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Aim of the talk

I quick introduction to mean field limit / propagation of chaos
I statement of our propagation of chaos result for the 2D viscous

Vortex model (example of “singular” McKean-Vlasov model)
I sketch of the proof

the results are taken from

I Hauray, M., “On Kac’s chaos and related problems”, HAL-2012
I Fournier, Hauray, M., “Propagation of chaos for the 2D viscous vortex

model”, to appear in JEMS
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Outlines of the talk

1 Introduction

2 Main result

3 sketch of the proof - a priori estimates

4 sketch of the proof - probability argument

5 Sketch of the proof - functional analysis argument

6 Sketch of the proof - PDE/SDE argument

7 Sketch of the proof - entropy argument
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Micro to macro

• How to go rigorously from a microscopic description to a statistical description?

how to derive (justify) the equation at the macroscopic level ?

how to get something (simpler) from a microscopic description with a huge
number of particles ?

• (Kac’s) mean field limit ( 6= Boltzmann-Grad limit) in the sense that each
particle interacts with all the other particles with an intensity of order O(1/N)
⇒ statistical description = law of large numbers limit of a N-particle system

• at the formal level the identification of the limit is quite clear when one assumes
the molecular chaos for the limit model

• main difficulty : propagation of chaos
B chaos for ∞ particles = Boltzmann’s molecular chaos (stochastic independence)
B chaos for N →∞ particles = Kac’s chaos (asymptotic stochastic independence)
B propagation of chaos: holds at time t = 0 implies holds for any t > 0
B propagation of chaos is necessary in order to identify the limit as N →∞
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The Kac’s approach (1956) for Boltzmann model and others - trajectories

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its state (position, velocity) ZN

1 , ...,ZN
N ∈ E , E = Rd , which

evolves according to

dZi =
1

N

N∑
j=1

a(Zi −Zj) dt (ODE)

dZi =
1

N

N∑
j=1

a(Zi −Zj) dt +
√

2νdBi (Brownian SDE)

dZ =
1

N

N∑
i,j=1

∫
Sd−1

(Z ′ij −Z) b dN (dσ, i , j) (Boltzmann-Kac)

where a is a pairwise interaction force field, Bi Brownian motions,
N Poisson measure, Z ′ij = (Z1, ...,Z ′i , ...,Z ′j , ...,ZN) represents the system after
collision of the pair (Zi ,Zj), b cross-section
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The Kac’s approach (1956) for Boltzmann and others - Markov semigroup

The law GN(t) := L(ZN
t ) satisfies the Master (Liouville or backward

Kolmogorov) equation

∂t〈GN , ϕ〉 = 〈GN ,ΛNϕ〉 ∀ϕ ∈ Cb(EN)

where the generator ΛN writes

(ΛNϕ)(Z ) :=
1

N

N∑
i,j=1

a(zi − zj) · ∇iϕ (ODE)

(ΛNϕ)(Z ) :=
1

N

N∑
i,j=1

a(zi − zj) · ∇iϕ+ ν

N∑
i=1

∆iϕ (SDE)

(ΛNϕ)(Z ) =
1

N

N∑
1≤i<j≤N

∫
Sd−1

[
ϕ(Z ′ij)− ϕ(Z )

]
b̃ij dσ (Boltzmann-Kac)

with b̃ij := b̃(zi − zj , σ).
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What is the limit as N →∞

Is it possible to identify the limit of the law L(ZN
1 ) of one typical particle?

More precisely, we want to show that L(ZN
1 )→ f = f (t, dz) and that

f ∈ C ([0,∞);P(E )) is a solution to

∂t f = divz [(a ∗ f )f ] (Vlasov)

∂t f = divz [(a ∗ f )f ] + ν∆f (McKean − Vlasov)

∂t f =

∫
Rd×Sd−1

[f (z ′)f (v ′)− f (z)f (v)] b dzdσ (Boltzmann),

depending of the N-particle dynamics
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Why those equations are the right limits ?

Assuming that

L(ZN
1 )→ f = f (t, dz), L(ZN

1 ,ZN
2 )→ g = g(t, dz , dv),

we easily (formally) show by taking ϕ(Z ) = ϕ(z1) in the Master equation

∂t f = divz
[∫

a(z − v)g(dz , dv)
]

∂t f = divz
[∫

a(z − v)g(dz , dv)
]

+ ν∆f ,

∂t f =

∫
Rd×Sd−1

[g(z ′, v ′)− g(z , v)] b̃ dzdσ.

