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Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banach
space, without regularity (# eventually norm continuous), without symmetry (#
Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

e Spectral map Theorem — ¥(e") ~ &™) and w(A) = s(A)

e Weyl's Theorem — (quantified) compact perturbation ess(A + B) =~ L ess(B)
e Small perturbation — X(A.)~X(A)if Ac = A

o Krein-Rutmann Theorem — s(A) =supReX(A) € L4(A) when Sp >0

e functional space extension (enlargement and shrinkage)
— X(L)~X(L)when L =L
< tide of spectrum phenomenon

Structure: operator which splits as
N=A+B, A=<B, Bdissipative

Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators and
W?P(m) weighted Sobolev spaces
S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 4 /38



Applications / Motivations :

e (1) Convergence rate in large Banach space for linear dissipative and
hypodisipative PDEs (ex: Fokker-Planck, growth-fragmentation)

e (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of
linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ¢ space

e (3) Existence, uniqueness and stability of equilibrium in “small perturbation
regime” in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck,
parabolic-parabolic Keller-Segel, neural network)

Is it new?

e Simple and quantified versions, unified theory (sectorial, KR, general) which
holds for the “principal” part of the specrtrum

o first enlargement result in an abstract framework by C. Mouhot (CMP06)
e Unusual splitting
N= A + By = A +A+ B

compact  dissipative smooth dissipative

e The applications to these nonlinear problems are clearly new
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Old problems

e Fredholm, Hilbert, Weyl, Stone  (Funct Analysis & sG Hilbert framewrok)
< 1932

e Hyle, Yosida, Phillips, Lumer, Dyson  (sG Banach framework & dissipative
operators) 1940-1960 and also Dunford, Schwartz

e Kato, Pazy, Voigt (analytic op., positive op.) 1960-1975

e Engel, Nagel, Gearhart, Metz, Diekmann, Priiss, Arendt, Greiner, Blake,
Mokhtar-Kharoubi, Yao, ... 1975-

Spectral analysis of the linearized (in)homogeneous Boltzmann equation
and convergence to the equilibrium

e Hilbert, Carleman, Grad, Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg,
Guo, Strain, ...

Spectral tide/spectral analysis in large space

e Bobylev (for Boltzmann), Gallay-Wayne (for harmonic Fokker-Planck)
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Still active research field

e Semigroup school (> 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,
Greiner, Metz, Mokhtar-Kharoubi, Nagel, Priiss, Webb, Yao, ...

e Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,
Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjostrand, Wayne, ...

e Probability school (as in Toulouse): Bakry, Barthe, Bobkov, Cattiaux,
Douc, Gozlan, Guillin, Fort, Ledoux, Roberto, Rockner, Wang, ...

e Kinetic school (~ Boltzmann):

> Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

> Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
Schmeiser, ... (Poincaré inequality & hypocoercivity)

> Guo school related to Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, ...
(existence in “small spaces” and “large spaces”)
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Examples of operators - |
1) - Linear Boltzmann, e.g. k(v,v.) = o(v, vi) M(vs), o(vi,v) = o(v, vi),

/\f:/k(v, v*)f(v*)dv*—/k(v*,v) dv, £(v)

= Af =:Bf

2) - Fokker-Planck, with E(v) ~ v |v|772, v > 1,

A=A, +div,(E(v)) =M xr + M xr(v)
A
=B =

3) - Inhomogeneous/kinetic Fokker-Planck

AN=T+C—Mxr+Mxgr(x,v)

=B =A
with
T:=—v-Vi+F -V, Cf:=Af+div,(E(v)F)
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Examples of operators - |l

4) - Growth fragmentation

N=F"—F +D=Ff +F °-F +D
- =
=A =B
with
Df = —7(x)0«f —vf, (7,v)=(1,0) or (x,2)
FH(f) ::/ k(y,x)f(y)dy, F f:=K(x)f

Mass conservation of F* — F~ implies

ko= [ Y k(xy) dy

X

Self-similarity in y/x

k(x,y) = K(x)x 1 0(y/x), /0 z0(z)dz =1,

with
0 €D(0,1) or 6(z)=20,1/0 or 6(z)=0,—0+ 0,1
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Examples of operators - Ill

5) - Linearized Boltzmann

Ah

Q(h, M) + Q(M, h)

= QY (h,M)+ Q" (M, h)— L(h) M — L(M)h
Q;*[h]+ Q5 [h] — L(M)h

N——

=:Ah =:Bh

6) - Inhomogeneous linearized Boltzmann (in the torus)

