
i=1

and/or marginal densities
F" € Pym(EN) — FY ;:/ FNdz;,1...dzy € Pym(EY)
EN=J
e The nonlinear PDE can be obtained as a “law of large numbers” for a not
independent array of exchangeable random variables in the mean-field limit.

e That is more demanding that the usual LLN. We need to propagate some
asymptotic independence = Kac's stochatstic chaos.
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Even more difficult for singular models

e We need at least
D> a priori estimates on the N-particle system
> uniqueness for the limit nonlinear PDE

e Most of the works has been done in a probability measures framework.

In order that everything make sense, it is then needed that coefficients are not
singular (they must be smooth enough, say C°).

There is some (few) works on singular stochastic dynamics:

- Osada, Proc. Japan Acad. 1986 & ...  (vortex with diffusion)

- Caglioti, Lions, Marchioro, Pulvirenti, CMP 1995 & 1995 (stationary problem)
- Cépa, Lépingle, PTRF 1997 (D =1)

For deterministic dynamics we refer to the talk by Maxime Hauray.

e Our goal: Understand the work by Osada. Recover and generalize his result.
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© Introduction

© Main result

e sketch of the proof - a priori estimates

e sketch of the proof - probability argument

© Sketch of the proof - functional analysis argument
@ Sketch of the proof - PDE/SDE argument

@ Sketch of the proof - entropy argument



vortex models

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its position 7", ..., XNN € R?, which evolves according to
L
di; = N Z K(X; — &) dt + V2vdB; (Brownian SDE)

j=1
where v > 0 is the viscosity and K : R? — R? is the Biot-Savart kernel defined by

XL ( X2 X1

V = RQ K = — = -
=l €RL KO =1 m = e p

) = V*loglx,

The associated mean field limit is the 2D Navier-Stokes equation written in
vorticity formulation

Orwe(x) = (K * wy)(x) - Viewy (x) + A, wi(x), (1)

where w : R x R? — R, is the vorticity function

All that can be done for vortices which turn in both (trigonometric and
reverse) senses and thus w : R, x R? = R
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Propagation of chaos

Theorem (first version)

(1) If X}V is wo-Kac's chaotic and "appropriately bounded”
then XN is w,-Kac's chaotic for any time t > 0.

(2) If X}V is wo-entropy chaotic and has bounded moment of order k € (0, 1]
then XN is w,—entropy chaotic for any time t > 0.

e Definitions of chaos
e sketch of the proof
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Definition of chaos

Chaos is the asymptotic independence as N — oo for a sequence (ZV) of
exchangeable random variables with values in EV

ZN=zV,...zZ0h e EN — FN.=r(z2") e, (EN)
! I

[y = %Zazﬂ eP(E) — FN.=L(uly) e P(P(E))

For ) r.v taking values in E with law £()) = f € P(E) we say that (ZV) is
Y-Kac's chaotic if

o L(2],...,Z)) — f% weakly in P(E) as N — oo;
o,uz,\,:>f|n law as N — oo,
meaning L(u¥y) = 0¢ in P(P(E)) as N — oo;
E(|JxN — YN|) — 0 as N — oo for a sequence YN of i.i.d.r.v with law f

. N N N H
Exchangeabl.e means: L(Z, - Z5n)) = L(ZV,...,ZN) for any permutation o
of the coordinates
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Definition of chaos = not about random variables but their laws !

For a given sequence (FV) in Py,,(EN) we define
e the marginals FJ-N € Pym(E’) by

Fl= / FNdzj,1...dzn
EN=i
e the projection FV e P(P(E)) by
(B1,0) = [ o) FU(@X) Yo € GoB(E))

EN

e the normalized MKW distance on P(Ej) by
Wi(F,G) = _inf i — x| A1) w(dX, dY).

e the MKW distance Wy on P(P(E)) by

Wi(e, B) == inf / Wi(p, ) w(dp, dn).
meN(a,8) Jp(E)x B(E)
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Definition of chaos = not about random variables but their laws !
For a given sequence (FV) in Py,,(EN) we define

— the marginals FjN € Pym(EY),

— the projection FN e P(P(E)),

— the normalized MKW distance W; on P(E/),

— the MKW distance W, on P(P(E)),

and for f € P(E) we say that (F") is f-Kac's chaotic if (equivalently)
¢ DJ(FN; f) = Wl(FjNa f®J) = E('(XlNa '“a‘)(jN) - (X1N7 7‘)(/\/)‘) —0
o Do (FN; £) := Wi(FN, 6¢) = E(Wa(ul¥n, F) — 0

More precisely, for E = R

Lemma (Hauray, M.)