We obtain the Vlasov equation, the McKean-Vlasov equation and the Boltzmann
equation if we make the additional

independence / molecular chaos assumption g(v , z) = f (v) f (z).
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Difficulty

• The above picture is not that easy because for N fixed particles the states
Z1(t), ..., ZN(t) are never independent for positive time t > 0 even if the initial
states Z1(0), ...,ZN(0) are assumed to be independent : that is an inherent
consequence of the fact that particles do interact!

• Equations are written in spaces with increasing dimension N →∞.
To overcome that difficulty we work in fixed spaces using:
empirical probability measure

X ∈ EN 7→ µN
X :=

1

N

N∑
i=1

δxi ∈ P(E )

and/or marginal densities

FN ∈ Psym(EN) 7→ FN
j :=

∫
EN−j

FNdzj+1...dzN ∈ Psym(E j)

• The nonlinear PDE can be obtained as a “law of large numbers” for a not
independent array of exchangeable random variables in the mean-field limit.

• That is more demanding that the usual LLN. We need to propagate some
asymptotic independence = Kac’s stochatstic chaos.
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Even more difficult for singular models

• We need at least
B a priori estimates on the N-particle system
B uniqueness for the limit nonlinear PDE

• Most of the works has been done in a probability measures framework.
In order that everything make sense, it is then needed that coefficients are not
singular (they must be smooth enough, say C 0).

There is some (few) works on singular stochastic dynamics:
- Osada, Proc. Japan Acad. 1986 & ... (vortex with diffusion)
- Caglioti, Lions, Marchioro, Pulvirenti, CMP 1995 & 1995 (stationary problem)
- Cépa, Lépingle, PTRF 1997 (D = 1)

For deterministic dynamics we refer to the talk by Maxime Hauray.

• Our goal: Understand the work by Osada. Recover and generalize his result.
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vortex models

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its position XN

1 , ...,XN
N ∈ R2, which evolves according to

dXi =
1

N

N∑
j=1

K (Xi −Xj) dt +
√

2νdBi (Brownian SDE)

where ν > 0 is the viscosity and K : R2 → R2 is the Biot-Savart kernel defined by

∀ x = (x1, x2) ∈ R2, K (x) =
x⊥

|x |2
=
(
− x2

|x |2
,
x1

|x |2
)

= ∇⊥ log |x |,

The associated mean field limit is the 2D Navier-Stokes equation written in
vorticity formulation

∂twt(x) = (K ? wt)(x) · ∇xwt(x) + ν∆xwt(x), (1)

where w : R+ × R2 → R+ is the vorticity function

All that can be done for vortices which turn in both (trigonometric and
reverse) senses and thus w : R+ × R2 → R
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Propagation of chaos

Theorem (first version)

(1) If XN
0 is w0-Kac’s chaotic and ”appropriately bounded”

then XN
t is wt-Kac’s chaotic for any time t > 0.

(2) If XN
0 is w0-entropy chaotic and has bounded moment of order k ∈ (0, 1]

then XN
t is wt–entropy chaotic for any time t > 0.

• Definitions of chaos
• sketch of the proof
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Definition of chaos

Chaos is the asymptotic independence as N →∞ for a sequence (ZN) of
exchangeable random variables with values in EN

ZN = (ZN
1 , ...,ZN

N ) ∈ EN → FN := L(ZN) ∈ Psym(EN)

l l

µN
ZN :=

1

N

N∑
i=1

δZN
i
∈ P(E ) → F̂N := L(µN

ZN ) ∈ P(P(E ))

For Y r.v taking values in E with law L(Y) = f ∈ P(E ) we say that (ZN) is
Y-Kac’s chaotic if

• L(ZN
1 , ...,ZN

j ) ⇀ f ⊗j weakly in P(E j) as N →∞;

• µN
ZN ⇒ f in law as N →∞,

meaning L(µN
ZN )→ δf in P(P(E )) as N →∞;

• E(|XN − YN |)→ 0 as N →∞ for a sequence YN of i.i.d.r.v with law f

Exchangeable means: L(ZN
σ(1), ...,Z

N
σ(N)) = L(ZN

1 , ...,ZN
N ) for any permutation σ

of the coordinates
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Definition of chaos = not about random variables but their laws !

