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Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banach
space, without regularity ( 6= eventually norm continuous), without symmetry ( 6=
Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

• Spectral map Theorem ↪→ Σ(etΛ) ' etΣ(Λ) and ω(Λ) = s(Λ)

• Weyl’s Theorem ↪→ (quantified) compact perturbation Σess(A+B) ' Σess(B)

• Small perturbation ↪→ Σ(Λε) ' Σ(Λ) if Λε → Λ

• Krein-Rutmann Theorem ↪→ s(Λ) = sup<eΣ(Λ) ∈ Σd(Λ) when SΛ ≥ 0

• functional space extension (enlargement and shrinkage)
↪→ Σ(L) ' Σ(L) when L = L|E
↪→ tide of spectrum phenomenon

Structure: operator which splits as

Λ = A+ B, A ≺ B, B dissipative

Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators and
W σ,p(m) weighted Sobolev spaces
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Applications / Motivations :

• (1) Convergence rate in large Banach space for linear dissipative and
hypodissipative PDEs (ex: Fokker-Planck, growth-fragmentation)

• (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of
linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ϕ space

• (3) Existence, uniqueness and stability of equilibrium in “small perturbation
regime” in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck,
parabolic-parabolic Keller-Segel, neural network)

Is it new?

• Simple and quantified versions, unified theory (sectorial, KR, general) which
holds for the “principal” part of the spectrum

• first enlargement result in an abstract framework by Mouhot (CMP 2006)

• Unusual splitting
Λ = A0︸︷︷︸

compact

+ B0︸︷︷︸
dissipative

= Aε︸︷︷︸
smooth

+Ac
ε + B0︸ ︷︷ ︸

dissipative

• The applications to these linear(ized) “kinetic” equations and to these nonlinear
problems are clearly new
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Old problems

• Fredholm, Hilbert, Weyl, Stone (Funct Analysis & sG Hilbert framework)

≤ 1932

• Hyle, Yosida, Phillips, Lumer, Dyson (sG Banach framework & dissipative

operators) 1940-1960 and also Dunford, Schwartz

• Kato, Pazy, Voigt (analytic op., positive op.) 1960-1975

• Engel, Nagel, Gearhart, Metz, Diekmann, Prüss, Arendt, Greiner, Blake,
Mokhtar-Kharoubi, Yao, ... 1975-

Spectral analysis of the linearized (in)homogeneous Boltzmann equation
and convergence to the equilibrium

• Hilbert, Carleman, Grad, Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg,
Guo, Mouhot, Strain, ...

Spectral tide/spectral analysis in large space

• Bobylev (for linearized Boltzmann with Maxwell molecules, 1975),
Gallay-Wayne (for harmonic Fokker-Planck, 2002)
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Still active research field

• Semigroup school (≥ 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,
Greiner, Metz, Mokhtar-Kharoubi, Nagel, Prüss, Webb, Yao, ...

• Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,
Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjöstrand, Wayne, ...

• Probability school (as in Toulouse): Bakry, Barthe, Bobkov, Cattiaux,
Douc, Gozlan, Guillin, Fort, Ledoux, Roberto, Röckner, Wang, ...

• Kinetic school (∼ Boltzmann):

B Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

B Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
Schmeiser, ... (Poincaré inequality & hypocoercivity)

B Guo school related to Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, ...
(existence in “small spaces” and “large spaces”)
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Main issue

For a given operator Λ in a Banach space X , we want to prove

(1) Σ(Λ) ∩∆a = {ξ1} (or = ∅), ξ1 = 0

with Σ(Λ) = spectrum, ∆α := {z ∈ C, <e z > α}

(2) ΠΛ,ξ1 = finite rank projection, i.e. ξ1 ∈ Σd(Λ)

(3) ‖SΛ(I − ΠΛ,ξ1)‖X→X ≤ Ca e
at , a < <eξ1

Definition:
We say that L− a is hypodissipative iff ‖etL‖X→X ≤ C eat

s(Λ) := sup<eΣ(Λ)
ω(Λ) := inf{a ∈ R, s.t. L− a is hypodissipative }
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Spectral mapping - characterization

