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Aim of the talk

General discussion about propagation of chaos

I introduction to mean field limit / propagation of chaos
I short discussion about chaos
I quantitative/qualitative and uniform in time chaos
I four different methods

2D viscous Vortex model and the nonlinear Martingale method

I An example of “singular” McKean-Vlasov model
I sketch of the proof
I nonlinear Martingale method
I Estimates thanks to Fisher information
I Qualitative (entropic) chaos
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Outlines of the talk

1 Introduction

2 Short discussion about chaos

3 Short discussion about methods

4 Nonlinear Martingale method and the vortex model

5 sketch of the proof - a priori estimates

6 sketch of the proof - probability argument

7 Sketch of the proof - functional analysis argument

8 Sketch of the proof - PDE/SDE argument

9 Sketch of the proof - entropy argument

S.Mischler (Paris-Dauphine) Kac’s chaos December 16-18, 2015 3 / 53



Plan

1 Introduction

2 Short discussion about chaos

3 Short discussion about methods

4 Nonlinear Martingale method and the vortex model

5 sketch of the proof - a priori estimates

6 sketch of the proof - probability argument

7 Sketch of the proof - functional analysis argument

8 Sketch of the proof - PDE/SDE argument

9 Sketch of the proof - entropy argument
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Micro to macro

• How to go rigorously from a microscopic description to a statistical description?

How to derive (justify) the equation at the mesoscopic/macroscopic level ?

How to get something (simpler) from a microscopic description with a huge
number of particles ?

• (Kac’s) mean field limit ( 6= Boltzmann-Grad limit) in the sense that each
particle interacts with all the other particles with an intensity of order O(1/N)
⇒ statistical description = law of large numbers limit of a N-particle system

• at the formal level the identification of the limit is quite clear when one assumes
the molecular chaos for the limit model

• main difficulty : propagation of chaos
B chaos for ∞ particles = Boltzmann’s molecular chaos (stochastic independence)
B chaos for N →∞ particles = Kac’s chaos (asymptotic stochastic independence)
B propagation of chaos: holds at time t = 0 implies holds for any t > 0
B propagation of chaos is necessary in order to identify the limit as N →∞
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The Kac’s approach (1956) for Boltzmann model and others - trajectories

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its state (position, velocity) ZN

1 , ...,ZN
N ∈ E , E = Rd , which

evolves according to

dZi =
1

N

N∑
j=1

K (Zi −Zj) dt +
√

2νdBi (ODE or Brownian SDE)

dZ =
1

N

N∑
i,j=1

∫
Sd−1

(Z ′ij −Z)B dNi,j(dσ) (Boltzmann-Kac)

dZi =
1

N

N∑
j=1

b(Zi −Zj) dt +
1√
N

N∑
j=1

a1/2(Zi −Zj) dBi,j (Landau-Kac)

where K is a pairwise interaction force field, Bi independent Brownian motions,
ν ≥ 0, N Poisson measure, Z ′ij = (Z1, ...,Z ′i , ...,Z ′j , ...,ZN) represents the system
after collision of the pair (Zi ,Zj), B cross-section, a Landau matrix kernel ,
b = diva, Bi,j Brownian motions such that Bj,i = −Bi,j and independent if i < j .
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The Kac’s approach (1956) for Boltzmann and others - Markov semigroup

The law GN(t) := L(ZN
t ) satisfies the Master (Liouville or backward

Kolmogorov) equation

∂t〈GN , ϕ〉 = 〈GN ,ΛNϕ〉 ∀ϕ ∈ Cb(EN)

where the generator ΛN writes

(ΛNϕ)(Z ) :=
1

N

N∑
i,j=1

K (zi − zj) · ∇iϕ+ ν

N∑
i=1

∆iϕ (ODE/SDE)

(ΛNϕ)(Z ) =
1

N

N∑
1≤i<j≤N

∫
Sd−1

[
ϕ(Z ′ij)− ϕ(Z )

]
B(zi−zj , σ)dσ (Boltzmann-Kac)

(ΛNϕ)(Z ) =
1

N

N∑
1≤i,j≤N

b(zi − zj) · (∇iϕ−∇jϕ) (Landau-Kac)

+
1

2N

N∑
1≤i,j≤N

a(zi − zj) : (∇2
iiϕ+∇2

jjϕ−∇2
ijϕ−∇2

jiϕ)
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What is the limit as N →∞

Is it possible to identify the limit of the law L(ZN
1 ) of one typical particle?