For a given sequence (FN) in Psym(EN) we define
• the marginals FN

j ∈ Psym(E j) by

FN
j =

∫
EN−j

FNdzj+1...dzN

• the projection F̂N ∈ P(P(E )) by

〈F̂N ,Φ〉 =

∫
EN

Φ(µN
X )FN(dX ) ∀Φ ∈ Cb(P(E ))

• the normalized MKW distance on P(E j) by

W1(F ,G ) := inf
π∈Π(F ,G)

∫
E j×E j

(1

j

j∑
i=1

|xi − xj | ∧ 1
)
π(dX , dY ).

• the MKW distance W1 on P(P(E )) by

W1(α, β) := inf
π∈Π(α,β)

∫
P(E)×P(E)

W1(ρ, η)π(dρ, dη).
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Definition of chaos = not about random variables but their laws !

For a given sequence (FN) in Psym(EN) we define

− the marginals FN
j ∈ Psym(E j),

− the projection F̂N ∈ P(P(E )),

− the normalized MKW distance W1 on P(E j),

− the MKW distance W1 on P(P(E )),

and for f ∈ P(E ) we say that (FN) is f -Kac’s chaotic if (equivalently)

• Dj(F
N ; f ) := W1(FN

j , f
⊗j) = E(|(XN

1 , ...,XN
j )− (XN

1 , ...,XN
j )|)→ 0

• D∞(FN ; f ) :=W1(F̂N , δf ) = E(W1(µN
ZN , f )→ 0

More precisely, for E = Rd

Lemma (Hauray, M.)

For given M and k > 1 there exist some constants αi ,C > 0 such that
∀ f ∈ P(E ), ∀FN ∈ Psym(EN) with Mk(FN

1 ),Mk(f ) ≤ M

∀ j , ` ∈ {1, ...,N,∞}, ` 6= 1 Dj(F
N ; f ) ≤ C

(
D`(FN ; f )α1 +

1

Nα2

)
.
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Stronger chaos: entropy and Fisher’s chaos

For FN ∈ Psym(EN), E = Rd , we define the normalized functionals

H(FN) :=
1

N

∫
EN

FN log FN , I (FN) :=
1

N

∫
EN

|∇FN |2

FN
.

Definition

Consider a sequence FN ∈ Psym(EN) and f ∈ P(E)

(FN) is f -entropy chaotic if FN
1 ⇀ f weakly in P(E) and H(FN)→ H(f )

(FN) is f -Fisher’s chaotic if FN
1 ⇀ f weakly in P(E) and I (FN)→ I (f )

Theorem (Hauray, M.)

In the list below, each assertion implies the one which follows

(i) (FN) is Fisher’s chaotic;

(ii) (FN) is Kac’s chaotic and I (FN) is bounded;

(iii) (FN) is entropy chaotic;

(iv) (FN
j ) converges in L1 for any j ≥ 1;

(v) (FN) is Kac’s chaotic.
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Nonlinear SDE for visous vortex or stochastic NS vortex equation

We say that X = (Xt)t>0 a continuous stochatsic process with values in R2 is a
solution to the stochastic NS vortex equation if it satisfies the Brownian EDS

dXt = (K ∗ wt)(Xt) +
√

2ν dBt

for some given brownian motion B and where wt = L(Xt) is the law of Xt .

It is important to point out that (thanks to Ito formula) the law wt of Xt then
satisfies the NS vortex equation

∂twt = (K ∗ wt) · ∇xwt + ν∆xwt .
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Propagation of chaos again

Theorem (second version)

Consider w0 ≥ 0 a function such that∫
R2

w0 (1 + |x |k + | logw0|) dx <∞, k ∈ (0, 1],

the vortices trajectories XN = (XN
t )t≥0 associated to an i.c. XN

0 ∼ w⊗N0 and X
the solution to the stochastic NS vortex equation associated to an i.c. X0 ∼ w0.
There holds

µN
XN ⇒ X in law in P(C ([0,∞);R2)) as N →∞
L(XN

1 (t))→ wt = L(Xt) strongly in L1(R2) as N →∞

The first convergence means

L(µN
XN ) ⇀ δL(X ) weakly in P(P(C ([0,∞);R2)) as N →∞

and the second can be improved into

L(XN
1 (t), ...,XN

j (t))→ w⊗jt strongly in L1(R2)j as N →∞
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strategy of the proof

The proof follow the by-now well-known “weak stability on nonlinear martingales”
approach, which goes back to Sznitmann 1984.
Everything is standard except the fact that we use the Fisher information bound
in each step.