Th 1. (M., Scher)
(0) Λ = A+ B, where A is Bζ′-bounded with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→D(Λζ) ≤ Cn e
at , ∀ a > a∗, with ζ > ζ ′,

(3) Σ(Λ) ∩ (∆a∗∗\∆a∗) = ∅, a∗ < a∗∗,

is equivalent to

(4) there exists a projector Π which commutes with Λ such that
Λ1 := Λ|X1

∈ B(X1), X1 := RΠ, Σ(Λ1) ⊂ ∆̄a∗∗

‖SΛ(t) (I − Π)‖X→X ≤ Ca e
at , ∀ a > a∗

In particular

Σ(etΛ) ∩∆eat = etΣ(Λ)∩∆a ∀ t ≥ 0, a > a∗

and
max(s(Λ), a∗) = max(ω(Λ), a∗)
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Weyl’s theorem - characterization

Th 2. (M., Scher)
(0) Λ = A+ B, where A is Bζ′-bounded with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→Xζ ≤ Cn e
at , ∀ a > a∗, with ζ > ζ ′,

(3′)
∫∞

0 ‖(ASB)(∗n+1)‖X→Y e−at dt <∞, ∀ a > a∗, with Y ⊂⊂ X ,

is equivalent to

(4′) there exist ξ1, ..., ξJ ∈ ∆̄a, there exist Π1, ...,ΠJ some finite rank
projectors, there exists Tj ∈ B(RΠj) such that ΛΠj = ΠjΛ = TjΠj ,
Σ(Tj) = {ξj}, in particular

Σ(Λ) ∩ ∆̄a = {ξ1, ..., ξJ} ⊂ Σd(Σ)

and there exists a constant Ca such that

‖SΛ(t)−
J∑

j=1

etTj Πj‖X→X ≤ Ca e
at , ∀ a > a∗
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Small perturbation

Th 3. (M. & Mouhot; Tristani)
Assume
(0) Λε = Aε + Bε in Xi , X−1 ⊂⊂ X0 = X ⊂⊂ X1, Aε ≺ Bε,
(1) ‖SBε ∗ (AεSBε)(∗`)‖Xi→Xi

≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0, i = 0,±1,

(2) ‖SBε ∗ (AεSBε)(∗n)‖Xi→Xi+1
≤ Cn e

at , ∀ a > a∗, i = 0,−1,

(3) Xi+1 ⊂ D(Bε|Xi
),D(Aε|Xi

) for i = −1, 0 and

‖Aε −A0‖Xi→Xi−1
+ ‖Bε − B0‖Xi→Xi−1

≤ η1(ε)→ 0, i = 0, 1,

(4) the limit operator satisfies (in both spaces X0 and X1)

Σ(Λ0) ∩∆a = {ξ1, ..., ξk} ⊂ Σd(Λ0).

Then

Σ(Λε) ∩∆a = {ξε1,1, ..., ξε1,dε1 , ..., ξ
ε
k,1, ..., ξ

ε
k,dεk
} ⊂ Σd(Λε),

|ξj − ξεj ,j ′ | ≤ η(ε)→ 0 ∀ 1 ≤ j ≤ k , ∀ 1 ≤ j ′ ≤ dj ;

dimR(ΠΛε,ξεj,1
+ ...+ ΠΛε,ξεj,dj

) = dimR(ΠΛ0,ξj );
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Krein-Rutmann for positive operator

Th 4. (M. & Scher) Consider a semigroup generator Λ on a “Banach
lattice of functions” X ,
(1) Λ such as in Weyl’s Theorem for some a∗ ∈ R;
(2) ∃b > a∗ and ψ ∈ D(Λ∗) ∩ X ′+\{0} such that Λ∗ψ ≥ b ψ;
(3) SΛ is positive (and Λ satisfies Kato’s inequalities);
(4) −Λ satisfies a strong maximum principle.

Defining λ := s(Λ), there holds

a∗ < λ = ω(Λ) and λ ∈ Σd(Λ),

and there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ, RΠΛ,λ = Vect(f∞),

and then
ΠΛ,λf = 〈f , φ〉 f∞ ∀ f ∈ X .

