Spectral analysis of semigroups in Banach spaces and applications to PDEs

S. Mischler

(Paris-Dauphine & IUF)

in collaboration with K. Carrapatoso, M. Gualdani, C. Mouhot and J. Scher

Boltzmann, Vlasov and related equations: last results and open problems Cartagena, Colombia, June 23-27, 2014

Outline of the talk

Introduction

Spectral theory in an abstract setting

- Spectral mapping, Weyl, Krein-Rutmann, small perturbation and extension theorems
- sketch of the proof for the enlargement theorem

3 Increasing the rate of convergence for the Boltzmann equation

- Increasing the rate of convergence
- sketch of the proof of the stability result in a large space

Parabolic-parabolic Keller-Segel equation in chemotaxis

- An asymptotic self-similar result
- By a non standard perturbation argument

Outline of the talk

Introduction

Spectral theory in an abstract setting

- Spectral mapping, Weyl, Krein-Rutmann, small perturbation and extension theorems
- sketch of the proof for the enlargement theorem

3) Increasing the rate of convergence for the Boltzmann equation

- Increasing the rate of convergence
- sketch of the proof of the stability result in a large space

Parabolic-parabolic Keller-Segel equation in chemotaxis

- An asymptotic self-similar result
- By a non standard perturbation argument

Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banach space, without regularity (\neq eventually norm continuous), without symmetry (\neq Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

- Spectral map Theorem $\,\,\hookrightarrow\,\,\Sigma(e^{t\Lambda})\simeq e^{t\Sigma(\Lambda)}$ and $\omega(\Lambda)=s(\Lambda)$
- Weyl's Theorem $\,\hookrightarrow\,$ (quantified) compact perturbation $\Sigma_{ess}(\mathcal{A} + \mathcal{B}) \simeq \Sigma_{ess}(\mathcal{B})$
- Small perturbation $\ \hookrightarrow \ \Sigma(\Lambda_{\varepsilon}) \simeq \Sigma(\Lambda)$ if $\Lambda_{\varepsilon} \to \Lambda$
- Krein-Rutmann Theorem $\hookrightarrow s(\Lambda) = \sup \Re e\Sigma(\Lambda) \in \Sigma_d(\Lambda)$ when $S_\Lambda \ge 0$
- functional space extension (enlargement and shrinkage) $\hookrightarrow \Sigma(L) \simeq \Sigma(\mathcal{L})$ when $L = \mathcal{L}_{|E}$ \hookrightarrow tide of spectrum phenomenon

Structure: operator which splits as

$\Lambda = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad \mathcal{B}$ dissipative

Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators and $W^{\sigma,p}(m)$ weighted Sobolev spaces

Applications / Motivations :

• (1) Convergence rate in large Banach space for linear dissipative and hypodissipative PDEs (ex: Fokker-Planck, growth-fragmentation)

• (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural φ space

• (3) Existence, uniqueness and stability of equilibrium in "small perturbation regime" in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck, parabolic-parabolic Keller-Segel, neural network)

Is it new?

- Simple and quantified versions, unified theory (sectorial, KR, general) which holds for the "principal" part of the spectrum
- first enlargement result in an abstract framework by Mouhot (CMP 2006)
- Unusual splitting

• The applications to these linear(ized) "kinetic" equations and to these nonlinear problems are clearly new

Old problems

- Fredholm, Hilbert, Weyl, Stone (Funct Analysis & sG Hilbert framework) ≤ 1932
- Hyle, Yosida, Phillips, Lumer, Dyson (sG Banach framework & dissipative operators) 1940-1960 and also Dunford, Schwartz
- Kato, Pazy, Voigt (analytic op., positive op.) 1960-1975
- Engel, Nagel, Gearhart, Metz, Diekmann, Prüss, Arendt, Greiner, Blake, Mokhtar-Kharoubi, Yao, ... 1975-

Spectral analysis of the linearized (in)homogeneous Boltzmann equation and convergence to the equilibrium

• Hilbert, Carleman, Grad, Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, Guo, Mouhot, Strain, ...

Spectral tide/spectral analysis in large space

• Bobylev (for linearized Boltzmann with Maxwell molecules, 1975), Gallay-Wayne (for harmonic Fokker-Planck, 2002)

S.Mischler (CEREMADE & IUF)

Semigroups spectral analysis

• Semigroup school (\geq 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart, Greiner, Metz, Mokhtar-Kharoubi, Nagel, Prüss, Webb, Yao, ...

• Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq, Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjöstrand, Wayne, ...

• Probability school (as in Toulouse): Bakry, Barthe, Bobkov, Cattiaux, Douc, Gozlan, Guillin, Fort, Ledoux, Roberto, Röckner, Wang, ...

• Kinetic school (~ Boltzmann):

▷ Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
 Schmeiser, ... (Poincaré inequality & hypocoercivity)

▷ Guo school related to Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, ... (existence in "small spaces" and "large spaces")

A list of related papers

- Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, CMP 2006
- M., Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, CMP 2009
- Gualdani, M., Mouhot, Factorization for non-symmetric operators and exponential H-Theorem, arXiv 2010
- Arnold, Gamba, Gualdani, M., Mouhot, Sparber, *The Wigner-Fokker-Planck equation: Stationary states and large time behavior*, M3AS 2012
- Cañizo, Caceres, M., Rate of convergence to the remarkable state for fragmentation and growth-fragmentation equations, JMPA 2011 & CAIM 2011
- Egaña, M., Uniqueness and long time asymptotic for the Keller-Segel equation Part I. The parabolic-elliptic case, arXiv 2013
- M., Mouhot, *Exponential stability of slowing decaying solutions to the kinetic Fokker-Planck equation*, in progress
- M., Scher, Spectral analysis of semigroups and growth-fragmentation eqs, arXiv 2013
- Carrapatoso, Exponential convergence ... homogeneous Landau equation, arXiv 2013
- Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, arXiv 2013
- Carrapatoso, M., Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, put today on arXiv