More precisely, we want to show that L(ZN
1 )→ f = f (t, dz) and that

f ∈ C ([0,∞);P(E )) is a solution to

∂t f = divz [(K ∗ f )f ] + ν∆f (McKean − Vlasov)

∂t f =

∫
Rd×Sd−1

[f (z ′)f (v ′)− f (z)f (v)]B dzdσ (Boltzmann)

∂t f = ∇z

∫
Rd

a(z − z∗)[f (z∗)∇f (z)− f (z)∇f (z∗)] dz∗ (Landau),

depending of the N-particle dynamics
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Why those equations are the right limits ?

Assuming that

L(ZN
1 )→ f = f (t, dz), L(ZN

1 ,ZN
2 )→ g = g(t, dz , dv),

we easily (formally) show by taking ϕ(Z ) = ϕ(z1) in the Master equation

∂t f = divz
[∫

a(z − v)g(dz , dv)
]

+ ν∆f

∂t f =

∫
Rd×Sd−1

[g(z ′, v ′)− g(z , v)]B dvdσ

∂t f = ∇z

∫
Rd

a(z − v)[∇zg(z , v)−∇vg(z , v)] dv .

We obtain the McKean-Vlasov equation, the Boltzmann equation and the Landau
equation if we make the additional

independence / molecular chaos assumption g(v , z) = f (v) f (z).
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Chaos according to Boltzmann and to Kac

• for a infinite system of indistinguishable particles: Boltzmann’s
(molecular) chaos means

L(Zi ,Zj) = f ⊗ f

That is the stochastic independence (for a sequence of exchangeable
random variables)

• for a system of N indistinguishable particles with N →∞: Kac’s chaos
means

L(ZN
i ,ZN

j )→ f ⊗ f as N →∞

That is an asymptotically stochastic independence (of the coordinates of a
sequence of random vectors with exchangeable coordinates)

S.Mischler (Paris-Dauphine) Kac’s chaos December 16-18, 2015 10 / 53



Difficulty

• The above picture is not that easy because for N fixed particles the states
Z1(t), ..., ZN(t) are never independent for positive time t > 0 even if the initial
states Z1(0), ...,ZN(0) are assumed to be independent : that is an inherent
consequence of the fact that particles do interact!

• Equations are written in spaces with increasing dimension N →∞.
To overcome that difficulty we will work in fixed spaces using:
empirical probability measure

X ∈ EN 7→ µN
X :=

1

N

N∑
i=1

δxi ∈ P(E )

and/or marginal densities

FN ∈ Psym(EN) 7→ FN
j :=

∫
EN−j

FNdzj+1...dzN ∈ Psym(E j)

• The nonlinear PDE can be obtained as a “law of large numbers” for a not
independent array of exchangeable random variables in the mean-field limit.

• That is more demanding that the usual LLN. We need to propagate some
asymptotic independence = Kac’s stochastic chaos.
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Comments

• We need at least
B a priori estimates on the N-particle system
B uniqueness for the limit nonlinear PDE

• Most of the works has been done in a probability measures framework.
In order that everything make sense, it is then needed that coefficients are not
singular (they must be smooth enough, say C 0).
B propagation of chaos is even more difficult for singular models

• For numerical simulation purpose, one can introduce Nanbu-like stochastic
dynamic

dZi =
1

N

N∑
j=1

∫
Sd−1

B̃(Zi ,Zj , σ) dNi (dσ)

=
1

N

N∑
j=1

b(Zi −Zj) dt +
1

N

N∑
j=1

a1/2(Zi −Zj) dBi

They are simpler to analyze but they are not energy conservative
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Kac’s contribution and Kac’s program

• Kac (1956) defined the notion of chaos for sequences of random vectors. He
proved the propagation of chaos for the “Kac’s caricature” of Boltzmann model.
He showed that the stochastic dynamic leaves invariant the Kac’s sphere

KSN := {V ∈ RN ; |v1|2 + ...+ |vN |2 = N},

and, for any fixed N ≥ 2, convergence to the equilibrium (stationary measure)

GN
t = L(VN

1t , ...,VN
Nt) −→t→∞

γN = uniform measure on KSN .

