Spectral analysis of semigroups in Banach spaces and applications to PDEs #### S. Mischler (Paris-Dauphine & IUF) in collaboration with M. J. Caceres, J. A. Cañizo, G. Egaña, M. Gualdani, C. Mouhot, J. Scher works by K. Carrapatoso, I. Tristani GDR DynQua Annual meeting 2014 Roscoff, Station Biologique, 5-7 February 2014 #### Outline of the talk - Introduction - Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument #### Outline of the talk - Introduction - Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument #### Revisit the spectral theory in an abstract setting Spectral theory for general operator and its semigroup in general (large) Banach space, without regularity (\neq eventually norm continuous), without symmetry (\neq Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice) - Spectral map Theorem $\hookrightarrow \Sigma(e^{t\Lambda}) \simeq e^{t\Sigma(\Lambda)}$ and $\omega(\Lambda) = s(\Lambda)$ - ullet Weyl's Theorem $\ \hookrightarrow \$ (quantified) compact perturbation $\Sigma_{ess}(\mathcal{A}+\mathcal{B})\simeq \Sigma_{ess}(\mathcal{B})$ - Small perturbation $\ \hookrightarrow \ \Sigma(\Lambda_{\varepsilon}) \simeq \Sigma(\Lambda)$ if $\Lambda_{\varepsilon} \to \Lambda$ - Krein-Rutmann Theorem \hookrightarrow $s(\Lambda) = \sup \Re e \Sigma(\Lambda) \in \Sigma_d(\Lambda)$ when $S_{\Lambda} \ge 0$ - functional space extension (enlargement and shrinkage) - \hookrightarrow $\Sigma(L) \simeq \Sigma(\mathcal{L})$ when $L = \mathcal{L}_{\mid E}$ - \hookrightarrow tide of spectrum phenomenon Structure: operator which splits as $$\Lambda = A + B$$, $A \prec B$, B dissipative Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators and $W^{\sigma,p}(m)$ weighted Sobolev spaces #### Applications / Motivations : - (1) Convergence rate in large Banach space for linear dissipative and hypodisipative PDEs (ex: Fokker-Planck, growth-fragmentation) - (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural φ space - (3) Existence, uniqueness and stability of equilibrium in "small perturbation regime" in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck, parabolic-parabolic Keller-Segel, neural network) #### Is it new? - Simple and quantified versions, unified theory (sectorial, KR, general) which holds for the "principal" part of the spectrum - first enlargement result in an abstract framework by C. Mouhot (CMP06) - Unusual splitting $$\Lambda = \underbrace{\mathcal{A}_0}_{compact} + \underbrace{\mathcal{B}_0}_{dissipative} = \underbrace{\mathcal{A}_\varepsilon}_{smooth} + \underbrace{\mathcal{A}_\varepsilon^c + \mathcal{B}_0}_{dissipative}$$ • The applications to these nonlinear problems are clearly new #### Old problems - ullet Fredholm, Hilbert, Weyl, Stone (Funct Analysis & sG Hilbert framewrok) ≤ 1932 - Hyle, Yosida, Phillips, Lumer, Dyson (sG Banach framework & dissipative operators) 1940-1960 and also Dunford, Schwartz - Kato, Pazy, Voigt (analytic op., positive op.) 1960-1975 - Engel, Nagel, Gearhart, Metz, Diekmann, Prüss, Arendt, Greiner, Blake, Mokhtar-Kharoubi, Yao, ... 1975- # Spectral analysis of the linearized (in)homogeneous Boltzmann equation and convergence to the equilibrium • Hilbert, Carleman, Grad, Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, Guo, Strain, ... #### Spectral tide/spectral analysis in large space • Bobylev (for Boltzmann), Gallay-Wayne (for harmonic Fokker-Planck) #### Still active research field - Semigroup school (≥ 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart, Greiner, Metz, Mokhtar-Kharoubi, Nagel, Prüss, Webb, Yao, ... - Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq, Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjöstrand, Wayne, ... - Probability