For given M and k > 1 there exist some constants «;, C > 0 such that
VFeP(E), VFN € Py, (EN) with Mc(FN), Mk (f) < M

VL€ L., N,oo}, L1 Dy(FYif) < C(De(FY: £ + ).
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Stronger chaos: entropy and Fisher's chaos

For FN € Pym(EM), E = R?, we define the normalized functionals

Ny, 1 N N vy 1 |VF")?
H(F).fN/ENFIogF, I(F)'*N/EN N

Definition

Consider a sequence FV € Py,m(EY) and f € P(E)

(FM) is f-entropy chaotic if FY — f weakly in P(E) and H(F") — H(f)
(FM) is f-Fisher's chaotic if F{' — f weakly in P(E) and I(F") — I(f)

Theorem (Hauray, M.)

In the list below, each assertion implies the one which follows
(i) (FN) is Fisher's chaotic;

(ii) (FN) is Kac's chaotic and I(F") is bounded;

(iii) (F") is entropy chaotic;

(iv) (F}') converges in L* for any j > 1;

(v) (FV) is Kac’s chaotic.
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Nonlinear SDE for visous vortex or stochastic NS vortex equation

We say that X = (X})¢>0 a continuous stochatsic process with values in R? is a
solution to the stochastic NS vortex equation if it satisfies the Brownian EDS

dX: = (K * we)(X:) + V2v dB;

for some given brownian motion B and where w; = L(X}) is the law of X;.

It is important to point out that (thanks to Ito formula) the law w; of X; then
satisfies the NS vortex equation

atWt - (K * Wt) . VXWt + VAXWt.
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Propagation of chaos again

Theorem (second version)

Consider wg > 0 a function such that
[ w0+ I + log o)) o < oo, k€ (0.1
RZ

the vortices trajectories XN = (X]N);>o associated to an i.c. X} ~ wi®" and X
the solution to the stochastic NS vortex equation associated to an i.c. Xy ~ wp.
There holds

phy = X inlaw in P(C([0,00); R?)) as N — oo

L(XN(t)) = we = L(X:) strongly in [}(R?) as N — oo

The first convergence means

L(pNy) — Scxy  weakly in P(P(C([0, 00); R?)) as N — oo
and the second can be improved into
LX), ...,)(J-N(t)) — w  strongly in L}(R%) as N — oo

S.Mischler (Paris-Dauphine) Chaos for Vortex model December 2-6, 2013 19 / 42




strategy of the proof

The proof follow the by-now well-known “weak stability on nonlinear martingales”
approach, which goes back to Sznitmann 1984.

Everything is standard except the fact that we use the Fisher information bound
in each step.

e A priori estimates (on entropy, moment and Fisher information)

e tightness of the law Q" of the empirical process p/\y in P(P(E))

e pass to the limit and identify the set of limit points S as the probablity
measures g € P(E) associated to a process X’ which solves the (Martingale
problem associated to the) stochastic NS vortex equation and has finite Fisher
information.

e if g €S and g = L(X) then w; := L(AX}) is the unique solution to the NS
vortex PDE

e the Martingale problem has a unique solution X' and then S = {G} where
L(g) = X.

In conclusion, Q¥ — 45 in P(P(E)). (that Kac's chaos)
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a priori estimates

Using divK = 0, we get the entropy identity
t
H(FN) + y/ I(FY)ds = H(F").
0

As usually we need a control of a moment of FV in order to take advantage of
the entropy bound (we need a lower bound on H).