Outline of the talk

Introduction

Spectral theory in an abstract setting

- Spectral mapping, Weyl, Krein-Rutmann, small perturbation and extension theorems
- sketch of the proof for the enlargement theorem

3) Increasing the rate of convergence for the Boltzmann equation

- Increasing the rate of convergence
- sketch of the proof of the stability result in a large space

Parabolic-parabolic Keller-Segel equation in chemotaxis

- An asymptotic self-similar result
- By a non standard perturbation argument

For a given operator Λ in a Banach space X, we want to prove

$$\begin{array}{ll} (1) \quad \Sigma(\Lambda) \cap \Delta_a = \{\xi_1\} \ (\text{or} = \emptyset), \quad \xi_1 = 0 \\ \\ \text{with } \Sigma(\Lambda) = \text{spectrum}, \ \Delta_\alpha := \{z \in \mathbb{C}, \ \Re e \, z > \alpha\} \end{array}$$

(2) $\Pi_{\Lambda,\xi_1} = \text{finite rank projection}, \quad \text{i.e. } \xi_1 \in \Sigma_d(\Lambda)$

$$(3) \quad \|S_{\Lambda}(I-\Pi_{\Lambda,\xi_{1}})\|_{X\to X} \leq C_{a} e^{at}, \quad a < \Re e\xi_{1}$$

Definition:

We say that L - a is hypodissipative iff $||e^{tL}||_{X \to X} \leq C e^{at}$ $s(\Lambda) := \sup \Re e \Sigma(\Lambda)$ $\omega(\Lambda) := \inf\{a \in \mathbb{R}, \text{ s.t. } L - a \text{ is hypodissipative }\}$

Spectral mapping - characterization

Th 1. (M., Scher)
(0)
$$\Lambda = \mathcal{A} + \mathcal{B}$$
, where \mathcal{A} is $\mathcal{B}^{\zeta'}$ -bounded with $0 \leq \zeta' < 1$,
(1) $\|S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X \to X} \leq C_{\ell} e^{at}$, $\forall a > a^*$, $\forall \ell \geq 0$,
(2) $\|S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*n)}\|_{X \to D(\Lambda^{\zeta})} \leq C_n e^{at}$, $\forall a > a^*$, with $\zeta > \zeta'$,
(3) $\Sigma(\Lambda) \cap (\Delta_{a^{**}} \setminus \Delta_{a^*}) = \emptyset$, $a^* < a^{**}$,
is equivalent to

(4) there exists a projector Π which commutes with Λ such that $\Lambda_1 := \Lambda_{|X_1} \in \mathcal{B}(X_1), X_1 := R\Pi, \Sigma(\Lambda_1) \subset \overline{\Delta}_{a^{**}}$

$$\|S_{\Lambda}(t)(I-\Pi)\|_{X\to X} \leq C_a e^{at}, \quad \forall a > a^*$$

In particular

$$\Sigma(e^{t\Lambda})\cap \Delta_{e^{at}}=e^{t\Sigma(\Lambda)\cap\Delta_a}\quad \forall \ t\geq 0, \ a>a^*$$

and

$$\max(s(\Lambda), a^*) = \max(\omega(\Lambda), a^*)$$

Weyl's theorem - characterization

Th 2. (M., Scher)
(0)
$$\Lambda = \mathcal{A} + \mathcal{B}$$
, where \mathcal{A} is $\mathcal{B}^{\zeta'}$ -bounded with $0 \leq \zeta' < 1$,
(1) $\|S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X \to X} \leq C_{\ell} e^{at}$, $\forall a > a^*$, $\forall \ell \geq 0$,
(2) $\|S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*n)}\|_{X \to X_{\zeta}} \leq C_{n} e^{at}$, $\forall a > a^*$, with $\zeta > \zeta'$,
(3') $\int_{0}^{\infty} \|(\mathcal{A}S_{\mathcal{B}})^{(*n+1)}\|_{X \to Y} e^{-at} dt < \infty$, $\forall a > a^*$, with $Y \subset \subset X$,
is equivalent to

(4') there exist $\xi_1, ..., \xi_J \in \overline{\Delta}_a$, there exist $\Pi_1, ..., \Pi_J$ some finite rank projectors, there exists $T_j \in \mathcal{B}(R\Pi_j)$ such that $\Lambda \Pi_j = \Pi_j \Lambda = T_j \Pi_j$, $\Sigma(T_j) = \{\xi_j\}$, in particular

$$\Sigma(\Lambda) \cap \bar{\Delta}_a = \{\xi_1, ..., \xi_J\} \subset \Sigma_d(\Sigma)$$

and there exists a constant C_a such that

$$\|S_{\Lambda}(t) - \sum_{j=1}^{J} e^{tT_j} \Pi_j\|_{X \to X} \leq C_a e^{at}, \quad \forall a > a^*$$