school (as in Toulouse): Bakry, Barthe, Bobkov, Cattiaux, Douc, Gozlan, Guillin, Fort, Ledoux, Roberto, Röckner, Wang, ... - Kinetic school (∼ Boltzmann): - ▷ Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality) - ▷ Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault, Schmeiser, ... (Poincaré inequality & hypocoercivity) - ightharpoonup Guo school related to Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, ... (existence in "small spaces" and "large spaces") #### A list of related papers - M., Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, CMP 2009 - Gualdani, M., Mouhot, Factorization for non-symmetric operators and exponential H-Theorem, ArXiv 2010 - Arnold, Gamba, Gualdani, M., Mouhot, Sparber, The Wigner-Fokker-Planck equation: Stationary states and large time behavior, M3AS 2012 - Cañizo, Caceres, M., Rate of convergence to the remarkable state for fragmentation and growth-fragmentation equations, JMPA 2011 & CAIM 2011 - Egaña, M. Uniqueness and long time asymptotic for the Keller-Segel equation Part I. The parabolic-elliptic case, arXiv 2013 - M., Mouhot Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations, in progress - M., Scher Spectral analysis of semigroups and growth-fragmentation eqs, arXiv 2013 - Carrapatoso, Exponential convergence ... homogeneous Landau equation, arXiv 2013 - Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, arXiv 2013 #### Outline of the talk - Introduction - Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - 6 Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument #### Examples of operators - I 1) - Linear Boltzmann, e.g. $k(v, v_*) = \sigma(v, v_*) M(v_*)$, $\sigma(v_*, v) = \sigma(v, v_*)$, $$\Lambda f = \underbrace{\int k(v, v_*) f(v_*) dv_*}_{=:\mathcal{A}f} - \underbrace{\int k(v_*, v) dv_* f(v)}_{=:\mathcal{B}f}$$ 2) - Fokker-Planck, with $E(v) \approx v |v|^{\gamma-2}$, $\gamma \geq 1$, $$\Lambda = \underbrace{\Delta_{\nu} + \operatorname{div}_{\nu}(E(\nu) \cdot) - M \chi_{R}}_{=:\mathcal{B}} + \underbrace{M \chi_{R}(\nu)}_{=:\mathcal{A}}$$ 3) - Inhomogeneous/kinetic Fokker-Planck $$\Lambda = \underbrace{\mathcal{T} + \mathcal{C} - M \chi_R}_{=:\mathcal{B}} + \underbrace{M \chi_R(x, v)}_{=:\mathcal{A}}$$ with $$\mathcal{T} := -\mathbf{v} \cdot \nabla_{\mathbf{x}} + F \cdot \nabla_{\mathbf{x}}, \quad \mathcal{C}f := \Delta_{\mathbf{v}}f + \operatorname{div}_{\mathbf{v}}(E(\mathbf{v})f)$$ #### Examples of operators - II 4) - Growth fragmentation $$\Lambda = \mathcal{F}^+ - \mathcal{F}^- + \mathcal{D} = \underbrace{\mathcal{F}^+_\delta}_{=:\mathcal{A}} + \underbrace{\mathcal{F}^{+,c}_\delta - \mathcal{F}^- + \mathcal{D}}_{=:\mathcal{B}}$$ with $$\mathcal{D}f = -\tau(x)\partial_x f - \nu f, \quad (\tau, \nu) = (1, 0) \text{ or } (x, 2)$$ $$\mathcal{F}^+(f) := \int_x^\infty k(y, x) f(y) dy, \quad \mathcal{F}^-f := K(x) f$$ Mass conservation of $\mathcal{F}^+ - \mathcal{F}^-$ implies $$K(x) = \int_0^x \frac{y}{x} k(x, y) \, dy$$ Self-similarity in y/x $$k(x,y) = K(x) x^{-1} \theta(y/x), \quad \int_0^1 z \theta(z) dz = 1,$$ with $$\theta \in \mathcal{D}(0,1)$$ or $\theta(z) = 2 \delta_{z=1/2}$ or $\theta(z) = \delta_{z=0} + \delta_{z=1}$ #### Examples of operators - III 5) - Linearized Boltzmann $$\Lambda h = Q(h, M) + Q(M, h) = Q^{+}(h, M) + Q^{+}(M, h) - L(h) M - L(M)h = Q_{\delta}^{+,*}[h] + Q_{\delta}^{+,*,c}[h] - L(M)h =: Bh$$ 6) - Inhomogeneous linearized Boltzmann (in the torus) $$\Lambda h = \underbrace{\mathcal{Q}_{\delta}^{+,*}[h]}_{=:\mathcal{A}h} + \underbrace{\mathcal{Q}_{\delta}^{+,*,c}[h] - L(M)h + \mathcal{T}h}_{=:\mathcal{B}h}, \quad \mathcal{T} := -v \cdot \nabla_{x}$$ 7) - other operators: homogeneous/inhomogeneous