• A priori estimates (on entropy, moment and Fisher information)

• tightness of the law QN of the empirical process µN
XN in P(P(E ))

• pass to the limit and identify the set of limit points S as the probablity
measures q ∈ P(E ) associated to a process X which solves the (Martingale
problem associated to the) stochastic NS vortex equation and has finite Fisher
information.

• if q ∈ S and q = L(X ) then wt := L(Xt) is the unique solution to the NS
vortex PDE

• the Martingale problem has a unique solution X̄ and then S = {q̄} where
L(q̄) = X̄ .

In conclusion, QN ⇀ δq̄ in P(P(E )). (that Kac’s chaos)
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a priori estimates

Using divK = 0, we get the entropy identity

H(FN
t ) + ν

∫ t

0

I (FN
s ) ds = H(FN

0 ).

As usually we need a control of a moment of FN
t in order to take advantage of

the entropy bound (we need a lower bound on H).

We define the moment Mk of order k ∈ (0, 1] by

Mk(FN) =

∫
R2N

FN 1

N

∑
j=1

〈xj〉k =

∫
R2

FN
1 〈x〉kdx

We then compute

d

dt
Mk(FN

t ) = ν

∫
R2

FN
1t ∆〈x〉k +

∫
R4

FN
2t K (x1 − x2) · ∇1〈x1〉k

≤ C1

∫
R2

FN
1t + C2

∫
R4

FN
2t

1

|x1 − x2|
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Control given by the Fisher information

Defining gN := L(X2 − X1) and using classical (Carlen 1991) results on Fisher
information, we have

1

2
I1(gN) ≤ I2(FN

2 ) ≤ IN(FN)
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Control given by the Fisher information

Defining gN := L(X2 − X1) and using classical (Carlen 1991) results on Fisher
information, we have

1

2
I1(gN) ≤ I2(FN

2 ) ≤ IN(FN)

Next, one can prove some Gagliardo-Niremberg type inequalities in 2D (using
Sobolev inequality plus Holder inequality)

∀ g ∈ P(R2), ∀ p ∈ [1,∞) ‖g‖Lp ≤ Cp I (g)1−1/p

∀ g ∈ P(R2), ∀ q ∈ [1, 2) ‖∇g‖Lq ≤ Cq I (g)3/2−1/q
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Control given by the Fisher information

Defining gN := L(X2 − X1) and using classical (Carlen 1991) results on Fisher
information, we have

1

2
I1(gN) ≤ I2(FN

2 ) ≤ IN(FN)

Next, one can prove some Gagliardo-Niremberg type inequalities in 2D (using
Sobolev inequality plus Holder inequality)

∀ g ∈ P(R2), ∀ p ∈ [1,∞) ‖g‖Lp ≤ Cp I (g)1−1/p

∀ g ∈ P(R2), ∀ q ∈ [1, 2) ‖∇g‖Lq ≤ Cq I (g)3/2−1/q

Coming back to the singular term in the moment equation, we compute∫
R4

FN
2t

|x1 − x2|
dx1dx2 =

√
2

∫
B1

gN
t (x)

|x |
dx +

√
2

∫
Bc

1

gN
t (x)

|x |
dx

≤
√

2 ‖| · |−1‖L3/2(B1) ‖gN
t ‖L3(B1) +

√
2 ‖gN

t ‖L1(Bc
1 )
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Control given by the Fisher information

Defining gN := L(X2 − X1)

1

2
I1(gN) ≤ I2(FN

2 ) ≤ IN(FN)

Gagliardo-Niremberg type inequality in 2D

∀ g ∈ P(R2), ∀ p ∈ [1,∞) ‖g‖Lp ≤ Cp I (g)1−1/p

For the singular term in the moment equation, we compute

∫
R4

FN
2t

|x1 − x2|
dx1dx2 ≤

√
2 ‖| · |−1‖L3/2(B1) ‖gN

t ‖L3(B1) +
√

2 ‖gN
t ‖L1(Bc

1 )