Small perturbation

Th 3. (M. & Mouhot; Tristani) Assume (0) $\Lambda_{\varepsilon} = \mathcal{A}_{\varepsilon} + \mathcal{B}_{\varepsilon}$ in X_i , $X_{-1} \subset \subset X_0 = X \subset \subset X_1$, $\mathcal{A}_{\varepsilon} \prec \mathcal{B}_{\varepsilon}$, (1) $\|S_{\mathcal{B}_{\varepsilon}} * (\mathcal{A}_{\varepsilon}S_{\mathcal{B}_{\varepsilon}})^{(*\ell)}\|_{X_i \to X_i} \leq C_{\ell} e^{at}$, $\forall a > a^*$, $\forall \ell \ge 0$, $i = 0, \pm 1$, (2) $\|S_{\mathcal{B}_{\varepsilon}} * (\mathcal{A}_{\varepsilon}S_{\mathcal{B}_{\varepsilon}})^{(*n)}\|_{X_i \to X_{i+1}} \leq C_n e^{at}$, $\forall a > a^*$, i = 0, -1, (3) $X_{i+1} \subset D(\mathcal{B}_{\varepsilon|X_i})$, $D(\mathcal{A}_{\varepsilon|X_i})$ for i = -1, 0 and $\|\mathcal{A}_{\varepsilon} - \mathcal{A}_0\|_{X_i \to X_{i-1}} + \|\mathcal{B}_{\varepsilon} - \mathcal{B}_0\|_{X_i \to X_{i-1}} \leq \eta_1(\varepsilon) \to 0$, i = 0, 1,

(4) the limit operator satisfies (in both spaces X_0 and X_1) $\Sigma(\Lambda_0) \cap \Delta_2 = \{\xi_1, ..., \xi_k\} \subset \Sigma_d(\Lambda_0).$

Then

$$\begin{split} \Sigma(\Lambda_{\varepsilon}) \cap \Delta_{a} &= \{\xi_{1,1}^{\varepsilon}, ..., \xi_{1,d_{1}^{\varepsilon}}^{\varepsilon}, ..., \xi_{k,1}^{\varepsilon}, ..., \xi_{k,d_{k}^{\varepsilon}}^{\varepsilon}\} \subset \Sigma_{d}(\Lambda_{\varepsilon}), \\ |\xi_{j} - \xi_{j,j'}^{\varepsilon}| &\leq \eta(\varepsilon) \to 0 \quad \forall \, 1 \leq j \leq k, \ \forall \, 1 \leq j' \leq d_{j}; \\ \dim R(\Pi_{\Lambda_{\varepsilon}, \xi_{j,1}^{\varepsilon}} + ... + \Pi_{\Lambda_{\varepsilon}, \xi_{j,d_{j}}^{\varepsilon}}) = \dim R(\Pi_{\Lambda_{0}, \xi_{j}}); \end{split}$$

Th 4. (M. & Scher) Consider a semigroup generator Λ on a "Banach lattice of functions" X,

- (1) A such as in Weyl's Theorem for some $a^* \in \mathbb{R}$;
- (2) $\exists b > a^*$ and $\psi \in D(\Lambda^*) \cap X'_+ \setminus \{0\}$ such that $\Lambda^* \psi \ge b \psi$;
- (3) S_{Λ} is positive (and Λ satisfies Kato's inequalities);
- (4) $-\Lambda$ satisfies a strong maximum principle.

Defining $\lambda := s(\Lambda)$, there holds

$$a^* < \lambda = \omega(\Lambda)$$
 and $\lambda \in \Sigma_d(\Lambda),$

and there exists $0 < f_\infty \in D(\Lambda)$ and $0 < \phi \in D(\Lambda^*)$ such that

$$\Lambda f_{\infty} = \lambda f_{\infty}, \quad \Lambda^* \phi = \lambda \phi, \quad R\Pi_{\Lambda,\lambda} = \operatorname{Vect}(f_{\infty}),$$

and then

$$\Pi_{\Lambda,\lambda}f = \langle f, \phi \rangle f_{\infty} \quad \forall f \in X.$$

Moreover, there exist $lpha \in (a^*, \lambda)$ and C > 0 such that for any $f_0 \in X$

$$\|S_{\Lambda}(t)f_0 - e^{\lambda t} \Pi_{\Lambda,\lambda}f_0\|_X \leq C e^{\alpha t} \|f_0 - \Pi_{\Lambda,\lambda}f_0\|_X \qquad \forall t \geq 0.$$

Change (enlargement and shrinkage) of the functional space of the spectral analysis and semigroup decay

Th 5. (Mouhot 06, Gualdani, M. & Mouhot) Assume

$$\mathcal{L}=\mathcal{A}+\mathcal{B},\ L=A+B,\ A=\mathcal{A}_{|E},\ B=\mathcal{B}_{|E},\ E\subset\mathcal{E}$$

(i) (B - a) is hypodissipative on E, (B - a) is hypodissipative on E;
(ii) A ∈ B(E), A ∈ B(E);
(iii) there is n ≥ 1 and C_a > 0 such that

$$\left\| (\mathcal{A}S_{\mathcal{B}})^{(*n)}(t) \right\|_{\mathcal{E}\to \mathcal{E}} \leq C_a e^{at}.$$

Then the following for $(X, \Lambda) = (E, L)$, $(\mathcal{E}, \mathcal{L})$ are equivalent: $\exists \xi_j \in \Delta_a$ and finite rank projector $\prod_{j,\Lambda} \in \mathcal{B}(X)$, $1 \leq j \leq k$, which commute with Λ and satisfy $\Sigma(\Lambda_{|\Pi_{j,\Lambda}}) = \{\xi_j\}$, so that

$$\forall t \geq 0, \quad \left\| S_{\Lambda}(t) - \sum_{j=1}^{k} S(t) \Pi_{j,\Lambda} \right\|_{X \to X} \leq C_{\Lambda,a} e^{at}$$

• In Theorems 1, 2, 3, 4, 5 one can take n = 1 in the simplest situations (most of space homogeneous equations in dimension $d \le 3$), but one need to take $n \ge 2$ for the space inhomogeneous Boltzmann equation

• Open problem: Beyond the "dissipative case"?

 ▷ example of the Fokker-Planck equation for "soft confinement potential" and relation with "weak Poincaré inequality" by Röckner-Wang
 ▷ Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R, Bátkal-E-P-S, Batty-D, ...