Moreover, there exist α ∈ (a∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f0 − eλt ΠΛ,λf0‖X ≤ C eαt ‖f0 − ΠΛ,λf0‖X ∀ t ≥ 0.
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Change (enlargement and shrinkage) of the functional space of the spectral

analysis and semigroup decay

Th 5. (Mouhot 06, Gualdani, M. & Mouhot) Assume

L = A+ B, L = A + B, A = A|E , B = B|E , E ⊂ E

(i) (B − a) is hypodissipative on E , (B − a) is hypodissipative on E ;

(ii) A ∈ B(E ), A ∈ B(E);

(iii) there is n ≥ 1 and Ca > 0 such that∥∥(ASB)(∗n)(t)
∥∥
E→E

≤ Ca e
at .

Then the following for (X ,Λ) = (E , L), (E ,L) are equivalent:
∃ξj ∈ ∆a and finite rank projector Πj ,Λ ∈ B(X ), 1 ≤ j ≤ k, which
commute with Λ and satisfy Σ(Λ|Πj,Λ

) = {ξj}, so that

∀ t ≥ 0,
∥∥∥SΛ(t)−

k∑
j=1

S(t) Πj ,Λ

∥∥∥
X→X

≤ CΛ,a e
a t
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Discussion / perspective

• In Theorems 1, 2, 3, 4, 5 one can take n = 1 in the simplest situations
(most of space homogeneous equations in dimension d ≤ 3), but one need
to take n ≥ 2 for the space inhomogeneous Boltzmann equation

• Open problem: Beyond the “dissipative case”?
B example of the Fokker-Planck equation for “soft confinement potential”
and relation with “weak Poincaré inequality” by Röckner-Wang
B Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,
Bátkal-E-P-S, Batty-D, ...
B applications to the Boltzmann and Landau equations associated with
“soft potential”
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Proof of the enlargement theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

SL = ΠSL + (I − Π) SL (I − Π)

and write the (iterated) Duhamel formula or “stopped” Dyson-Phillips
series (the Dyson-Phillips series corresponds to the choice n =∞)

SL =
n−1∑
`=0

SB ∗ (ASB)(∗`) + SL ∗ (ASB)(∗n)

or + (ASB)(∗n) ∗ SL.
These two identities together

SL = Π SL + (I − Π) {
n−1∑
`=0

SB ∗ (ASB)(∗`)} (I − Π)

+ {(I − Π) SL} ∗ (ASB)(∗n)(I − Π)

or + (I − Π)(ASB)(∗n) ∗ {SL(I − Π)}
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The Boltzmann equation

∂f

∂t
+ v · ∇x f = Q(f , f ), f (0) = f0

f = f (t, x , v) ≥ 0 time-dependent probability density of particles (in L1),

position x ∈ Ω = T ⊂ Rd the torus, velocity v ∈ Rd ,

v · ∇x free flow transport term,

Q collision term, modelling elastic binary collisions

{v}+ {v∗}
B−→ {v ′}+ {v ′∗} with

{
v ′ + v ′∗ = v + v∗

|v ′|2 + |v ′∗|2 = |v |2 + |v∗|2

B = |v − v∗| hard spheres collision kernel (dictates outcome velocities v ′ et v ′∗)

One possible parametrisation is


v ′ =

v + v∗
2

+ σ
|v∗ − v |

2

v ′∗ =
v + v∗

2
− σ |v∗ − v |

2

 σ ∈ Sd−1
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The Boltzmann kernel

Q(f , g) =

∫
Rd×Sd−1

B [f ′ g∗ − f g∗] dσ dv∗

- Collision invariants are mass, momentum and energy:∫
Rd

Q(f , f )

 1
v
|v |2

 dv = 0

- the “entropy dissipation” has a sign

D(f ) := −
∫
Rd

Q(f , f ) log f dv ≥ 0

and fulfills
(f ∈ Hv and D(f ) = 0) ⇔ f = M

with M = (2π)−d/2 exp(−|v |2/2) is the normalized Maxwellian and

Hv :=

f ∈ L1
2(Rd)