≤ C3 I (g
N
t )2/3 + C4

≤ ν

4C2
I (gN

t ) + C5

≤ ν

2C2
I (FN

t ) + C5
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coming back to a priori estimates

Summing up the two equations on the entropy and on the moment of order k, we
find

Lemma (a priori estimates)

Uniformly in N

H(FN
t ) + Mk(FN

t ) +
ν

2

∫ t

0

I (FN
s ) ds

≤ H(FN
0 ) + Mk(FN

0 ) + (C1 + C2)t
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System of SDE and nonlinear SDE

We denote

XN := (XN
1 , ...,XN

N ) the exchangeable r.v. with value in EN

where XN
i = (XN

i (t))t≥0 ∈ E := C ([0,∞);R2) solution to the SDE

Xi (t) = Xi (0) +

∫ t

0

(K ∗ µN
X (s))(Xi (s)) ds +

√
2ν Bi (t)

and we want to show that each particle behaves asymptotically like N
independent copies of the same process X = (X (t))t≥0 defined as the solution to
the nonlinear SDE

X (t) = X (0) +

∫ t

0

(K ∗ ws)(X (s)) ds +
√

2ν B(t),

where ws := L(X (s)) and then is a solution (Ito formula) to the NS vortex
equation

∂tw = (K ? w) · ∇xw + ν∆xw .
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Tightness estimates on the trajectories of the N-vortex system

Lemma

the family of laws L(µN
XN )N≥1 is tight in P(P(E))

From classical compactness criterium (Sznitmann 1984) it is enough to prove

that the family of laws L(XN
1 )N≥1 is tight in P(E). That is a consequence of

Lemma
For all T > 0, θ ∈ (0, 1/2)

E
[

sup
0<s<t<T

|XN
1 (t)−XN

1 (s)|
(t − s)θ

]
≤ C

(
1 +

∫ T

0

I (GN
u ) du

)
By Prokhorov, we get

Lemma
There exists Q ∈ P(P(E)) such that

QN ⇀ Q in P(P(E)).
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About the proof of the tightness estimate

Using the SDE equation we have

|XN
1 (t)−XN

1 (s)| ≤ (ZT + UN
T + 1) (t − s)1/3

with
ZT := sup

0<s<t<T
|B1(t)− B2(s)|/(t − s)1/3

and (using Holder inequality in the interaction term)

UN
T :=

∫ T

0

1

N

∑
j 6=1

|X1(u)−Xj(u)|−3/2 du

We conclude using that E(ZT ) <∞ and

E(UN
T ) =

∫ T

0

E(|X1(u)−X2(u)|−3/2)

≈
∫ T

0

∫
R4

GN
2

|x1 − x2|3/2
≈
∫ T

0

∫
R2

gN(du, x)

|x |3/2
dx

≤ C

∫ T

0

‖gu‖L10 du ≤ C
(

1 +

∫ T

0

I (GN
u ) du

)
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Identification of the the limit thanks to “Sznitman” argument.

Lemma

Assume that Q ∈ P(P(C([0,+∞),R2)) = P(P(E)) is a mixture measure obtained as a
limit point of some subsequence of QN . Then suppQ ⊂ S

S :=

{
q is the law of some X solution to stoch. NS vortex eq.

∀T > 0,
∫ T

0
I (L(Xs)) ds < +∞

}
= S0 ∩ S1

q ≈ X solves the stoch. NS vortex eq. iif for all times s, t, ψ, ϕ...

F(q) :=

∫∫
E2

q(dx)q(dy)ψ(x(s ≤ t))

[
ϕ(x(t))− ϕ(x(s))

−
∫ t

s

K(x(u)− y(u)) · ∇ϕ(x(u))du − ν
∫ t

s

∆ϕ(x(u))du

]
= 0

Q concentrated on S0 ⇐⇒ EQ [|F(·)|2] = 0 for all s, t, ψ, ϕ.

EQN [|F(·)|2]→ 0 as N → +∞.

Continuity P(P(E)) 3 R 7→ ER [|F(·)|2] under the condition ER

[∫ t

0
I (·s) ds

]
< +∞.