 \rhd applications to the Boltzmann and Landau equations associated with "soft potential"

Proof of the enlargement theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

$$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + (I - \Pi) S_{\mathcal{L}} (I - \Pi)$$

and write the (iterated) Duhamel formula or "stopped" Dyson-Phillips series (the Dyson-Phillips series corresponds to the choice $n = \infty$)

$$S_{\mathcal{L}} = \sum_{\ell=0}^{n-1} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)} + S_{\mathcal{L}} * (\mathcal{A}S_{\mathcal{B}})^{(*n)}$$

or $+ (\mathcal{A}S_{\mathcal{B}})^{(*n)} * S_{\mathcal{L}}.$

These two identities together

$$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + (I - \Pi) \{ \sum_{\ell=0}^{n-1} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)} \} (I - \Pi) \\ + \{ (I - \Pi) S_{\mathcal{L}} \} * (\mathcal{A}S_{\mathcal{B}})^{(*n)} (I - \Pi) \\ \text{or} + (I - \Pi) (\mathcal{A}S_{\mathcal{B}})^{(*n)} * \{ S_{\mathcal{L}} (I - \Pi) \}$$

Outline of the talk

Introduction

2 Spectral theory in an abstract setting

- Spectral mapping, Weyl, Krein-Rutmann, small perturbation and extension theorems
- sketch of the proof for the enlargement theorem

Increasing the rate of convergence for the Boltzmann equation

- Increasing the rate of convergence
- sketch of the proof of the stability result in a large space

Parabolic-parabolic Keller-Segel equation in chemotaxis

- An asymptotic self-similar result
- By a non standard perturbation argument

The Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f, f), \quad f(0) = f_0$$

• $f = f(t, x, v) \ge 0$ time-dependent probability density of particles (in L^1),

- position $x \in \Omega = \mathbb{T} \subset \mathbb{R}^d$ the torus, velocity $v \in \mathbb{R}^d$,
- $v \cdot \nabla_x$ free flow transport term,
- Q collision term, modelling elastic binary collisions

$$\{v\} + \{v_*\} \xrightarrow{B} \{v'\} + \{v'_*\} \quad \text{with} \quad \begin{cases} v' + v'_* = v + v_* \\ |v'|^2 + |v'_*|^2 = |v|^2 + |v_*|^2 \end{cases}$$

 $B = |v - v_*|$ hard spheres collision kernel (dictates outcome velocities v' et v'_*)

One possible parametrisation is

$$\left\{ \begin{array}{l} \mathbf{v}' = \frac{\mathbf{v} + \mathbf{v}_*}{2} + \sigma \frac{|\mathbf{v}_* - \mathbf{v}|}{2} \\ \mathbf{v}'_* = \frac{\mathbf{v} + \mathbf{v}_*}{2} - \sigma \frac{|\mathbf{v}_* - \mathbf{v}|}{2} \end{array} \right\} \quad \sigma \in S^{d-1}$$

The Boltzmann kernel

$$Q(f,g) = \int_{\mathbb{R}^d \times S^{d-1}} B\left[f' g_* - f g_*\right] d\sigma \, dv_*$$

- Collision invariants are mass, momentum and energy:

$$\int_{\mathbb{R}^d} Q(f,f) \left(\begin{array}{c} 1\\ v\\ |v|^2 \end{array}\right) \, dv = 0$$

- the "entropy dissipation" has a sign

$$D(f) := -\int_{\mathbb{R}^d} Q(f,f) \log f \, dv \ge 0$$

and fulfills

$$(f \in \mathcal{H}_v \text{ and } D(f) = 0) \quad \Leftrightarrow \quad f = M$$

with $M = (2\pi)^{-d/2} \exp(-|v|^2/2)$ is the normalized Maxwellian and

$$\mathcal{H}_{v} := \left\{ f \in L^{1}_{2}(\mathbb{R}^{d}) \left/ \int_{\mathbb{R}^{d}} f \left(\begin{array}{c} 1 \\ v \\ |v|^{2}/2 \end{array} \right) dv = \left(\begin{array}{c} 1 \\ 0 \\ d \end{array} \right), \ H(f) := \int_{\mathbb{R}^{d}} f \log f \, dv < \infty \right\}$$

where we define the weighted Lebesgue spaces by the norms

$$\|f\|_{L^{p}(m)} := \|f m\|_{L^{p}}, \quad L^{p}_{k} = L^{p}(\langle v \rangle^{k}), \quad \langle v \rangle^{2} = 1 + |v|^{2}$$

Main properties of the equation

Conservation of mass, momentum and energy

$$\frac{d}{dt}\int_{\mathbb{T}}\int_{\mathbb{R}^d} f\left(\begin{array}{c}1\\v\\|v|^2\end{array}\right) \, dv = 0$$

Boltzmann's H-Theorem

$$\frac{d}{dt}\int_{\mathbb{T}}\int_{\mathbb{R}^d}f\log f\,dxdx=-\int_{\mathbb{T}}D(f)\,dx\leq 0$$

As a consequence, one expects that

$$f_0 \in \mathcal{H}_{v,x}$$
 implies $f(t) \to M$ as $t \to \infty$.

Th. DiPerna-Lions, Ann. Math. 1989, Existence & H-Theorem

For any $f_0 \in \mathcal{H}_{\nu,x}$ there exists a global renormalized solution $f \in C([0,\infty); L^1(\mathbb{T} \times \mathbb{R}^d))$ and

$$f(t)
ightarrow M_e$$
 as $t
ightarrow \infty$

in a weak sense and with possible loss of energy $\langle M_e, |v|^2/2 \rangle = e \leq d$.

 \triangleright We have $M_e = M$ under the (unverified) tightness of the energy distribution.