/∫
Rd

f

 1
v
|v |2/2

 dv =

 1
0
d

 , H(f ) :=

∫
Rd

f log f dv <∞


where we define the weighted Lebesgue spaces by the norms

‖f ‖Lp(m) := ‖f m‖Lp , Lp
k = Lp(〈v〉k), 〈v〉2 = 1 + |v |2.
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Main properties of the equation

Conservation of mass, momentum and energy

d

dt

∫
T

∫
Rd

f

 1
v
|v |2

 dv = 0

Boltzmann’s H-Theorem

d

dt

∫
T

∫
Rd

f log f dxdx = −
∫
T
D(f ) dx ≤ 0

As a consequence, one expects that

f0 ∈ Hv,x implies f (t)→ M as t →∞.

Th. DiPerna-Lions, Ann. Math. 1989, Existence & H-Theorem

For any f0 ∈ Hv,x there exists a global renormalized solution f ∈ C([0,∞); L1(T × Rd))
and

f (t)→ Me as t →∞
in a weak sense and with possible loss of energy 〈Me , |v |2/2〉 = e ≤ d .
B We have Me = M under the (unverified) tightness of the energy distribution.
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Conditionally (up to time uniform strong estimate) exponential H-Theorem

Th. Desvillettes, Villani, Invent. Math. 2005

Assuming that for some s ≥ s0, k ≥ k0

(∗) sup
t≥0

(
‖ft‖Hs + ‖ft‖L1(〈v〉k )

)
≤ Cs,k <∞.

there exist Cs,k , τs,k <∞ such that

∀ t ≥ 0

∫
T×Rd

ft log
ft
M

dvdx ≤ Cs,k (1 + t)−τs,k

Th 6. Gualdani-M.-Mouhot, arXiv 2011

∃ s1, k1: if ft satisfies (∗) then for any a > λ2 exists Ca

∀ t ≥ 0

∫
T×Rd

ft log
ft
M

dvdx ≤ Ca e
a
2
t ,

with λ2 < 0 (2nd eigenvalue of the linearized Boltzmann eq. in L2(M−1/2)).
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Global existence, uniqueness and exponential stability for weakly inhomogeneous initial

data for the elastic inhomogeneous Boltz eq for hard spheres interactions in the torus

Th 7. Gualdani-M.-Mouhot

For any F0 ∈ L1
3(Rd) there exists ε0 > 0 such that if f0 ∈ L1

3(L∞x ) satisfies
‖f0 − F0‖L1

3(L∞x ) ≤ ε0 then

there exists a unique global mild solution f starting from f0;

f (t)→ M when t →∞ (with exponential rate).

• Extend to a larger class of initial data similar results due to Ukai,
Arkeryd-Esposito-Pulvirenti, Wennberg, Guo, Strain and collaborators

• It can be adapted to other situations
B homogeneous Boltzmann eq for hard spheres (Mouhot 2006)
B homogeneous weakly inelastic Boltzmann eq for HS (M-Mouhot 2009)
B homogeneous Landau eq for hard potential (Carrapatoso 2013)
B inhomogeneous weakly inelastic Boltzmann eq for HS (Tristani 2013)
B parabolic-elliptic Keller-Segel eq (Egaña-M 2013)
B homogeneous Boltz eq for hard potential without cut-off (Tristani 2014)

• Open problems: inhomogeneous Boltzmann and Landau equation for soft potential,
Navier-Stokes limit
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Proof of the stability result in a large space when F = M (1/5)

We write f = M + h. The function h satisfies

∂th = Lh + Q(h, h)

with
Lh := −v · ∇x + Q(h,M) + Q(M, h)

• L := L|Ev
is self-adjoint and dissipative (Hilbert, Carleman, Grad, Ukai,

Baranger-Mouhot) in the small space homogeneous functional space

Ev :=

h; h ∈ L2
v (M−1/2);