linearized inelastic Boltzmann, homogeneous linearized Landau, Fokker-Planck with fractional diffusion, linearized Keller-Segel (parabolic-elliptic), homogeneous Boltzmann for hard potential without angular cut-off ### Operators and their decomposition General rule 1 for FP/Boltzmann type operator $$\begin{aligned} L := & \textit{order} \leq 1 + \textit{order} \, 2 \\ L := & \textit{compact} + \textit{explicit} \\ \mathcal{L} := & \underbrace{\textit{smooth/order} \leq 1}_{\mathcal{A}} + \underbrace{\textit{small} + \textit{explicit/order} \, 2}_{\mathcal{B}} \end{aligned}$$ General rule 2 for non space homogeneous operator $$\mathcal{L}_{v} := \underbrace{\mathcal{A}_{v} + \mathcal{B}_{v}}_{\mathcal{A}_{x,v}} + \underbrace{\mathcal{B}_{v} + T_{x}}_{\mathcal{B}_{x,v}}, \qquad T_{x} = -v \cdot \nabla_{x} + \nabla_{x} \Psi \cdot \nabla_{v}$$ #### The Growth-Fragmentation equation #### **Th 1.** (M., Scher) Assume that for $\gamma \geq 0$, $x_0 \geq 0$, $0 < K_0 \leq K_1 < \infty$: $$K_0 x^{\gamma} \mathbf{1}_{x \geq x_0} \leq K(x) \leq K_1 x^{\gamma}.$$ There exists a (unique) (λ, f_{∞}) with $\lambda \in \mathbb{R}$ and f_{∞} is the unique solution to $$\mathcal{F} f_{\infty} + \mathcal{D} f_{\infty} = \lambda \, f_{\infty}, \quad f_{\infty} \geq 0, \quad \langle f_{\infty}, 1 \rangle = 1.$$ There exists $a < \lambda$, C > 0 such that $\forall f_0 \in L^1_\alpha$, $\alpha > 1$ $$\|fe^{\Lambda t} f_0 - e^{\lambda t} \Pi_0 f_0\|_{L^1_{\alpha}} \le C e^{at} \|f_0 - e^{\lambda t} \Pi_0 f_0\|_{L^1_{\alpha}},$$ where Π_0 is the projector on the eigenspace $\text{Vect}(f_{\infty})$. Improve and unify: Metz-Diekmann (1983), Escobedo-M-Rodriguez (2005), Michel-M-Perthame (2005), Perthame-Ryzhik (2005), Laurençot-Perthame (2009), Caceres-Cañizo-M (2010) &t (2011) #### The Fokker-Planck equation Consider $$\partial_t f = \Lambda f = \Delta_v f + \operatorname{div}_v(F f)$$ with a (friction) force field F such that $$F \cdot x \ge |x|^{\gamma}$$, $\operatorname{div} F \le C_F |x|^{\gamma - 2}$, $\forall x \in B_R^c$ There exists then a (unique) function $f_{\infty} \in \mathbf{P}(\mathbb{R}^d)$ which is a stationary solution, with $f_{\infty} = \exp(-\Phi + \Phi_0)$ when $F = \nabla \Phi$, $\Phi(v) = \frac{1}{\gamma} \langle v \rangle^{\gamma}$. For an integrability exponent $p\in[1,\infty]$, a regularity exponent $\sigma\in\{-1,0,1\}$ and a polynomial weight $$m = \langle v \rangle^k$$, $k > k^*(p, \sigma, \gamma)$, if $\gamma \ge 2$, or an exponential weight $$m = e^{\kappa \langle v \rangle^s}, \quad s \in [2 - \gamma, \gamma], \ \gamma \ge 1, \ \kappa < 1/\gamma \text{ if } s = \gamma,$$ we define the abscissa $$a_{\sigma}(p,m)=$$ finite <0 in the limit cases, $=-\infty$ otherwise #### Th 2. Gualdani-M.-Mouhot; M.-Mouhot; Ndao There exists $$0 > a \geq a_{\sigma}(p, m)$$ there exists $C = C(a, p, \sigma, \gamma, m)$ such that for any $f_0 \in W^{\sigma,p}(m)$ $$\|e^{t\Lambda}f_0-\langle f_0\rangle\,f_\infty\|_{W^{\sigma,p}(m)}\leq C\,e^{at}\,\|f_0-\langle f_0\rangle\,f_\infty\|_{W^{\sigma,p}(m)}.$$ If moreover, $\gamma \in [2, 2+1/(d-1)]$, $$W_1(e^{t\Lambda}f_0), \langle f_0 \rangle f_\infty) \leq C e^{at} W_1(f_0, \langle f_0 \rangle f_\infty)$$ - Generalize similar result known in $L^2(f_{\infty}^{-1/2})$ - ullet The same result holds for the kinetic Fokker-Planck in the torus and may be extended to the kinetic Fokker-Planck in $\mathbb{R}^d_{\mathbf{x}}$ with confinement potential - In the case $E(v) = \nabla \Phi$ one can take $-a = \lambda :=$ the best constant in the Poincaré inequality if m is "increasing enough" - ullet A rate of decay in Wasserstein distance W_2 have been obtained by Bolley-Gentil-Guillin (2012) #### Outline of the talk - Introduction - 2 Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument Conditionally (up to time uniform strong estimate) exponential H-Theorem \bullet $(f_t)_{t\geq 0}$ solution to the inhomogeneous Boltzmann equation for hard spheres interactions in the torus with strong estimate $$\sup_{t\geq 0} \left(\|f_t\|_{H^k} + \|f_t\|_{L^1(1+|\nu|^s)} \right) \leq C_{s,k} < \infty.