Conditionally (up to time uniform strong estimate) exponential H-Theorem

Th. Desvillettes, Villani, Invent. Math. 2005

Assuming that for some $s \ge s_0$, $k \ge k_0$

$$(*) \qquad \sup_{t\geq 0} \left(\|f_t\|_{H^s} + \|f_t\|_{L^1(\langle v\rangle^k)} \right) \leq C_{s,k} < \infty.$$

there exist $C_{s,k}, \tau_{s,k} < \infty$ such that

$$orall t \geq 0$$
 $\int_{\mathbb{T} imes \mathbb{R}^d} f_t \log rac{f_t}{M} \, dv dx \leq C_{s,k} \, (1+t)^{- au_{s,k}}$

Th 6. Gualdani-M.-Mouhot, arXiv 2011

 $\exists s_1, k_1$: if f_t satisfies (*) then for any $a > \lambda_2$ exists C_a

$$\forall t \geq 0 \qquad \int_{\mathbb{T} \times \mathbb{R}^d} f_t \log \frac{f_t}{M} \, dv dx \leq C_a \, e^{\frac{a}{2} t},$$

with $\lambda_2 < 0$ (2^{*nd*} eigenvalue of the linearized Boltzmann eq. in $L^2(M^{-1/2})$).

Global existence, uniqueness and exponential stability for weakly inhomogeneous initial

data for the elastic inhomogeneous Boltz eq for hard spheres interactions in the torus

Th 7. Gualdani-M.-Mouhot

For any $F_0 \in L^1_3(\mathbb{R}^d)$ there exists $\varepsilon_0 > 0$ such that if $f_0 \in L^1_3(L^\infty_x)$ satisfies $\|f_0 - F_0\|_{L^1_3(L^\infty_x)} \le \varepsilon_0$ then

• there exists a unique global mild solution f starting from f_0 ;

• $f(t) \rightarrow M$ when $t \rightarrow \infty$ (with exponential rate).

• Extend to a larger class of initial data similar results due to Ukai, Arkeryd-Esposito-Pulvirenti, Wennberg, Guo, Strain and collaborators

• It can be adapted to other situations

▷ homogeneous Boltzmann eq for hard spheres (Mouhot 2006)

- ▷ homogeneous weakly inelastic Boltzmann eq for HS (M-Mouhot 2009)
- > homogeneous Landau eq for hard potential (Carrapatoso 2013)
- > inhomogeneous weakly inelastic Boltzmann eq for HS (Tristani 2013)
- ▷ parabolic-elliptic Keller-Segel eq (Egaña-M 2013)
- ▷ homogeneous Boltz eq for hard potential without cut-off (Tristani 2014)

• Open problems: inhomogeneous Boltzmann and Landau equation for soft potential, Navier-Stokes limit

Proof of the stability result in a large space when F = M (1/5)

We write f = M + h. The function *h* satisfies

$$\partial_t h = \mathcal{L}h + Q(h,h)$$

with

$$\mathcal{L}h := -v \cdot \nabla_x + Q(h, M) + Q(M, h)$$

• $L := \mathcal{L}_{|E_v}$ is self-adjoint and dissipative (Hilbert, Carleman, Grad, Ukai, Baranger-Mouhot) in the small space homogeneous functional space

$$E_{\mathbf{v}} := \left\{ h; \ h \in L^2_{\mathbf{v}}(M^{-1/2}); \ \int_{\mathbb{R}^d} h \left(\begin{array}{c} 1 \\ \mathbf{v} \\ |\mathbf{v}|^2 \end{array} \right) \ d\mathbf{v} = 0 \right\}$$

because

$$\begin{aligned} -\langle Lh,h\rangle &:= \quad \frac{d^2}{\varepsilon^2} D(M+\varepsilon h)_{|\varepsilon=0} \\ &= \quad \int_{\mathbb{R}^d \times \mathbb{R}^d \times S^{d-1}} (g'+g'_*-g-g_*)^2 B M M_*, \quad g := h/M \\ &\geq \quad \lambda \|g M^{1/2}\|_{L^2}^2 = \lambda \|h\|_E^2 \end{aligned}$$

Proof of the stability result in a large space when F = M (2/5)

• $L := \mathcal{L}_{|E}$ is hypo-dissipative (Ukai, Guo, Mouhot-Strain, ...) in the small space inhomogeneous functional space

$$E := \left\{ h; h \in H^1_{xv}(M^{-1/2}); \int_{\mathbb{T} \times \mathbb{R}^d} h \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dv dx = 0 \right\}$$

because one can choose $\varepsilon > 0$ small enough such for the Hilbert norm

$$\|\|h\|\|^2 := \|h\|^2 + \|\nabla_x h\|^2 + \varepsilon(\nabla_x h, \nabla h) + \varepsilon^{3/2} \|\nabla_v h\|^2$$

where $\|\cdot\| := \|\cdot\|_{L^2(M^{-1/2})}$, there holds

$$-((Lh, h)) \ge \lambda_2 |||h|||^2$$

Proof of the stability result in a large space when F = M (3/5)

• In the large space inhomogeneous functional space $\mathcal{E}_k := L_k^1(L^\infty)$ we introduce the splitting

$$\mathcal{L}h = Q(h, M) + Q(M, h) - v \cdot \nabla_{x}h$$

= $Q^{+}(h, M) + Q^{+}(M, h) - L(h)M - L(M)h - v \cdot \nabla_{x}h$
= $\underbrace{\mathcal{Q}_{\delta}^{+*}[h]}_{=:\mathcal{A}_{\delta}h} + \underbrace{\mathcal{Q}_{\delta}^{+*,c}[h] - L(M)h - v \cdot \nabla_{x}h}_{=:\mathcal{B}_{\delta}^{2}h + \mathcal{B}^{1}h = \mathcal{B}h}$