∫
Rd

h

 1
v
|v |2

 dv = 0


because

−〈Lh, h〉 :=
d2

ε2
D(M + εh)|ε=0

=

∫
Rd×Rd×Sd−1

(g ′ + g ′∗ − g − g∗)
2 B M M∗, g := h/M

≥ λ‖gM1/2‖2
L2 = λ ‖h‖2

E
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Proof of the stability result in a large space when F = M (2/5)

• L := L|E is hypo-dissipative (Ukai, Guo, Mouhot-Strain, ...) in the small space
inhomogeneous functional space

E :=

h; h ∈ H1
xv (M−1/2);

∫
T×Rd

h

 1
v
|v |2

 dvdx = 0


because one can choose ε > 0 small enough such for the Hilbert norm

|||h|||2 := ‖h‖2 + ‖∇xh‖2 + ε(∇xh,∇h) + ε3/2‖∇vh‖2

where ‖ · ‖ := ‖ · ‖L2(M−1/2), there holds

−((Lh, h)) ≥ λ2 |||h|||2
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Proof of the stability result in a large space when F = M (3/5)

• In the large space inhomogeneous functional space Ek := L1
k(L∞) we introduce

the splitting

Lh = Q(h,M) + Q(M, h)− v · ∇xh

= Q+(h,M) + Q+(M, h)− L(h)M − L(M)h − v · ∇xh

= Q+∗
δ [h]︸ ︷︷ ︸

=:Aδh

+Q+∗,c
δ [h]− L(M)h − v · ∇xh︸ ︷︷ ︸

=:B2
δh+B1h =Bh

B Aδ : Ek → Hs
comp(L∞) ∀ s ≥ 0,

B B2
δ : Ek+1 → Ek small with bound 4

k+2 +O(δ)
B Bδ − a is ”strongly” dissipative in Ek for any a ≥ a∗ = a∗k,δ with
a∗ < 0 for any k > 2, δ > 0 small and a∗ → −λ0 when k →∞, δ → 0

d

dt
‖SB(t)h‖Ek ≤ a ‖SB(t)h‖Ek+1

• As a consequence, the following dissipativity estimate hods

∀ ` ≥ 0, ∀ a > a∗ (ASB)(∗`) : Ek → Ek is O(eat)
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Proof of the stability result in a large space when F = M (4/5)

B Iterated averaging lemma

(ASB)(∗2) : W s,1
k →W s+1/2,1

comp ∀ s ≥ 0.

which in turn implies the

∃ n ≥ 2, ∀ a > a∗ (ASB)(∗n) : Ek → H1(M−1/2) is O(eat)

• Thanks to the ”extension theorem” we obtain that L − a is hypodissipative in

Ek,0 :=
{
h ∈ Ek ; 〈h, (1, v , |v |2)〉 = 0

}
.

and better, for the equivalent norm

|||f |||k := η ‖h‖Ek +

∫ ∞
0

‖esLh‖Ek ds,

there holds
d

dt
|||SL(t)|||k ≤ a|||SL(t)|||k+1.
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Proof of the stability result in a large space when F = M (5/5)

For the nonlinear term, the following estimate holds

∀ h ∈ Ek+1 ‖Q(h, h)‖Ek ≤ C ‖h‖Ek ‖h‖Ek+1

All together, the solution to the NL Boltzmann equation

∂th = Lh + Q(h, h)

satisfies (formally) the differential inequality

d

dt
|||h|||k ≤ a|||h|||k+1 + C |||h|||k |||h|||k+1

which provides invariant regions {|||h|||k ≤ δ|a|/C}, 0 < δ ≤ 1 and then
exponential convergence to 0.

B Analysis of the linearized equation is a bit long but it is straightforward for the

nonlinear equation
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Spectral mapping, Weyl, Krein-Rutmann, small perturbation and
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3 Increasing the rate of convergence for the Boltzmann equation
Increasing the rate of convergence
sketch of the proof of the stability result in a large space

4 Parabolic-parabolic Keller-Segel equation in chemotaxis
An asymptotic self-similar result
By a non standard perturbation argument
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Parabolic-parabolic Keller-Segel (ppKS) system of equations{
∂t f = ∆f −∇(f∇u)

ε∂tu = ∆u + f − αu

f = f (t, x) ≥ 0 time-dependent density of cells (in L1),

u = u(t, x) ≥ 0 time-dependent chemo-attractant concentration (in L2),

x ∈ R2, t ≥ 0,

ε > 0, α ≥ 0 parameters

The (first) equation being in divergence form the mass is (formally) conserved:∫
R2

f (t, x)dx =

∫
R2

f0dx =: M.