A = QF*[h+ Q5™ [h] — LM+ Th, T:=-v-V,
N——

=:Ah =:Bh

7) - other operators: homogeneous/inhomogeneous linearized inelastic
Boltzmann, homogeneous linearized Landau, Fokker-Planck with fractional
diffusion, linearized Keller-Segel (parabolic-elliptic), homogeneous Boltzmann for
hard potential without angular cut-off
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Operators and their decomposition

General rule 1 for FP/Boltzmann type operator

~

= order <1+ order?2
:= compact + explicit
L := smooth/order < 1+ small + explicit/order 2

~~

A B

~

General rule 2 for non space homogeneous operator

L, =A, + B,
Lyyv:i=A, +B, + T, Tx=—-v - Vy+V, V.V,
8L
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The Growth-Fragmentation equation

Th 1. (M., Scher)
Assume that for v > 0, xg > 0, 0 < Ky < K1 < o0:

Kox" Lo < K(x) < K x7.
There exists a (unique) (A, fo) with A € R and £ is the unique solution to
Ffo+Dfsg = Mo, fo >0, (fo,1)=1.
There exists a < A, C > 0 such that Vfy € L,ll, a>1

|fet fo — X Mofol|y, < C e ||fy — X Moyl

where g is the projector on the eigenspace Vect(fy).

Improve and unify : Metz-Diekmann (1983), Escobedo-M-Rodriguez (2005),
Michel-M-Perthame (2005), Perthame-Ryzhik (2005), Laurengot-Perthame
(2009), Caceres-Caiiizo-M (2010) &t (2011)
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The Fokker-Planck equation
Consider
Of =N = A, f +divy(Ff)
with a (friction) force field F such that
F-x>|x]", divF < Crlx|"™2, Vx¢€Bg

There exists then a (unique) function £, € P(R?) which is a stationary
solution, with f, = exp(—® + ) when F = Vo, d(v) = % (v)7.

For an integrability exponent p € [1, o0], a regularity exponent

o € {—1,0,1} and a polynomial weight

m= <v)k7 k > k*(p,o,7), ify>2,
or an exponential weight
m=e"’  se¢ =779, v>1, k<1l/yifs=1,
we define the abscissa
as(p, m) = finite < 0 in the limit cases, = —oo otherwise
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Th 2. Gualdani-M.-Mouhot: M.-Mouhot; Ndao
There exists
0>a>a,(p,m)

there exists C = C(a, p, 0,7y, m) such that for any fp € W?P(m)
||etAf0 — (fo) fooHWa,P(m) < Ce* o — (fo) fOOHW”"’(m)'

If moreover, v € [2,2+1/(d —1)],

Wi(e™'fy), (o) frs) < C €% WA(fo, (fo) f)

L . ~1/2
e Generalize similar result known in L?(fx / )

e The same result holds for the kinetic Fokker-Planck in the torus and may be
extended to the kinetic Fokker-Planck in R¢ with confinement potential

e In the case E(v) = V® one can take —a = X := the best constant in the
Poincaré inequality if m is “increasing enough”

e A rate of decay in Wasserstein distance W, have been obtained by
Bolley-Gentil-Guillin (2012)
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Conditionally (up to time uniform strong estimate) exponential H-Theorem

o (f;)¢>0 solution to the inhomogeneous Boltzmann equation for hard
spheres interactions in the torus with strong estimate

sup (Fell e+ el 2 asgugsy) < Gop < o0
e Desvillettes, Villani proved [Invent. Math. 2005]: for any s > sp, k > ko

f'
Vt>0 / felog —— dvdx < Cg (1 +t) ™k
TxR? Gi(v)

with Cs < 00, Ts x — 00 when s, k — 0o, G1 := Maxwell function

Th 3. Gualdani-M.-Mouhot
ds1, ki s.t. for any a > A\, exists C,

fe 2
Vt>0 / filog ——— dvdx < Cye2t,
TxRd ’ G ( )

with A2 < 0 (2" eigenvalue of the linearized Boltzmann eq. in L2(G;1)).
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Global existence and uniqueness for weakly inhomogeneous initial data for the
elastic and inelastic inhomogeneous Boltzmann equation for hard spheres
interactions in the torus