$$ • Desvillettes, Villani proved [Invent. Math. 2005]: for any $s \ge s_0$, $k \ge k_0$ $$\forall \ t \geq 0$$ $$\int_{\mathbb{T} \times \mathbb{R}^d} f_t \log \frac{f_t}{G_1(v)} \ dv dx \leq C_{s,k} (1+t)^{-\tau_{s,k}}$$ with $C_{s,k} < \infty$, $\tau_{s,k} \to \infty$ when $s,k \to \infty$, $G_1 :=$ Maxwell function #### Th 3. Gualdani-M.-Mouhot $\exists s_1, k_1 \text{ s.t. for any } a > \lambda_2 \text{ exists } C_a$ $$\forall t \geq 0 \qquad \int_{\mathbb{T} \times \mathbb{R}^d} f_t \log \frac{f_t}{G_1(v)} dv dx \leq C_a e^{\frac{a}{2}t},$$ with $\lambda_2 < 0$ (2nd eigenvalue of the linearized Boltzmann eq. in $L^2(G_1^{-1})$). Global existence and uniqueness for weakly inhomogeneous initial data for the elastic and inelastic inhomogeneous Boltzmann equation for hard spheres interactions in the torus #### **Th 4.** Gualdani-M.-Mouhot; Tristani For any $F_0 \in L^1_3(\mathbb{R}^d)$ there exists $e_0 \in (0,1)$ and $\varepsilon_0 > 0$ such that if $f_0 \in W^{k,1}_x(\mathbb{T}^d; L^1_3(\mathbb{R}^d))$ satisfies $\|f_0 - F_0\| \le \varepsilon_0$ and if $e \in [e_0,1]$ then - there exists a unique global mild solution f(t, x, v) starting from f_0 ; - $f(t) \to G_1$ when $t \to \infty$ (with rate) when e = 1; - $f(t) o ar{G}_e$ when $t o \infty$ (with rate) when e < 1 (diffuse forcing). - The case $e \sim 1$ is proved thanks to a small perturbation argument in a large space because $\bar{G}_e(v) \geq e^{-|v|^{3/2}} \notin L^2(G_1^{-1/2})$. - \bullet The case e=1 has been treated by non constructive arguments by Arkeryd-Esposito-Pulvirenti (CMP 1987), Wennberg (Nonlinear Anal. 1993) and for the space homogeneous analogous by Arkeryd (ARMA 1988), Wennberg (Adv. MAS 1992) - Extend to a larger class of initial data similar results due to Ukai, Guo, Strain and collaborators #### More results about constructive exponential rate of convergence #### For - homogeneous Boltzmann eq for hard spheres (Mouhot 2006) - homogeneous weakly inelastic Boltzmann eq for hard spheres (M-Mouhot 2009) - homogeneous Landau eq for hard potential (Carrapatoso 2013) - parabolic-elliptic Keller-Segel eq (Egaña-M 2013) - homogeneous Boltzmann eq for hard potential (Tristani, soon on arXiv) In all these cases, we prove that under minimal assumptions on the initial datum f_0 (bounded mass, energy, entropy, ...) the associated solution f(t) satisfies $$f(t) \rightarrow G$$ when $t \rightarrow \infty$ (with exponential rate) where G is the unique associated equilibrium/self-similar profile We know (except for the inelastic Boltzmann eq) that the associated linearized operator \mathcal{L} is self-adjoint and has a spectral gap in the very small space $L^2(G_1^{-1/2})$ in which a general solution does not belong (even for large time). \triangleright we start by "enlarge" the space in which \mathcal{L} has a spectral gap and then we (classically) prove a nonlinear stability result ⊳ for the weakly inelastic Boltzmann eq we additionally use perturbation argument #### Outline of the talk - Introduction - 2 Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument #### Main issue For a given operator Λ in a Banach space X, we want to prove $$\Sigma(\Lambda)\cap\Delta_{a}=\{\xi_{1}\},\quad\xi_{1}=0$$ with $\Sigma(\Lambda)=$ spectrum, $\Delta_{\alpha}:=\{z\in\mathbb{C},\ \Re e\,z>\alpha\}$ $$\Pi_{\Lambda,\xi_{1}}=\text{finite rank projection},\quad\text{i.e. }\xi_{1}\in\Sigma_{d}(\Lambda)$$ $||S_{\Lambda}(I-\Pi_{\Lambda,\xi_1})||_{X\to X} < C_a e^{at}, \quad a<\Re e\xi_1$ #### Spectral mapping - characterization #### **Th 1.