We define the moment My of order k € (0,1] by
1
M(FNy= | FN= 7/ “d
(= w209 = [ Flte

We then compute

d
— My (FN
dt k( t )

1// FlAtIA<x>k+/ le\: K(Xl—Xz)'V]_<X]_>k
R? R4

1
C/ F’V+C/ Fp ————
1 R? 1t 2 - 2t ‘Xl—X2|
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Control given by the Fisher information

Defining gV := £(X, — X1) and using classical (Carlen 1991) results on Fisher
information, we have

Sh(e") < B(F) < In(FY)
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Control given by the Fisher information

Defining gV := £(X> — X1) and using classical (Carlen 1991) results on Fisher
information, we have

Sh(e") < B(F) < In(FY)

Next, one can prove some Gagliardo-Niremberg type inequalities in 2D (using
Sobolev inequality plus Holder inequality)

Vg € P(R?), Vpe[l,00) |glle < Col(g)' VP
Vg e P(R?), Vg e[1,2) Vel < Gl(g)*/* e
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Control given by the Fisher information

Defining gV := £(X, — X1) and using classical (Carlen 1991) results on Fisher
information, we have

Sh(e") < h(F) < I(F")

Next, one can prove some Gagliardo-Niremberg type inequalities in 2D (using
Sobolev inequality plus Holder inequality)

Vg € P(R?), Vpe[l,00) gl < Gl(g) 7
Vg € P(R?), Vqe[1,2) [Vglls < Cql(g)** /e

Coming back to the singular term in the moment equation, we compute

0 g yg [ B,

\ B IX\

< V21 s gl ey + V2l o)

FN
/ Bt gde = V2
R By

4 |X1 7X2‘
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Control given by the Fisher information
Defining gV := L(Xz — X1)
1
Sh(e") < b(FY) < In(FY)
Gagliardo-Niremberg type inequality in 2D
Vg € P(R?), Vpe[l,00) |gllr < Col(g) VP

For the singular term in the moment equation, we compute

F _
[t dade < V2N [ lone leloe) + V2 el
Ré |X1 — X2
< GIEMP+G
1%
< —I(gMy+ ¢
=16 (gt)+ 5
14
< —I(FMY 4+ ¢
— 2C2 ( t )+ 5
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coming back to a priori estimates

find

Lemma (a priori estimates)
Uniformly in N

2

H(FNY + M (FN) + v /t I(FN) ds

< H(FY) + Mi(Fy') + (G + Gt

Summing up the two equations on the entropy and on the moment of order k, we
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System of SDE and nonlinear SDE

We denote
AN = (&N, ..., X)) the exchangeable r.v. with value in EV

where XV = (XN(t))i>0 € E := C([0, 00); R?) solution to the SDE

2(0) = 20)+ [ (K 1) (6 (5)) ds + VAU B (1)

and we want to show that each particle behaves asymptotically like N

independent copies of the same process X' = (X(t)):>o defined as the solution to
the nonlinear SDE

t
X(t) = X(0) +/ (K % ws)(X(s)) ds + v/20 B(¢),
0
where ws := L(X(s)) and then is a solution (lto formula) to the NS vortex

equation
Ow = (K *xw) - Vew + vA,w.
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Tightness estimates on the trajectories of the N-vortex system

Lemma
the family of laws L(un)n>1 is tight in P(P(E))

From classical compactness criterium (Sznitmann 1984) it is enough to prove

that the family of laws £(X{')y>1 is tight in P(E). That is a consequence of

Lemma
Forall T >0, 6 € (0,1/2)

IE[ sup M] SC(l-l—/OTI(GLI,V)du)

0<s<t<T (t—s)°

By Prokhorov, we get

Lemma
There exists Q € P(P(E)) such that

QY — Q in P(P(E)).
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About the proof of the tightness estimate

Using the SDE equation we have
A7 (1) = ()| < (7 +UF +1) (¢ —9)?
with
Zri= sup |Bi(t) — Ba(s)|/(t —s)*/3

0<s<t<T
and (using Holder inequality in the interaction term)

'
1
W= [ 53 () = )2

J#l
We conclude using that E(Z7) < co and

Bed) = [ B () - ()

Il ~[ |5
re X1 —><2|3/2 wo X2
c/ lgull o du < c(1+/ (GuN)du)
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Identification of the the limit thanks to “Sznitman” argument.