EP

[∫ t

0
I (·s) ds

]
< +∞, which is equivalently P ∈ S1.
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Level 3 Fisher information (for a mixture of probability measures)

Consider π ∈ P(P(E)), E = R2, and define

I(π) :=

∫
P(E)

I (ρ)π(dρ), I′(π) := sup
j≥1

I (πj) = lim
j→∞

I (πj)

where πj is given by (the easy part of) Hewitt and Savage theorem

πj :=

∫
P(E)

ρ⊗j π(dρ) ∈ Psym(E j).

Theorem (representation formula, Hauray-M.)

∀π ∈ P(P(E )) I(π) = I ′(π).

A similar formula is known for the entropy (Robinson-Ruelle, 1967)

Application: the Fisher information is Γ-lsc in the sense

Psym(EN) 3 FN ⇀ π ∈ P(P(E)) implies I(π) ≤ lim inf I (FN).

One line proof: for any j ≥ 1 by lsc of Ij

Ij(πj) ≤ lim inf Ij(F
N
j ) ≤ lim inf IN(FN).
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proof of the level 3 Fisher information representation.

(ii) I (f ⊗j) = I (f ) (good normalization)
(iii) I is lsc, convex, proper and ≥ 0 on Psym(E j), ∀ j ≥ 1
(iv) I ′ is linear on disjoint convex combination in the sense that

I ′(π) = α1I ′(γ1) + ...αMI ′(γM)

if
π = α1 γ

1 + ...αMγ
M , αi ≥ 0,

∑
i

αi = 1, suppγ i ∩ suppγj = ∅

On the one hand, we have by (ii) and Jensen inequality

I(π) =

∫
P(E)

I (ρ⊗j)π(dρ) ≥ I
(∫

P(E)

ρ⊗j π(dρ)
)

= I (πj)

On the other hand, we write thanks to (iv) and the Jensen inequality

I ′(π) = α1 I ′(γ1) + ...+ αM I ′(γM), γ i := α−1
i π|ωi

≥ α1 I (f1) + ...+ αM I (fM), fi := γ i1

= I(πM), πM := αM
1 δf M1 + ...+ αM

M δf MM .

As πM → π we get the inverse inequality I(π) ≤ lim inf I(πM) ≤ I ′(π).
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about condition (iii)

For Gj , Fj ∈ Psym(E j), we write the identity

θI (Fj) + (1− θ)I (Gj)− I (θFj + (1− θ)Gj) = θ (1− θ) Jj

with for Gj = g⊗j , Fj = f ⊗j , f 6= g so that W1(f , g) =: 2δ > 0,

Jj :=

∫
E j

GjFj

θFj + (1− θ)Gj
|∇1 log

Gj

Fj
|2

≤ C

∫
W1(µN

X ,f )≥δ

GjFj

θFj + (1− θ)Gj
+ ...

≤ C

∫
W1(µN

X ,f )≥δ

Fj

1− θ
+ ...

≤ C

δ(1− θ)

∫
E j

W1(µN
X , f )f ⊗j(dX ) + ...→ 0 as j →∞,

by the functional law of large number µN
XN → f if XN ∼ f ⊗N .

We deduce (in the limit j →∞)

θI ′(δf ) + (1− θ)I ′(δg )− I ′(θδf + (1− θ)δg ) = 0
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Consequence for the vortex problem

We know (from tightness) that

L(µN
X ) ⇀ Q weakly in P(P(E ))

with here E := C ([0,∞);R2). We define Qt := projection on the section
P(P({t} × R2)) so that

GN
t = L(XN

t ),L(µN
XN

t
) ⇀ Qt weakly in P(P(R2))

As a consequence, by Fubini, Γ-lsc property of the Fisher information and Fatou∫
P(E)

∫ T

0

I (qt)dt Q(dq) =

∫ T

0

∫
P(E))

I (qt)Q(dq) dt

=

∫ T

0

I(Qt) dt

≤
∫ T

0

lim inf
N

I (GN
t )dt ≤ lim inf

N

∫ T

0

I (GN
t )dt.

This last quantity is finite, so that
∫ T

0
I (qt)dt <∞ Q-a.s. and suppQ ⊂ S1.
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Uniqueness of the solution to the NS vortex equation

We claim that

∀ q ∈ S, q = L(X ), wt := L(Xt) = w̄t := unique solution of NS vortex.