Th 4. Gualdani-M.-Mouhot; Tristani

For any Fy € L3(RY) there exists ey € (0,1) and g¢ > 0 such that if f, €
Wk1(T9; LL(RY)) satisfies ||fy — Fol| < &0 and if e € [eo, 1] then

@ there exists a unique global mild solution f(t, x, v) starting from fo;
@ f(t) — Gy when t — oo (with rate) when e = 1;

@ f(t) — G. when t — oo (with rate) when e < 1 (diffuse forcing).

e The case e ~ 1 is proved thanks to a small perturbation argument in a large space because
Ge(v) > e IP? ¢ 12(6, V7).

e The case e = 1 has been treated by non constructive arguments by Arkeryd-Esposito-
Pulvirenti (CMP 1987), Wennberg (Nonlinear Anal. 1993) and for the space homogeneous
analogous by Arkeryd (ARMA 1988), Wennberg (Adv. MAS 1992)

e Extend to a larger class of initial data similar results due to Ukai, Guo, Strain and collaborators
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More results about constructive exponential rate of convergence

For

e homogeneous Boltzmann eq for hard spheres (Mouhot 2006)

e homogeneous weakly inelastic Boltzmann eq for hard spheres (M-Mouhot 2009)
e homogeneous Landau eq for hard potential (Carrapatoso 2013)

e parabolic-elliptic Keller-Segel eq (Egafia-M 2013)

e homogeneous Boltzmann eq for hard potential (Tristani, soon on arXiv)

In all these cases, we prove that under minimal assumptions on the initial datum
fo (bounded mass, energy, entropy, ...) the associated solution f(t) satisfies

f(t) — G when t — oo (with exponential rate)
where G is the unique associated equilibrium/self-similar profile

We know (except for the inelastic Boltzmann eq) that the associated linearized
operator L is self-adjoint and has a spectral gap in the very small space

L2(G171/2) in which a general solution does not belong (even for large time).

D> we start by “enlarge” the space in which £ has a spectral gap and then we
(classically) prove a nonlinear stability result

> for the weakly inelastic Boltzmann eq we additionally use perturbation
argument
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Main issue

For a given operator A in a Banach space X, we want to prove

TNNA, ={&}, & =0
with £(A) = spectrum, A, :={z € C, Rez > o}

Ma,e, = finite rank projection, i.e. & € X4(A)

[SA(] = Mag)llxox < Goe™,  a< Refy
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Spectral mapping - characterization

Th 1. (M., Scher)
) A=A+ B, where Ais BS with 0 < ¢’ <1,

El) 1S5 # (ASE) || xx < Cre®, Va>a*, Vi >0,

(2) ||Sp * (ASp)! n)HX—>D(/\C) < Cpe®t, Va> a*, with ¢ > ¢,
(3) Z(A) N (Az\Age) =0, 8" < a™

is equivalent to

(4) there exists a projector 1 which commutes with A such that
A= Nx, € B(X1), X1 := RM, £(A1) C A

ISA(t) (1 = Mx—x < Cae™, Va>a’

In particular
()N Ager = TR >0, 2> a*
and
max(s(A), a*) = max(w(A), a*)
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Weyl's theorem - characterization

Th 2. (M., Scher)

(0) A=A+ B, where Ais BS with 0 < ¢’ < 1,

(1) ||Ss * (ASg)*9 || xx < Cre, Ya>a*, V>0,

(2) 1S5 * (ASE) V|| xox, < Cae®, Va > a*, with ¢ > ¢,

(3) Jo7 I(ASE)FmH )| xy e~ dt < 00, Va > a*, with Y CC X,
is equivalent to

(4) there exist &1,...,&, € A,, there exist My, ..., M, some finite rank
projectors, there exists T; € B(RI;) such that AM; = M;A = T;1;,
Y(T;) = {¢}, in particular

SN NA, ={&,...&} € Ta(%)

and there exists a constant C, such that
J
ISa(t) = > etiMjllxox < Goe™, Va>a'
j=1
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Small perturbation

Th 3. (M. & Mouhot; Tristani)
Assume
(0)Ac=A.+B.in X;, X_1 CC Xo =X CC Xy, A: < B,
(1) IS5, * (A:-55.)"|x sx. < Cre, Va>a*, V£>0,i=0,41,
(2) HS& (.A SBE)(*H)||X;—>X;+1 < C,e?, Va>a* i= 0,-1,
(3) Xiy1 C D(B¢x;), D(A¢x,) for i = —1,0 and
A — AOHX,'—>X,'—1 + 1B — BO||X,'—>X;—1 <m(e) =0, i=0,1,
(4) the limit operator satisfies (in both spaces Xy and Xi)
Z(/\o) NA, = {51, ...,fk} C Zd(/\o).