Lemma

Assume that Q € P(P(C([0, +00),R?)) = P(P(E)) is a mixture measure obtained as a
limit point of some subsequence of Q. Then suppQ C S

S { q is the law of some X solution to stoch. NS vortex eq.

VT >0, [T 1(£(X))ds < +oo } = el

@ g ~ X solves the stoch. NS vortex eq. iif for all times s, t, ¥, ¢...
Fa) = [ [ aleatay)oixs < ) plx(e) - olx(s)
~ [ Kxtw) = y(w) - Vetx(@)da v [ Aso(x(u))du] ~0

@ @ concentrated on Sy <= Eq[|F(-)|?] =0 for all s, t,%, .

@ Eon[|F(-)]’] = 0as N — +oo.

@ Continuity P(P(E)) 3 R+ Eg[|F(-)|*] under the condition Eg|[ [, /(-s) ds| < +oo.
e Ep [fot 1(-s) ds] < 400, which is equivalently P € S;.
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Level 3 Fisher information (for a mixture of probability measures)

Consider m € P(P(E)), E = R?, and define
I(m) = / I(p)7(dp), T'(x):=supl(n;) = lim I(x;)
P(E) j>1 Jreo
where 7; is given by (the easy part of) Hewitt and Savage theorem

= / P 7(dp) € Pym(E).
PB(E)

Theorem (representation formula, Hauray-M.)

Ve P(P(E)) Z(r)=T'(x).

A similar formula is known for the entropy (Robinson-Ruelle, 1967)

Application: the Fisher information is I'-Isc in the sense
Pym(EY) 3 FY — 7 € P(P(E)) implies Z(r) < liminf I(F").
One line proof: for any j > 1 by Isc of J;
Ii(m;) < liminf [;(FY) < liminf Iy(F").
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proof of the level 3 Fisher information representation.

(i) I(f®)) = I(f)  (good normalization)
(iii) 1 is Isc, convex, proper and > 0 on ]P’sym(Ej), Vji>1
(iv) Z’ is linear on disjoint convex combination in the sense that

T'(7) = anZ' (V) + ...amT'(AM)

=o' +.amyV, @i >0, Y a; =1, suppy Nsuppy =0

1

On the one hand, we have by (ii) and Jensen inequality
1) = [ 1)@ 2 1( [ nldp) = i)
P(E) P(E)

On the other hand, we write thanks to (iv) and the Jensen inequality

T'(r) = a1’V +...+anZ'(WY), v = a;tmy,
> al(h) + ...+ am I(fu), fii=m
= Z(zM), M= al Opm + ... + ah G-

As 7 — 7 we get the inverse inequality Z(7) < liminf Z(x™) < T'(r).
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about condition (iii)

For G;, Fj € Pyn(E’), we write the identity
01(F;) + (1 = 0)I(Gj) — 1(0F; + (1 - 0)G;) =0 (1 —0) J;

with for G; = g®/, Fj = f®, f +# g so that W;(f,g) =: 26 > 0,

GF; G

/S (L E— L
b= [ ag Ve

GF:

S C/ J°J
wi(ul r)>s OF; + (1-0)G

< C/ oy
Wa(ul,F)>5 1 — 0

C ,
[ Wa(uX, F)F(dX) + ... '
SA=0) /o 1(px, F)f(dX) + ... = 0 as j — oo,

+ ...

<

by the functional law of large number ,uﬁ’{,\, — fif XN ~ FON,
We deduce (in the limit j — o)

0T'(5¢) + (1 — 0)T'(5,) — T'(06¢ + (1 — 0)35) = 0
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Consequence for the vortex problem
We know (from tightness) that
L) — Q weakly in P(P(E))

with here E := C([0,00); R?). We define Q; := projection on the section
P(P({t} x R?)) so that

:L(XtN),,C(u%tN) — @ weakly in P(P(R?))