 $\begin{array}{l} \rhd \ \mathcal{A}_{\delta}: \mathcal{E}_{k} \to H^{s}_{comp}(L^{\infty}) \ \forall \ s \geq 0, \\ \rhd \ \mathcal{B}^{2}_{\delta}: \mathcal{E}_{k+1} \to \mathcal{E}_{k} \ \text{small with bound} \ \frac{4}{k+2} + \mathcal{O}(\delta) \\ \rhd \ \mathcal{B}_{\delta} - a \ \text{is "strongly" dissipative in } \mathcal{E}_{k} \ \text{for any } a \geq a^{*} = a^{*}_{k,\delta} \ \text{with} \\ a^{*} < 0 \ \text{for any } k > 2, \ \delta > 0 \ \text{small and} \ a^{*} \to -\lambda_{0} \ \text{when } k \to \infty, \ \delta \to 0 \end{array}$

$$rac{d}{dt} \| \mathcal{S}_{\mathcal{B}}(t) h \|_{\mathcal{E}_k} \leq \mathsf{a} \, \| \mathcal{S}_{\mathcal{B}}(t) h \|_{\mathcal{E}_{k+1}}$$

• As a consequence, the following dissipativity estimate hods

 $\forall \ell \geq 0, \ \forall a > a^* \quad (\mathcal{AS}_{\mathcal{B}})^{(*\ell)} : \mathcal{E}_k \to \mathcal{E}_k \text{ is } \mathcal{O}(e^{at})$

Proof of the stability result in a large space when F = M (4/5)

 \triangleright Iterated averaging lemma

$$(\mathcal{AS}_{\mathcal{B}})^{(*2)}: W^{s,1}_k o W^{s+1/2,1}_{comp} \quad \forall s \geq 0.$$

which in turn implies the

$$\exists n \geq 2, \ \forall a > a^* \quad (\mathcal{AS}_{\mathcal{B}})^{(*n)} : \mathcal{E}_k \to H^1(M^{-1/2}) \text{ is } \mathcal{O}(e^{at})$$

 \bullet Thanks to the "extension theorem" we obtain that $\mathcal{L}-a$ is hypodissipative in

$$\mathcal{E}_{k,0} := \Big\{ h \in \mathcal{E}_k; \ \langle h, (1, v, |v|^2) \rangle = 0 \Big\}.$$

and better, for the equivalent norm

$$|||f|||_k := \eta \, ||h||_{\mathcal{E}_k} + \int_0^\infty ||e^{s\mathcal{L}}h||_{\mathcal{E}_k} \, ds,$$

there holds

$$\frac{d}{dt}|||S_{\mathcal{L}}(t)|||_k \leq a|||S_{\mathcal{L}}(t)|||_{k+1}.$$

Proof of the stability result in a large space when F = M (5/5)

For the nonlinear term, the following estimate holds

 $\forall h \in \mathcal{E}_{k+1} \quad \|Q(h,h)\|_{\mathcal{E}_k} \leq C \|h\|_{\mathcal{E}_k} \|h\|_{\mathcal{E}_{k+1}}$

All together, the solution to the NL Boltzmann equation

 $\partial_t h = \mathcal{L}h + Q(h,h)$

satisfies (formally) the differential inequality

$$\frac{d}{dt} \|\|h\|\|_{k} \le a \|\|h\|\|_{k+1} + C \|\|h\|\|_{k} \|\|h\|\|_{k+1}$$

which provides invariant regions $\{|||h|||_k \le \delta |a|/C\}$, $0 < \delta \le 1$ and then exponential convergence to 0.

 \triangleright Analysis of the linearized equation is a bit long but it is straightforward for the nonlinear equation

Outline of the talk

Introduction

2 Spectral theory in an abstract setting

- Spectral mapping, Weyl, Krein-Rutmann, small perturbation and extension theorems
- sketch of the proof for the enlargement theorem

3 Increasing the rate of convergence for the Boltzmann equation

- Increasing the rate of convergence
- sketch of the proof of the stability result in a large space

Parabolic-parabolic Keller-Segel equation in chemotaxis

- An asymptotic self-similar result
- By a non standard perturbation argument

Parabolic-parabolic Keller-Segel (ppKS) system of equations

$$\begin{cases} \partial_t f = \Delta f - \nabla (f \nabla u) \\ \varepsilon \partial_t u = \Delta u + f - \alpha u \end{cases}$$

- $f = f(t, x) \ge 0$ time-dependent density of cells (in L^1),
- u = u(t, x) ≥ 0 time-dependent chemo-attractant concentration (in L²),
 x ∈ ℝ², t ≥ 0,
- $\varepsilon > 0$, $\alpha \ge 0$ parameters

The (first) equation being in divergence form the mass is (formally) conserved:

$$\int_{\mathbb{R}^2} f(t,x) dx = \int_{\mathbb{R}^2} f_0 dx =: M.$$

• The case $\varepsilon = 0$ corresponds to the parabolic-elliptic Keller-Segel equation for which $M = 8\pi$ is a threshold (Blanchet-Dolbeault-Perthame):

 $M \leq 8\pi \quad \Rightarrow \quad ext{solutions are global in time}$

 $M > 8\pi \quad \Rightarrow \quad \text{solutions blows up in finite time}$

S.Mischler (CEREMADE & IUF)

Semigroups spectral analysis

About global existence an uniqueness

• The case $\varepsilon > 0$ is more involved since

 $M \leq 8\pi$ or $\varepsilon >> M \implies$ solutions are global in time

• In the case $M < 8\pi$ global "free energy" solutions are known to exist (Calvez-Corrias) when at initial time $\mathcal{F}(f_0, u_0) < \infty$, with

$$\mathcal{F}(f, u) := \int f \log f + \int f \log \langle x \rangle - \int f u + rac{1}{2} \int |\nabla u|^2 + lpha \int u^2.$$

Also the existence of solutions "à la Kato" has been established recently by Mizoguchi, Corrias-Escobedo-Matos, Biler-Guerra-Karch. These solutions are global in time when ε large enough (\Rightarrow small nonlinearity).