Then

Z(/\E) N Aa = {filv "'7§§7d157 "'75?17 "'7€i7df} - Zd(/\s)a

& =&l <mle) =0 V1<j<k V1<) <dj

dimR(nA57€ﬁ1 + ...+ n/\f’gjg,dj) = dimR(I'I/\ij);

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 25 /38



Krein-Rutmann for positive operator

Th 4. (M. & Scher) Consider a semigroup generator A on a “Banach
lattice of functions” X,
(1) A such as in Weyl's Theorem holds for some a* € R;
(2) 3b > a* and ¢ € D(A*) N X/ \{0} such that A*¢p > b);
(3) Sa is positive (and A satisfies Kato's inequalities);
(4) —NA satisfies a strong maximum principle.
Defining A := s(A\), there holds
a* < A=w(N) and e X4(N),

and there exists 0 < f,, € D(A) and 0 < ¢ € D(A*) such that

My =X, Né=Ab, RMpx = Vect(fy),
and then

Manf =({f,¢)fx VFfeX.
Moreover, there exist a € (a*, ) and C > 0 such that for any f, € X
ISa(t)fo — €M Manfolx < Ce** |y — Manfollx V>0
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Change (enlargement and shrinkage) of the functional space of the spectral

analysis and semigroup decay

Th 5. (M. & Mouhot) Assume
£:A+B, L:A—FB7 A:A‘E, B:B|E, EcCcé&

(i) (B — a) is hypodissipative on E, (B — a) is hypodissipative on &;
(i) Ae B(E), Ae B(&);
(iii) thereis n > 1 and C, > 0 such that

[(ASE) ) (8)]| ¢ < Cae™.

Then the following for (X,A\) = (E, L), (£, L) are equivalent:
3¢; € A, and finite rank projector Mz € B(X), 1 <j < k, which
commute with A and satisfy Z(A|n; ) = {§}, so that

V>0, HS/\(t) - zk:S(t) nj,AHX%X < Crae’t
j=1
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Discussion / perspective

e In Theorem 1, 2, 3, 4, one can take n =1 in the simplest situations
(most of space homogeneous equations), but one need to take n = 2 for
the equal mitosis equation or for the space inhomogeneous Boltzmann
equation

e In Theorem 5, one need to take n > d/4 for the space homogeneous
Fokker-Planck equation in order to extend the spectral analysis from L2
(well-known) to L1

e Beyond the “dissipative case”?

> example of the Fokker-Planck equation when v € (0,1) and relation

with “weak Poincaré inequality” by Rockner-Wang

> Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,
Batkal-E-P-S, Batty-D, ...

> applications to Boltzmann and Landau equation associated to “soft
potential”

e inhomogeneous linearized Landau, linearized Keller-Segel (parabolic-
parabolic), neural network, Fokker-Planck in the subcritical case v € (0, 1)
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Proof of the enlargement theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)
S, = I'I55+(/—I'I)5[;(I—FI)

and write the (iterated) Duhamel formula or “stopped” Dyson-Phillips
series (the Dyson-Phillips series corresponds to the choice n = o)
n—1

Se=Y Spx(ASp)") +  Spx (ASz)*N)
=0

or + (ASE)M xS,

These two identities together

Se = NS+ (I-n {ZSB* (ASE) Oy (11— 1)
£=0

+ (=) Sc} * (ASp)M(1 - )
or + (I —N)(ASE)*M x {S,(1 — M)}
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Sketch of the proof of the spectral mapping theorem

We introduce the resolvent

Ra(z) = (A—2)1 = — /Ooo Sa(t) e 7 dt.