** (M., Scher) - (0) $\Lambda = \mathcal{A} + \mathcal{B}$, where \mathcal{A} is $\mathcal{B}^{\zeta'}$ with $0 \leq \zeta' < 1$, - $(1) \|S_{\mathcal{B}}*(\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X\to X} \leq C_{\ell} e^{at}, \ \forall \ a>a^*, \ \forall \ \ell\geq 0,$ - (2) $||S_{\mathcal{B}}*(\mathcal{A}S_{\mathcal{B}})^{(*n)}||_{X\to D(\Lambda^{\zeta})} \leq C_n e^{at}, \ \forall \ a>a^*, \ \text{with} \ \zeta>\zeta',$ - (3) $\Sigma(\Lambda) \cap (\Delta_{a^{**}} \setminus \Delta_{a^*}) = \emptyset$, $a^* < a^{**}$, is equivalent to (4) there exists a projector Π which commutes with Λ such that $\Lambda_1 := \Lambda_{|X_1} \in \mathcal{B}(X_1), \ X_1 := R\Pi, \ \Sigma(\Lambda_1) \subset \Delta_{a^*}$ $$||S_{\Lambda}(t)(I-\Pi)||_{X\to X} \leq C_a e^{at}, \quad \forall a>a^*$$ In particular $$\Sigma(e^{t\Lambda})\cap \Delta_{e^{at}}=e^{t\Sigma(\Lambda)\cap \Delta_a}\quad orall\ t\geq 0,\ a>a^*$$ and $$\max(s(\Lambda), a^*) = \max(\omega(\Lambda), a^*)$$ #### Weyl's theorem - characterization #### **Th 2.** (M., Scher) - (0) $\Lambda = \mathcal{A} + \mathcal{B}$, where \mathcal{A} is $\mathcal{B}^{\zeta'}$ with $0 \leq \zeta' < 1$, - $(1) \|S_{\mathcal{B}}*(\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X\to X} \leq C_{\ell} e^{at}, \ \forall \ a>a^*, \ \forall \ \ell\geq 0,$ - (2) $||S_{\mathcal{B}}*(\mathcal{A}S_{\mathcal{B}})^{(*n)}||_{X\to X_{\zeta}}\leq C_n e^{at}$, $\forall a>a^*$, with $\zeta>\zeta'$, - (3) $\int_0^\infty \|(\mathcal{A}S_{\mathcal{B}})^{(*n+1)}\|_{X\to Y} e^{-at} dt < \infty$, $\forall a > a^*$, with $Y \subset \subset X$, is equivalent to (4) there exist $\xi_1,...,\xi_J \in \bar{\Delta}_a$, there exist $\Pi_1,...,\Pi_J$ some finite rank projectors, there exists $T_j \in \mathcal{B}(R\Pi_j)$ such that $\Lambda\Pi_j = \Pi_j\Lambda = T_j\Pi_j$, $\Sigma(T_i) = \{\xi_i\}$, in particular $$\Sigma(\Lambda)\cap ar{\Delta}_a=\{\xi_1,...,\xi_J\}\subset \Sigma_d(\Sigma)$$ and there exists a constant C_a such that $$\|S_{\Lambda}(t) - \sum_{j=1}^J e^{tT_j} \Pi_j\|_{X \to X} \le C_a e^{at}, \quad \forall \ a > a^*$$ #### Small perturbation #### **Th 3.** (M. & Mouhot; Tristani) Assume (0) $$\Lambda_{\varepsilon} = \mathcal{A}_{\varepsilon} + \mathcal{B}_{\varepsilon}$$ in X_i , $X_{-1} \subset \subset X_0 = X \subset \subset X_1$, $\mathcal{A}_{\varepsilon} \prec \mathcal{B}_{\varepsilon}$, $$(1) \|S_{\mathcal{B}_{\varepsilon}}*(\mathcal{A}_{\varepsilon}S_{\mathcal{B}_{\varepsilon}})^{(*\ell)}\|_{X_{i}\to X_{i}} \leq C_{\ell} e^{at}, \ \forall \ a>a^{*}, \ \forall \ \ell\geq 0, \ i=0,\pm 1,$$ $$(2) \|S_{\mathcal{B}_{\varepsilon}} * (\mathcal{A}_{\varepsilon}S_{\mathcal{B}_{\varepsilon}})^{(*n)}\|_{X_{i} \to X_{i+1}} \leq C_{n} e^{at}, \ \forall \ a > a^{*}, \ i = 0, -1,$$ (3) $$X_{i+1} \subset D(\mathcal{B}_{\varepsilon|X_i}), D(\mathcal{A}_{\varepsilon|X_i})$$ for $i = -1, 0$ and $$\|\mathcal{A}_{\varepsilon} - \mathcal{A}_0\|_{X_i \to X_{i-1}} + \|\mathcal{B}_{\varepsilon} - \mathcal{B}_0\|_{X_i \to X_{i-1}} \leq \eta_1(\varepsilon) \to 0, \ i = 0, 1,$$ (4) the limit operator satisfies (in both spaces X_0 and X_1) $$\Sigma(\Lambda_0) \cap \Delta_a = \{\xi_1, ..., \xi_k\} \subset \Sigma_d(\Lambda_0).