Th 8. Carrapatoso-M.

For any (f_0, u_0) such that $\mathcal{F}(f_0, u_0) < \infty$ there exists a unique "free energy" solution on a maximal time interval $(0, T^*)$ with the alternative

$$T_*=+\infty \quad ext{or} \quad (T_*<\infty, \ \mathcal{F}(f(t),u(t))
ightarrow\infty ext{ as } t
ightarrow T^*).$$

Improve uniqueness result (in L^{∞} framework) by Carrillo-Lisini-Mainini

S.Mischler (CEREMADE & IUF)

Semigroups spectral analysis

Self-similar solutions

- We restrict ourself to the case $\alpha = 0$ and $M < 8\pi$.
- We introduce the rescaled functions g and v defined by

$$f(t,x) := \tau^{-2}g(\log \tau, \tau^{-1}x), \quad u(t,x) := v(\log \tau, \tau^{-1}x),$$

with $\tau := (1 + t)^{1/2}$. The rescaled ppKS system reads

$$\partial_t g = \Delta g + \nabla (\frac{1}{2} \times g - g \nabla v) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2,$$

 $\varepsilon \partial_t v = \Delta v + g + \frac{\varepsilon}{2} \times \nabla v \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2.$

A stationary solution (G, V) to the rescaled ppKS system is called a self-similar profile and the functions

$$F(t,x) = rac{1}{ au^2} G_arepsilon(rac{x}{ au}), \quad U(t,x) = V_arepsilon(rac{x}{ au})$$

is a self-similar solution for the non-rescaled ppKS system.

• It is known (Naito-Suzuki-Yoshida, Biler-Corrias-Dolbeault, Corrias-Escobedo-Matos) that for any $\varepsilon > 0$ and $M \in (0, 8\pi)$ there exists a unique self-similar profile such that the mass of G is equal to M. The functions G and V are radially symmetric and smooth.

Asymptotic behaviour = self-similarity (in the radially symmetric case)

• We want to prove

$$(f, u) \underset{t \to \infty}{\sim} (F, U)$$
 or equivalently $(g, v) \underset{t \to \infty}{\rightarrow} (G, V)$

- Difficulty: we do not have uniform in time estimates (except the mass!)
- We assume g, v are radially symmetric and we define

$$|||(g,v)||| := ||g||_{H^1_k} + ||v||_{H^2}, \quad k > 7,$$

Th 9. Carrapatoso-M.

 $\forall M \in (0, 8\pi) \exists \varepsilon^* > 0, \exists \delta^* > 0$ such that $\forall \varepsilon \in (0, \varepsilon^*), \forall (g_0, v_0)$ satisfying

$$\|\|(g_0, v_0) - (G, V)\|\| \le \delta^*, \quad \int_{\mathbb{R}^2} g_0 \, dx = \int_{\mathbb{R}^2} G \, dx = M,$$

the solution (g, v) to the ppKS system satisfies

 $|||(g(t),v(t))-(G,V)||| \leq C_a e^{at} \quad \forall a \in (-1/3,\infty), \ \forall t \geq 0$

singular perturbation of the parabolic-elliptic linearized equation - (proof 1/5)

We want to take advantage of the fact that $(G_{\varepsilon}, V_{\varepsilon}) \rightarrow (G_0, V_0)$ as $\varepsilon \rightarrow 0$, where (G_0, V_0) is the self-similar profile to the parabolic-elliptic KS equation which is known to be linearly exponential stable.

More precisely, the linearized equation of the ppKS system on the variation f = g - G, u = v - V writes $\partial_t f = Af + Bu = \Delta f + \nabla(\frac{1}{2} \times f - f \nabla V_{\varepsilon}) \underbrace{-\nabla(G_{\varepsilon} \nabla u)}_{\varepsilon \nabla u}$ $\varepsilon \partial_t u = f + Cu + \varepsilon Du = f + \underbrace{\Delta u}_{\varepsilon} + \underbrace{\varepsilon}_{2} \times \nabla u$.

In the limit case $\varepsilon=0$ the second equation writes as the time independent equation

$$0 = f + \Delta u = f + Cu.$$

In the limit case $\varepsilon = 0$ the system then reduces in a single equation

$$\partial_t f = \Omega f := A_0 f + B_0 (-C)^{-1} f$$

That equation is known (Campos-Dolbeault, Egaña-M.) to be dissipative

$$\|S_{\Omega}(t)\|_{\mathcal{B}(L^{2}_{k,0})} \leq C e^{-t}, \quad L^{2}_{k,0} = \{h \in L^{2}_{k}, \langle h \rangle = 0\}$$

Matrix form and splitting - (proof 2/5)

We write the system in matrix form

$$\frac{d}{dt} \begin{pmatrix} f \\ u \end{pmatrix} = \mathcal{L}^{\varepsilon} \begin{pmatrix} f \\ u \end{pmatrix} = \begin{pmatrix} A & B \\ \varepsilon^{-1} & \varepsilon^{-1}C + D \end{pmatrix} \begin{pmatrix} f \\ u \end{pmatrix}$$

with

$$\begin{aligned} Af &:= \Delta f + \nabla (\frac{1}{2} \times f - f \nabla V_{\varepsilon}), \quad Bu := -\nabla (G_{\varepsilon} \nabla u) \\ Cu &:= \Delta u, \quad Du := \frac{1}{2} \times \nabla u, \end{aligned}$$