As a consequence, by Fubini, -Isc property of the Fisher information and Fatou

/P(E) /OT/(Qt)dt Q(dq) /OT/P(E)) I(g:) Q(dq) dt

= /OTI(Qt)dt

T T
< /Iiminfl(Gt’V)dtﬁliminf/ 1(GN)dt.
o N N Jo

This last quantity is finite, so that fo (g¢)dt < 0o Q-a.s. and supp Q@ C S;.
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Uniqueness of the solution to the NS vortex equation

We claim that
Vges8, g=L(X), w:=L(X:)=w = unique solution of NS vortex.
e First, for g € S, it is clear that w; := L(X;) satisfies
w e C([0, T);P(R?)), I(w)e L*0,T)
and w is a weak solution to (take v = 1)
Ow = Aw + (K xw) - Vw.

e Second, the uniqueness is known (Ben-Artzi 1994, Brézis 1994, improved by
Gallagher-Gallay 2005) in the class of function

t1/4 ||W(t7 ~)||/_4/3 —0ast—0.

e We have to prove by a “regularity argument” that w satisfies the Ben-Artzi &
Brézis criterium
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Our weak solution are in the Ben-Artzi & Brézis class

e A priori bound and renormalization. We recall the GN inequalities

Vg € P(R?), Vpe[l,00) gl < G l(g) 7
Vg € P(R?), Vqe[1,2) [Vglls < Cql(g)** e

which in turn imply
g € L8(L%%) and Vg € LY°(13/?) take p=6/5, q = 3/2.
Together with the Hardy-Littlewood-Sobolev inequality we get
V(K * g) € L7P(L9),

and then the commutator appearing in the DiPerna-Lions renomalizing theory
converges to 0 in L,loc. As a consequence, we may renormalize the equation

2 B(w) + 8" (w)|Vw|? = AB(w) + (K * w)VB(w).
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Our weak solution are in the Ben-Artzi & Brézis class

e Renormalization and better bounds. Thanks, to the renormalization equation
0eB(w) + B"(w)|[Vw|? = AB(w) + (K * w)VB(w)
we get (smoothing effect)
we C((0, T); L'NL>®) and w e L3°(0,T;LlogLNLE).

e Thanks to Nash inequality we have

d
S Il = = IIVAIlE < CIIfFIIL
and

t1/2||f||,2 < C (just like for the heat equation)

e Together with the entropy uniform bound we get

24|l w(t,.)|| a2 — Oas t — 0.
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Uniqueness (in law) of linear SDE under the a priori condition.

If g € S we consider the associated linear SDE

t
Xy = Xy +/ us(Xs) ds + v B, us = K * ws,
0

Lemma

Strong uniqueness for the previous linear SDE holds (and thus weak uniqueness by
Yamada-Watanabe theorem). In other words, S = {G}.

Sketch of the proof
@ Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.
@ Two solutions X’ and ) satisfies

1

V8 > 0, ]E{In(l—&-é

sup | — ys\)} <E Uot[/wws(xs) + MVus():)] ds

where M stands for maximal function.
@ Standard estimates + bounds on Fischer information helps to bound the r.h.s.
@ A variant of Chebichev ineq. allows to conclude.
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© Introduction

© Main result

e sketch of the proof - a priori estimates

0 sketch of the proof - probability argument

© Sketch of the proof - functional analysis argument
@ Sketch of the proof - PDE/SDE argument

@ Sketch of the proof - entropy argument



Chaos entropic

From .
H(Ft"’)+/ I(FN)ds = H(F)
and Ot
H(w,) + / I(ws) ds = H(wp),
as well as the I-Isc of H and | we g(()et if
H(Fg') — H(wo),

the conclusion

t
H(Wt)—‘r/ I(ws)ds < liminf {H(F}) +/ I(FY) ds}
0 N—oco 0
< I|msup{H FN —|—/ /FN)ds}
N—oco 0
= limsup H(FY) = H(w)
N— oo

and then
H(FY) = H(wy) Vt>0
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A word of conclusion:

We use arguments coming from several areas of mathematics:
e “true” probability (non linear martingale problem)

e functional analysis in finite, increasing and infinite dimension (level-3
Fisher information)

e PDE (renormalization argument for a singular parabolic equation and
sharp uniqueness result)

Open problems: Is-it possible to adapt the method to other singular
models?

e Kac-Landau model (for soft potential)?
o Keller-Segel model?

D> propagation of chaos for subcritical Keller-Segel model by D. Godinho,
C. Quininao
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