$$ Then $$\begin{split} & \Sigma(\Lambda_{\varepsilon}) \cap \Delta_{a} = \{\xi_{1,1}^{\varepsilon},...,\xi_{1,d_{1}^{\varepsilon}}^{\varepsilon},...,\xi_{k,1}^{\varepsilon},...,\xi_{k,d_{k}^{\varepsilon}}^{\varepsilon}\} \subset \Sigma_{d}(\Lambda_{\varepsilon}), \\ & |\xi_{j} - \xi_{j,j'}^{\varepsilon}| \leq \eta(\varepsilon) \to 0 \quad \forall \, 1 \leq j \leq k, \, \, \forall \, 1 \leq j' \leq d_{j}; \\ & \dim R(\Pi_{\Lambda_{\varepsilon},\xi_{i,1}^{\varepsilon}} + ... + \Pi_{\Lambda_{\varepsilon},\xi_{i,d_{\varepsilon}}^{\varepsilon}}) = \dim R(\Pi_{\Lambda_{0},\xi_{j}}); \end{split}$$ #### Krein-Rutmann for positive operator - **Th 4.** (M. & Scher) Consider a semigroup generator Λ on a "Banach lattice of functions" X, - (1) Λ such as in Weyl's Theorem holds for some $a^* \in \mathbb{R}$; - (2) $\exists b > a^*$ and $\psi \in D(\Lambda^*) \cap X'_+ \setminus \{0\}$ such that $\Lambda^* \psi \geq b \psi$; - (3) S_{Λ} is positive (and Λ satisfies Kato's inequalities); - (4) $-\Lambda$ satisfies a strong maximum principle. Defining $\lambda := s(\Lambda)$, there holds $$a^* < \lambda = \omega(\Lambda)$$ and $\lambda \in \Sigma_d(\Lambda)$, and there exists $0 < f_{\infty} \in D(\Lambda)$ and $0 < \phi \in D(\Lambda^*)$ such that $$\Lambda f_{\infty} = \lambda f_{\infty}, \quad \Lambda^* \phi = \lambda \phi, \quad R\Pi_{\Lambda,\lambda} = \text{Vect}(f_{\infty}),$$ and then $$\Pi_{\Lambda,\lambda} f = \langle f, \phi \rangle f_{\infty} \quad \forall f \in X.$$ Moreover, there exist $\alpha \in (a^*, \lambda)$ and C > 0 such that for any $f_0 \in X$ $$||S_{\Lambda}(t)f_0 - e^{\lambda t} \prod_{\Lambda, \lambda} f_0||_X < C e^{\alpha t} ||f_0 - \prod_{\Lambda, \lambda} f_0||_X \qquad \forall t > 0.$$ Change (enlargement and shrinkage) of the functional space of the spectral analysis and semigroup decay Th 5. (M. & Mouhot) Assume $$\mathcal{L}=\mathcal{A}+\mathcal{B},\ L=A+B,\ A=\mathcal{A}_{\mid E},\ B=\mathcal{B}_{\mid E},\ E\subset\mathcal{E}$$ - (i) (B-a) is hypodissipative on E, (B-a) is hypodissipative on \mathcal{E} ; - (ii) $A \in \mathcal{B}(\mathcal{E}), A \in \mathcal{B}(\mathcal{E});$ - (iii) there is $n \ge 1$ and $C_a > 0$ such that $$\|(\mathcal{A}S_{\mathcal{B}})^{(*n)}(t)\|_{\mathcal{E}\to E} \leq C_a e^{at}.$$ Then the following for $(X, \Lambda) = (E, L)$, $(\mathcal{E}, \mathcal{L})$ are equivalent: $\exists \xi_j \in \Delta_a$ and finite rank projector $\Pi_{j,\Lambda} \in \mathcal{B}(X)$, $1 \leq j \leq k$, which commute with Λ and satisfy $\Sigma(\Lambda_{|\Pi_{j,\Lambda}}) = \{\xi_j\}$, so that $$\forall t \geq 0, \quad \left\| S_{\Lambda}(t) - \sum_{j=1}^{k} S(t) \Pi_{j,\Lambda} \right\|_{X \to X} \leq C_{\Lambda,a} e^{at}$$ #### Discussion / perspective - ullet In Theorem 1, 2, 3, 4, one can take n=1 in the simplest situations (most of space homogeneous equations), but one need to take n=2 for the equal mitosis equation or for the space inhomogeneous Boltzmann equation - ullet In Theorem 5, one need to take n>d/4 for the space homogeneous Fokker-Planck equation in order to extend the spectral analysis from L^2 (well-known) to L^1 - Beyond the "dissipative case"? - ightharpoonup example of the Fokker-Planck equation when $\gamma \in (0,1)$ and relation with "weak Poincaré inequality" by Röckner-Wang - \rhd Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R, Bátkal-E-P-S, Batty-D, ... - \rhd applications to Boltzmann and Landau equation associated to "soft potential" - ullet inhomogeneous linearized Landau, linearized Keller-Segel (parabolic-parabolic), neural network, Fokker-Planck in the subcritical case $\gamma \in (0,1)$ #### Outline of the talk - Introduction - 2 Examples of linear evolution PDE - Gallery of examples - Hypodissipativity result under weak positivity - Hypodissipativity result in large space - Nonlinear problems - Increasing the rate of convergence - Perturbation regime - 4 Spectral theory in an