• First, for q ∈ S, it is clear that wt := L(Xt) satisfies

w ∈ C ([0,T );P(R2)), I (w) ∈ L1(0,T )

and w is a weak solution to (take ν = 1)

∂tw = ∆w + (K ∗ w) · ∇w .

• Second, the uniqueness is known (Ben-Artzi 1994, Brézis 1994, improved by
Gallagher-Gallay 2005) in the class of function

t1/4 ‖w(t, .)‖L4/3 → 0 as t → 0.

• We have to prove by a “regularity argument” that w satisfies the Ben-Artzi &
Brézis criterium
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Our weak solution are in the Ben-Artzi & Brézis class

• A priori bound and renormalization. We recall the GN inequalities

∀ g ∈ P(R2), ∀ p ∈ [1,∞) ‖g‖Lp ≤ Cp I (g)1−1/p

∀ g ∈ P(R2), ∀ q ∈ [1, 2) ‖∇g‖Lq ≤ Cq I (g)3/2−1/q

which in turn imply

g ∈ L6
t (L6/5

x ) and ∇g ∈ L
6/5
t (L3/2

x ) take p = 6/5, q = 3/2.

Together with the Hardy-Littlewood-Sobolev inequality we get

∇x(K ∗ g) ∈ L
6/5
t (L6

x),

and then the commutator appearing in the DiPerna-Lions renomalizing theory
converges to 0 in L1

loc . As a consequence, we may renormalize the equation

∂tβ(w) + β′′(w)|∇w |2 = ∆β(w) + (K ∗ w)∇β(w).
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Our weak solution are in the Ben-Artzi & Brézis class

• Renormalization and better bounds. Thanks, to the renormalization equation

∂tβ(w) + β′′(w)|∇w |2 = ∆β(w) + (K ∗ w)∇β(w)

we get (smoothing effect)

w ∈ C ((0,T ); L1 ∩ L∞) and w ∈ L∞t (0,T ; L log L ∩ L1
k).

• Thanks to Nash inequality we have

d

dt
‖f ‖2

L2 = −‖∇f ‖2
L2 ≤ C ‖f ‖4

L2

and
t1/2 ‖f ‖L2 ≤ C (just like for the heat equation)

• Together with the entropy uniform bound we get

t1/4 ‖w(t, .)‖L4/3 → 0 as t → 0.
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Uniqueness (in law) of linear SDE under the a priori condition.

If q ∈ S we consider the associated linear SDE

Xt = X0 +

∫ t

0

us(Xs) ds + νBt , us = K ∗ w̄s ,

Lemma
Strong uniqueness for the previous linear SDE holds (and thus weak uniqueness by
Yamada-Watanabe theorem). In other words, S = {q̄}.

Sketch of the proof

Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.

Two solutions X and Y satisfies

∀δ > 0, E
[

ln
(

1 +
1

δ
sup
s≤t
|Xs − Ys |

)]
≤ E

[∫ t

0

[M∇us(Xs) + M∇us(Ys)] ds

]
where M stands for maximal function.

Standard estimates + bounds on Fischer information helps to bound the r.h.s.

A variant of Chebichev ineq. allows to conclude.
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Chaos entropic

From

H(FN
t ) +

∫ t

0

I (FN
s ) ds = H(FN

0 )

and

H(wt) +

∫ t

0

I (ws) ds = H(w0),

as well as the Γ-lsc of H and I we get if

H(FN
0 )→ H(w0),

the conclusion

H(wt) +

∫ t

0

I (ws) ds ≤ lim inf
N→∞

{
H(FN

t ) +

∫ t

0

I (FN
s ) ds

}
≤ lim sup

N→∞

{
H(FN

t ) +

∫ t

0

I (FN
s ) ds

}
= lim sup

N→∞
H(FN

0 ) = H(w0)

and then
H(FN

0 )→ H(w0) ∀ t > 0
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A word of conclusion:

We use arguments coming from several areas of mathematics:

• “true” probability (non linear martingale problem)

• functional analysis in finite, increasing and infinite dimension (level-3
Fisher information)

• PDE (renormalization argument for a singular parabolic equation and
sharp uniqueness result)

Open problems: Is-it possible to adapt the method to other singular
models?

• Kac-Landau model (for soft potential)?

• Keller-Segel model?

B propagation of chaos for subcritical Keller-Segel model by D. Godinho,
C. Quininao
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