• The case ε = 0 corresponds to the parabolic-elliptic Keller-Segel equation for
which M = 8π is a threshold (Blanchet-Dolbeault-Perthame):

M ≤ 8π ⇒ solutions are global in time

M > 8π ⇒ solutions blows up in finite time
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About global existence an uniqueness

• The case ε > 0 is more involved since

M ≤ 8π or ε >> M ⇒ solutions are global in time

• In the case M < 8π global “free energy” solutions are known to exist
(Calvez-Corrias) when at initial time F(f0, u0) <∞, with

F(f , u) :=

∫
f log f +

∫
f log〈x〉 −

∫
fu +

1

2

∫
|∇u|2 + α

∫
u2.

Also the existence of solutions “à la Kato” has been established recently by
Mizoguchi, Corrias-Escobedo-Matos, Biler-Guerra-Karch. These solutions are
global in time when ε large enough (⇒ small nonlinearity).

Th 8. Carrapatoso-M.

For any (f0, u0) such that F(f0, u0) <∞ there exists a unique “free energy” solution
on a maximal time interval (0,T ∗) with the alternative

T∗ = +∞ or (T∗ <∞, F(f (t), u(t))→∞ as t → T ∗).

Improve uniqueness result (in L∞ framework) by Carrillo-Lisini-Mainini
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Self-similar solutions

• We restrict ourself to the case α = 0 and M < 8π.

• We introduce the rescaled functions g and v defined by

f (t, x) := τ−2g(log τ, τ−1x), u(t, x) := v(log τ, τ−1x),

with τ := (1 + t)1/2. The rescaled ppKS system reads

∂tg = ∆g +∇(
1

2
x g − g ∇v) in (0,∞)× R2,

ε∂tv = ∆v + g +
ε

2
x · ∇v in (0,∞)× R2.

A stationary solution (G ,V ) to the rescaled ppKS system is called a self-similar
profile and the functions

F (t, x) =
1

τ 2
Gε(

x

τ
), U(t, x) = Vε(

x

τ
)

is a self-similar solution for the non-rescaled ppKS system.

• It is known (Naito-Suzuki-Yoshida, Biler-Corrias-Dolbeault, Corrias-Escobedo-Matos)
that for any ε > 0 and M ∈ (0, 8π) there exists a unique self-similar profile such that the
mass of G is equal to M. The functions G and V are radially symmetric and smooth.
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Asymptotic behaviour = self-similarity (in the radially symmetric case)

• We want to prove

(f , u) ∼
t→∞

(F ,U) or equivalently (g , v) →
t→∞

(G ,V )

• Difficulty: we do not have uniform in time estimates (except the mass!)
• We assume g , v are radially symmetric and we define

|||(g , v)||| := ‖g‖H1
k

+ ‖v‖H2 , k > 7,

Th 9. Carrapatoso-M.

∀M ∈ (0, 8π) ∃ ε∗ > 0, ∃ δ∗ > 0 such that ∀ ε ∈ (0, ε∗), ∀ (g0, v0) satisfying

|||(g0, v0)− (G ,V )||| ≤ δ∗,
∫
R2

g0 dx =

∫
R2

G dx = M,

the solution (g , v) to the ppKS system satisfies

|||(g(t), v(t))− (G ,V )||| ≤ Ca e
at ∀ a ∈ (−1/3,∞), ∀ t ≥ 0
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singular perturbation of the parabolic-elliptic linearized equation - (proof 1/5)

We want to take advantage of the fact that (Gε,Vε)→ (G0,V0) as ε→ 0, where
(G0,V0) is the self-similar profile to the parabolic-elliptic KS equation which is
known to be linearly exponential stable.