abstract setting - Elements of proofs - The enlargement theorem - The spectral mapping theorem - Uniqueness and stability by perturbation argument #### Proof of the enlargement theorem We split the semigroup into invariant linear sub-manifolds (eigenspaces) $$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + (I - \Pi) S_{\mathcal{L}} (I - \Pi)$$ and write the (iterated) Duhamel formula or "stopped" Dyson-Phillips series (the Dyson-Phillips series corresponds to the choice $n = \infty$) $$S_{\mathcal{L}} = \sum_{\ell=0}^{n-1} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)} + S_{\mathcal{L}} * (\mathcal{A}S_{\mathcal{B}})^{(*n)}$$ or $+ (\mathcal{A}S_{\mathcal{B}})^{(*n)} * S_{\mathcal{L}}.$ These two identities together $$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + (I - \Pi) \left\{ \sum_{\ell=0}^{n-1} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)} \right\} (I - \Pi) + \{ (I - \Pi) S_{\mathcal{L}} \} * (\mathcal{A}S_{\mathcal{B}})^{(*n)} (I - \Pi)$$ or $+ (I - \Pi) (\mathcal{A}S_{\mathcal{B}})^{(*n)} * \{ S_{\mathcal{L}} (I - \Pi) \}$ #### Sketch of the proof of the spectral mapping theorem We introduce the resolvent $$R_{\Lambda}(z) = (\Lambda - z)^{-1} = -\int_0^{\infty} S_{\Lambda}(t) e^{-zt} dt.$$ Using the inverse Laplace formula for $b>\omega(\Lambda)\geq s(\Lambda)=\sup\Re e\Sigma(\Lambda)$ and the fact that $\Pi^\perp R_\Lambda(z)$ is analytic in Δ_{a^*} , $\Pi^\perp:=I-\Pi$, we get $$S_{\Lambda}(t)\Pi^{\perp} = \frac{i}{2\pi} \int_{b-i\infty}^{b+i\infty} e^{zt} \Pi^{\perp} R_{\Lambda}(z) dz$$ $$= \lim_{M \to \infty} \frac{i}{2\pi} \int_{a-iM}^{a+iM} e^{zt} \Pi^{\perp} R_{\Lambda}(z) dz$$ Similarly as for the (iterated) Duhamel formula, we have $$R_{\Lambda} = \sum_{\ell=0}^{N-1} (-1)^{\ell} R_{\mathcal{B}} (\mathcal{A} R_{\mathcal{B}})^{\ell} + (-1)^{N} R_{\Lambda} (\mathcal{A} R_{\mathcal{B}})^{N}$$ These two identities together $$S_{\mathcal{L}}(t)\Pi^{\perp} = \Pi^{\perp} \sum_{\ell=0}^{N-1} (-1)^{\ell} \frac{i}{2\pi} \int_{a-i\infty}^{a+i\infty} e^{zt} R_{\mathcal{B}}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{\ell} dz$$ $$+ (-1)^{N} \Pi^{\perp} \frac{i}{2\pi} \int_{a-i\infty}^{a+i\infty} e^{zt} R_{\Lambda}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{N} dz$$ $$= \sum_{\ell=0}^{N-1} \Pi^{\perp} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)}$$ $$+ (-1)^{N} \frac{i}{2\pi} \int_{a-i\infty}^{a+i\infty} e^{zt} \Pi^{\perp} R_{\Lambda}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{N} dz$$ and we have to explain why the last term is of order $\mathcal{O}(e^{at})$. We clearly have $$\sup_{z=a+iy,\,y\in[-M,M]}\|\Pi^{\perp}R_{\Lambda}(z)(\mathcal{A}R_{\mathcal{B}}(z))^{N}\|$$ and it is then enough to get the bound $$||R_{\Lambda}(z)(AR_{\mathcal{B}}(z))^{N}|| \leq C/|y|^{2}, \quad \forall z = a + iy, |y| \geq M, \ a > a_{*}$$ #### The key estimate We assume (in order to make the proof simpler) that $\zeta=1$, namely $$\|(\mathcal{A}S_{\mathcal{B}})^{(*n)}\|_{X\to X_1} = \mathcal{O}(e^{at}) \quad \forall \ t\geq 0,$$ with $X_1 := D(\Lambda) = D(\mathcal{B})$, which implies $$\|(\mathcal{A}R_{\mathcal{B}}(z))^n\|_{X\to X_1}\leq C_a\quad \forall\,z=a+iy,\ a>a_*.$$ We also assume (for the same reason) that $\zeta' = 0$, so that $$\mathcal{A} \in \mathcal{L}(X)$$ and $R_{\mathcal{B}}(z) = \frac{1}{z}(R_{\mathcal{B}}(z)\mathcal{B} - I) \in \mathcal{L}(X_1, X)$ imply $$\|\mathcal{A}R_{\mathcal{B}}(z)\|_{X_1\to X}\leq C_a/|z|\quad \forall\,z=a+iy,\,\,a>a_*.$$ The two estimates together imply (*) $$\|(AR_{\mathcal{B}}(z))^{n+1}\|_{X\to X} \le C_a/|z| \quad \forall z=a+iy, \ a>a_*.