Using the inverse Laplace formula for b > w( ) > s(A) = sup ReX(A) and

the fact that M1 Ry(2) is analytic in A+, M+ =1 — 1, we get
i b+ioco
NG I E— et Mt Rr(z2) dz
27 Jb—ico
i a+iM
= lim — e N1 Ru(2) dz

M—soo0 270 a—iM

Ra=_(=1)" Rs(ARs)" + (~1)" Ra(ARs)"
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These two identities together

N-1 a+ioco

Se(Hnt = HLZ(_IYQ;/‘; et Ry(2)(ARs(2))’ dz

/—0 —ioco

: a+ioco
+(-=1)N I'IL2I/ e Ra(2)(ARs(2))N dz
T Ja—ico
N—-1
= M+ S « (ASg)*)
(=0

: a+ioco
+(1)’V2’7r/ e N RA(2)(ARs(2))" dz

and we have to explain why the last term is of order O(e?"). We clearly
have

sup IN+Ra(2)(ARs(2))" |
z=a+iy, y€[-M,M]

and it is then enough to get the bound
IRA(Z)(ARs(2)"| < C/IyI?, Vz=a+1iy, ly| > M, a> a
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The key estimate

We assume (in order to make the proof simpler) that ( = 1, namely
I(ASB) | x5x, = O(e™) Vit >0,
with X1 := D(A) = D(B), which implies
[(AR5(2)) Ix—x < Co Yz=a+iy, a> a.

We also assume (for the same reason) that ¢’ = 0, so that
1
A¢€ E(X) and RB(Z) = ;(RB(Z)B — /) S ﬁ(Xl,X)

imply
|ARB(2)||x,—»x < Ca/|z| Vz=a+ iy, a> a..

The two estimates together imply

() I(ARs(2)" Hix-x < Go/lz| Vz=a+iy, a> a.

® In order to deal with the general case 0 < ¢’ < ¢ < 1 one has to use some additional
interpolation arguments
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We write
R\N1-V)=U

with
U= Z ) Rs(ARg), V= (-1)""1(ARp)"

For M large enough
() V(I <1/2 Vz=a+ly, [y[=M,
and we may write the Neuman series

Ra( ZV

oonded =0
~——
bounded

For N =2(n+ 1), we finally get from (x) and (xx)

bounde

IRM(2)(ARs(2)N| < C/(y)?, Vz=a+iy,ly|>M
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Perturbation argument

Uniqueness and linearized /nonlinear stability of the steady state for
problems without “detailed balance condition” or “trivial stationary
solution”

My personal favorite example: the inelastic Boltzmann equation

e steady state: 3G, € P(RY) N S(RY) solution to

(E) Qe(Ge, Ge) + (1 — e) AGe =0, /Gevdv:O

Qe Boltzmann kernel associated to e € [0, 1) inelastic coefficient
elastic collision: e =1

A G, diffuse forcing

Ge ~ e IV ¢ [2(G 1))

See also Gamba, Panferov, Villani & Bobylev, Gamba, Panferov (2004)
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Step 1 : uniqueness of the steady state G,
e G, — G; when e — 1 with
G e PRHNSMRY), Q(G1,G) = /Gl vdv = 0.
Gi(v) = (2m0)~9/? e_% for some 6 > 0.
e (E) x |v|? implies

—(1 - e?)Dg(Ge) + (1 —e)2d / Gedv =0
and in the limit e — 1:

Dg(Gl);://yv—v*PGl(v) Gi(vs)dvdv, =d 6 =04.

e We prove more: 3Gy for "any" strong norm || - || 3C
V Ge solution ||Ge — Gi|| < Cn(l—e) =0
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Step 1 : ... by a “implicit function argument”

e d(e, Go) = 0 when we define

®(e.8) = (Delg) — 1. Qulgsg) + (1) Ag).

o We define A: £ — R x & invertible, £ = & & &1, by
Lh:=2 Q(Gl, h).

Ah := Dy®(1, Gy) h = [2 De(g, G1), L h],
e For two given solutions G, and H, of (E) :
Ge—He = A'[AG. — (e, Ge) + ®(e, He) — AH,]
= [|Ge — Hell < [IATH [ n(1 — ) [|Ge — He]

|Ge — G1]| =0 if ||A7n(1—e) <1 we note it
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Step 2 : linear and nonlinear stability of G,

e Define the inelastic linearized operator

Leh = 2Qe(Geh) + (1 —€)Ah ~ 2Qi(Gy, h) = Lih
e Introduce a decomposition L= A+ B, B(§) =B —¢, L1(§) = L1 — &,
and U(€) = B(E) ! — Li(€) T AB(E) 1, we get
(Le =UE) = Id—(Le—L1)L1(E)AB(S) =~ Id
if Ah:= Q[ (Ge,h), Bh:=res(h) —v(Ge) h—(1—e)Ah

e We conclude with
o Y(L)NA,={)e(e),0}, Xe(e)=—(1—e)Ae <0
o etfe (Id —Ng, .) = O(et)
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