We split

$$\mathcal{L}^{arepsilon} = \mathcal{A} + \mathcal{B}^{arepsilon}$$

with

$$\mathcal{A}\begin{pmatrix} f\\ u \end{pmatrix} = \begin{pmatrix} N\chi_R[f]\\ 0 \end{pmatrix}, \quad \chi_R[f] = \chi_R f - \chi_1 \langle \chi_R f \rangle,$$

 χ_R being the truncation function $\chi_R(x) := \chi(x/R), \ \chi \in \mathcal{P}(\mathbb{R}^2) \times \mathcal{D}(\mathbb{R}^2).$

Splitting and Weyl's theorem - (proof 3/5)

We define

$$\begin{aligned} X &:= X_1 \times X_2, \quad X_1 := L_{rad}^2 \cap L_{k,0}^2, \quad X_2 := L_{rad}^2 \\ Y &:= Y_1 \times Y_2, \quad Y_1 := X_1 \cap H_k^1, \quad Y_2 := X_2 \cap H^1 \end{aligned}$$

- $\mathcal{A} \in \mathcal{B}(X, X \cap L^2_{k+1})$, $\mathcal{A} \in \mathcal{B}(Y)$
- $\mathcal{B}^{arepsilon} a$ is dissipative for the equivalent norm

$$\|(f, u)\|_{X_*}^2 := \|f\|_{L_k^2}^2 + \eta \|u - \kappa * f\|_{L^2}^2, \quad \kappa =$$
 Poisson kernel,

for any $a \in (-1/2, 0)$ by choosing η , ε small and R, N large. We then deduce

$$\|S_{\mathcal{B}^{\varepsilon}}(t)\|_{\mathcal{B}(X)} \leq C e^{\mathfrak{a} t}, \quad \|S_{\mathcal{B}^{\varepsilon}}(t)\|_{\mathcal{B}(Y)} \leq C e^{\mathfrak{a} t}, \quad \|S_{\mathcal{B}^{\varepsilon}}(t)\|_{\mathcal{B}(X,Y)} \leq C t^{-1} e^{\mathfrak{a} t}.$$

The Weyl's theorem implies **Proposition**

$$\Sigma(\mathcal{L}^{\varepsilon}) \cap \Delta_a \subset \Sigma_d(\mathcal{L}^{\varepsilon}) \cap B(0, r^*)$$

Schur's complement - (proof 4/5)

For $z \in \mathbb{C}$, we denote

$$\mathcal{L}^{\varepsilon}(z) = \mathcal{L}^{\varepsilon} - z = \left(egin{array}{c} a & b \\ c & d \end{array}
ight)$$

with

$$a = A(z) = A - z$$
, $b = B$, $c := \varepsilon^{-1}I$, $d := \varepsilon^{-1}C + D(z)$, $D(z) = D - z$.
If $d = d(z)$ is invertible as well as its Schur's complement

$$s_{arepsilon} = s_{arepsilon}(z) := \mathsf{a} - \mathsf{b} \mathsf{d}^{-1} \mathsf{c} = \mathsf{A}(z) - \mathsf{B}(\mathsf{C} + arepsilon \mathsf{D}(z))^{-1}$$

is invertible, the resolvent of $\mathcal{L}^{\varepsilon}$ is given by

$$\mathcal{R}_{\mathcal{L}^{\varepsilon}}(z) = \mathcal{L}^{\varepsilon}(z)^{-1} = \left(\begin{array}{cc} s_{\varepsilon}^{-1} & -s_{\varepsilon}^{-1}bd^{-1} \\ -d^{-1}cs_{\varepsilon}^{-1} & d^{-1} + d^{-1}cs_{\varepsilon}^{-1}bd^{-1} \end{array}\right) =: \left(\begin{array}{cc} \mathcal{R}_{11}^{\mathcal{L}^{\varepsilon}} & \mathcal{R}_{12}^{\mathcal{L}^{\varepsilon}} \\ \mathcal{R}_{21}^{\mathcal{L}^{\varepsilon}} & \mathcal{R}_{22}^{\mathcal{L}^{\varepsilon}} \end{array}\right)$$

Then at least formally, we see that

$$\mathcal{R}_{\mathcal{L}^{\varepsilon}}(z) \mathop{\longrightarrow}\limits_{\varepsilon \to 0} \left(egin{array}{c} \mathcal{R}_{\Omega}(z) & 0 \ -C^{-1}\mathcal{R}_{\Omega}(z) & 0 \end{array}
ight) =: U(z),$$

with $U \in \mathcal{H}(\Delta_{-1}; \mathcal{B}(X))$.

S.Mischler (CEREMADE & IUF)

٠

Schur's complement and localization of the spectrum- (proof 5/5)

We are not able to prove the above convergence but **Proposition**

$$\forall \rho > 0 \quad \mathcal{R}_{\mathcal{L}^{\varepsilon}}(z) \in \mathcal{H}(\Delta_{-1/3} \cap B(0, \rho); \mathcal{B}(X)) \quad \text{for ε small enough}$$

For the hardest term, we have

$$\mathcal{R}_{11}^{\mathcal{L}^{arepsilon}}(z) = s_{arepsilon}^{-1}$$

with

$$s_{\varepsilon} = \Omega(z) + r_{\varepsilon}, \quad \|r_{\varepsilon}\|_{Y_1 \to X_1} \to 0$$

We may apply the perturbation argument and we get

$$s_{\varepsilon}^{-1} \in \mathcal{H}(\Delta_{-1/3} \cap B(0, \rho); \mathcal{B}(X_1)).$$

• The two propositions and the spectral mapping theorem imply

$$\|\mathcal{S}_{\mathcal{L}^{\varepsilon}}(t)\|_{\mathcal{B}(X)} \leq C e^{at}, \quad \forall a \in (-1/3, 0).$$