$$ ullet In order to deal with the general case $0 \le \zeta' < \zeta \le 1$ one has to use some additional interpolation arguments We write $$R_{\Lambda}(1-\mathcal{V})=\mathcal{U}$$ with $$\mathcal{U} := \sum_{\ell=0}^n (-1)^\ell R_{\mathcal{B}} (\mathcal{A} R_{\mathcal{B}})^\ell, \quad \mathcal{V} := (-1)^{n+1} (\mathcal{A} R_{\mathcal{B}})^{n+1}$$ For M large enough $$(**) ||V(z)|| \le 1/2 \forall z = a + iy, |y| \ge M,$$ and we may write the Neuman series $$R_{\Lambda}(z) = \underbrace{\mathcal{U}(z)}_{\text{bounded}} \underbrace{\sum_{j=0}^{\infty} \mathcal{V}(z)^{j}}_{\text{bounded}}$$ For N = 2(n+1), we finally get from (*) and (**) $$||R_{\Lambda}(z)(AR_{\mathcal{B}}(z))^{N}|| \leq C/\langle y \rangle^{2}, \quad \forall z = a + iy, |y| \geq M$$ ### Perturbation argument Uniqueness and linearized/nonlinear stability of the steady state for problems without "detailed balance condition" or "trivial stationary solution" My personal favorite example: the inelastic Boltzmann equation ullet steady state: $\exists \ {\sf G}_e \in P(\mathbb{R}^d) \cap \mathcal{S}(\mathbb{R}^d)$ solution to (E) $$Q_e(G_e, G_e) + (1 - e) \Delta G_e = 0, \quad \int G_e \, v \, dv = 0$$ - ullet Q_e Boltzmann kernel associated to $e \in [0,1)$ inelastic coefficient - elastic collision: e = 1 - ΔG_e diffuse forcing - $G_e \approx e^{-|v|^{3/2}} \notin L^2(G^{-1})!$ - See also Gamba, Panferov, Villani & Bobylev, Gamba, Panferov (2004) ## Step 1: uniqueness of the steady state G_e ... ullet $G_e ightarrow G_1$ when e ightarrow 1 with $$G_1 \in P(\mathbb{R}^d) \cap \mathcal{S}(\mathbb{R}^d), \quad Q(G_1, G_1) = 0, \quad \int G_1 \, v \, dv = 0.$$ $$G_1(v) = (2\pi\theta)^{-d/2} \, e^{-\frac{|v|^2}{2\theta}} \text{ for some } \theta > 0.$$ • $(E) \times |v|^2$ implies $$-(1-e^{2}) D_{\mathcal{E}}(G_{e}) + (1-e) 2d \int G_{e} dv = 0$$ and in the limit $e \rightarrow 1$: $$D_{\mathcal{E}}(G_1) := \int \int |v - v_*|^3 G_1(v) G_1(v_*) dv dv_* = d \qquad \theta = \bar{\theta}.$$ • We prove more: $\exists ! \overline{G}_1$ for "any" strong norm $\| \cdot \| \exists C$ $$\forall G_e \text{ solution} \quad ||G_e - \bar{G}_1|| \leq C \, \eta(1-e) \to 0$$ ## Step 1: ... by a "implicit function argument" • $\Phi(e, G_e) = 0$ when we define $$\Phi(e,g):=(D_{\mathcal{E}}(g)- rac{2d}{1+e},Q_e(g,g)+(1-e)\,\Delta g).$$ ullet We define $A:\mathcal{E} o \mathbb{R} imes \mathcal{E}_0$ invertible, $\mathcal{E} = \mathcal{E}_0 \oplus \mathcal{E}_1$, by $$Ah:=D_2\Phi(1,\bar{G}_1)\,h=[2\,D_{\mathcal{E}}(g,\bar{G}_1),\mathcal{L}\,h],\quad \mathcal{L}h:=2\,Q(\bar{G}_1,h).$$ • For two given solutions G_e and H_e of (E): $$G_{e} - H_{e} = A^{-1} [A G_{e} - \Phi(e, G_{e}) + \Phi(e, H_{e}) - A H_{e}]$$ $$\Rightarrow ||G_{e} - H_{e}|| \leq ||A^{-1}|| \eta(1 - e) ||G_{e} - H_{e}||$$ $$\|G_e - \bar{G}_1\| = 0$$ if $\|A^{-1}\| \eta(1-e) < 1$ we note it ## Step 2 : linear and nonlinear stability of \bar{G}_e Define the inelastic linearized operator $$\mathcal{L}_e h := 2 Q_e(\bar{G}_e, h) + (1 - e) \Delta h \approx 2 Q_1(\bar{G}_1, h) = \mathcal{L}_1 h$$ • Introduce a decomposition $\mathcal{L} = \mathcal{A} + \mathcal{B}$, $\mathcal{B}(\xi) = \mathcal{B} - \xi$, $L_1(\xi) = L_1 - \xi$, and $\mathcal{U}(\xi) := \mathcal{B}(\xi)^{-1} - L_1(\xi)^{-1} \mathcal{A} \mathcal{B}(\xi)^{-1}$, we get $$(\mathcal{L}_e - \xi)\mathcal{U}(\xi) = Id - (\mathcal{L}_e - \mathcal{L}_1)L_1(\xi)A\mathcal{B}(\xi) \approx Id$$ if $$\mathcal{A}\,h:=Q_{e,\delta}^{+,*}(\bar{G}_e,h)$$, $\mathcal{B}\,h:=r_{e,\delta}(h)-\nu(\bar{G}_e)\,h-(1-e)\,\Delta h$ - We conclude with - $\Sigma(\mathcal{L}_e) \cap \Delta_a = \{\lambda_{\mathcal{E}}(e), 0\}, \quad \lambda_{\mathcal{E}}(e) \approx -(1-e)\,\bar{\lambda}_{\mathcal{E}} < 0$ - $e^{t \mathcal{L}_e} (Id \Pi_{\mathcal{L}_e,a}) = \mathcal{O}(e^{at})$