More precisely, the linearized equation of the ppKS system on the variation
f = g − G , u = v − V writes

∂t f = Af + Bu =

Af︷ ︸︸ ︷
∆f +∇(

1

2
x f − f ∇Vε)

Bu︷ ︸︸ ︷
−∇(Gε∇u)

ε∂tu = f + Cu + εDu = f +

Cu︷︸︸︷
∆u +

εDu︷ ︸︸ ︷
ε

2
x · ∇u .

In the limit case ε = 0 the second equation writes as the time independent
equation

0 = f + ∆u = f + Cu.

In the limit case ε = 0 the system then reduces in a single equation

∂t f = Ωf := A0f + B0(−C )−1f

That equation is known (Campos-Dolbeault, Egaña-M.) to be dissipative

‖SΩ(t)‖B(L2
k,0) ≤ C e−t , L2

k,0 = {h ∈ L2
k , 〈h〉 = 0}
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Matrix form and splitting - (proof 2/5)

We write the system in matrix form

d

dt

(
f
u

)
= Lε

(
f
u

)
=

(
A B
ε−1 ε−1C + D

)(
f
u

)
with

Af := ∆f +∇(
1

2
x f − f ∇Vε), Bu := −∇(Gε∇u)

Cu := ∆u, Du :=
1

2
x · ∇u,

We split
Lε = A+ Bε

with

A
(

f
u

)
=

(
NχR [f ]

0

)
, χR [f ] = χR f − χ1〈χR f 〉,

χR being the truncation function χR(x) := χ(x/R), χ ∈ P(R2)×D(R2).
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Splitting and Weyl’s theorem - (proof 3/5)

We define
X := X1 × X2, X1 := L2

rad ∩ L2
k,0, X2 := L2

rad

Y := Y1 × Y2, Y1 := X1 ∩ H1
k , Y2 := X2 ∩ H1

• A ∈ B(X ,X ∩ L2
k+1), A ∈ B(Y )

• Bε − a is dissipative for the equivalent norm

‖(f , u)‖2
X∗ := ‖f ‖2

L2
k

+ η‖u − κ ∗ f ‖2
L2 , κ = Poisson kernel,

for any a ∈ (−1/2, 0) by choosing η, ε small and R,N large. We then deduce

‖SBε(t)‖B(X ) ≤ C eat , ‖SBε(t)‖B(Y ) ≤ C eat , ‖SBε(t)‖B(X ,Y ) ≤ C t−1 eat .

The Weyl’s theorem implies

Proposition

Σ(Lε) ∩∆a ⊂ Σd(Lε) ∩ B(0, r∗)
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Schur’s complement - (proof 4/5)

For z ∈ C, we denote

Lε(z) = Lε − z =

(
a b
c d

)
with

a = A(z) = A− z , b = B, c := ε−1I , d := ε−1C + D(z), D(z) = D − z .

If d = d(z) is invertible as well as its Schur’s complement

sε = sε(z) := a− bd−1c = A(z)− B(C + εD(z))−1

is invertible, the resolvent of Lε is given by

RLε(z) = Lε(z)−1 =

(
s−1
ε −s−1

ε bd−1

−d−1cs−1
ε d−1 + d−1cs−1

ε bd−1

)
=:

(
RLε11 RLε12

RLε21 RLε22

)
.

Then at least formally, we see that

RLε(z)−→
ε→0

(
RΩ(z) 0

−C−1RΩ(z) 0

)
=: U(z),

with U ∈ H(∆−1;B(X )).
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Schur’s complement and localization of the spectrum- (proof 5/5)

We are not able to prove the above convergence but

Proposition

∀ρ > 0 RLε(z) ∈ H(∆−1/3 ∩ B(0, ρ);B(X )) for ε small enough

For the hardest term, we have

RLε11 (z) = s−1
ε

with
sε = Ω(z) + rε, ‖rε‖Y1→X1 → 0

We may apply the perturbation argument and we get

s−1
ε ∈ H(∆−1/3 ∩ B(0, ρ);B(X1)).

• The two propositions and the spectral mapping theorem imply

‖SLε(t)‖B(X ) ≤ C eat , ∀ a ∈ (−1/3, 0).
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