Kac’s Program:

(Pb1) Establish propagation of chaos for more realistic (singular) models

(Pb2) Establish the convergence to the equilibrium as t →∞ with a uniform
chaos rate with respect to the number N of particles

(Pb2′) Establish quantitative chaos estimate (rate) for Kac’s chaos

(Pb3) Establish Boltzmann’s H-theorem from a microscopic description (seems to
be Kac’s motivation)
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Plan

1 Introduction

2 Short discussion about chaos

3 Short discussion about methods

4 Nonlinear Martingale method and the vortex model

5 sketch of the proof - a priori estimates

6 sketch of the proof - probability argument

7 Sketch of the proof - functional analysis argument

8 Sketch of the proof - PDE/SDE argument

9 Sketch of the proof - entropy argument
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Definition of chaos

Chaos is the asymptotic independence as N →∞ for a sequence (ZN) of
exchangeable random variables with values in EN

ZN = (ZN
1 , ...,ZN

N ) ∈ EN → FN := L(ZN) ∈ Psym(EN)

l l

µN
ZN :=

1

N

N∑
i=1

δZN
i
∈ P(E ) → F̂N := L(µN

ZN ) ∈ P(P(E ))

For a random variable Y taking values in E with law L(Y) = f ∈ P(E ) we say
that (ZN) is Y-Kac’s chaotic if

• L(ZN
1 , ...,ZN

j ) ⇀ f ⊗j weakly in P(E j) as N →∞;

• µN
ZN ⇒ f in law as N →∞,

meaning L(µN
ZN )→ δf in P(P(E )) as N →∞;

• E(|XN − YN |)→ 0 as N →∞ for a sequence YN of i.i.d.r.v with law f

Exchangeable means: L(ZN
σ(1), ...,Z

N
σ(N)) = L(ZN

1 , ...,ZN
N ) for any permutation σ

of the coordinates
S.Mischler (Paris-Dauphine) Kac’s chaos December 16-18, 2015 15 / 53



Definition of chaos = not about random variables but their laws !

For a given sequence (FN) in Psym(EN) we define
• the marginals FN

j ∈ Psym(E j) by

FN
j =

∫
EN−j

FNdzj+1...dzN

• the projection F̂N ∈ P(P(E )) by

〈F̂N ,Φ〉 =

∫
EN

Φ(µN
X )FN(dX ) ∀Φ ∈ Cb(P(E ))

• the normalized MKW distance on P(E j) by

W1(F ,G ) := inf
π∈Π(F ,G)

∫
E j×E j

(1

j

j∑
i=1

|xi − xj | ∧ 1
)
π(dX , dY ).

• the MKW distance W1 on P(P(E )) by

W1(α, β) := inf
π∈Π(α,β)

∫
P(E)×P(E)

W1(ρ, η)π(dρ, dη).
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Quantitative comparison of the several Definitions of chaos

For a given sequence (FN) in Psym(EN) we define

− the marginals FN
j ∈ Psym(E j),

− the projection F̂N ∈ P(P(E )),

− the normalized MKW distance W1 on P(E j),

− the MKW distance W1 on P(P(E )),

and for f ∈ P(E ) we say that (FN) is f -Kac’s chaotic if (equivalently)

• Dj(F
N ; f ) := W1(FN

j , f
⊗j) = E(|(XN

1 , ...,XN
j )− (XN

1 , ...,XN
j )|)→ 0

• D∞(FN ; f ) :=W1(F̂N , δf ) = E(W1(µN
ZN , f )→ 0

More precisely, for E = Rd

Lemma (Hauray, M.)

For given M and k > 1 there exist some constants αi ,C > 0 such that
∀ f ∈ P(E ), ∀FN ∈ Psym(EN) with Mk(FN

1 ),Mk(f ) ≤ M

∀ j , ` ∈ {1, ...,N,∞}, ` 6= 1 Dj(F
N ; f ) ≤ C

(
D`(FN ; f )α1 +

1

Nα2

)
.
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Stronger chaos: entropy and Fisher’s chaos

For FN ∈ Psym(EN), E = Rd , we define the normalized functionals

H(FN) :=
1

N

∫
EN

FN log FN , I (FN) :=
1

N

∫
EN

|∇FN |2

FN
.

Definition

Consider a sequence FN ∈ Psym(EN) and f ∈ P(E)

(FN) is f -entropy chaotic if FN
1 ⇀ f weakly in P(E) and H(FN)→ H(f )

(FN) is f -Fisher’s chaotic if FN
1 ⇀ f weakly in P(E) and I (FN)→ I (f )

Theorem (Hauray, M.)

In the list below, each assertion implies the one which follows

(i) (FN) is Fisher’s chaotic;

(ii) (FN) is Kac’s chaotic and I (FN) is bounded;

(iii) (FN) is entropy chaotic;

(iv) (FN
j ) converges in L1 for any j ≥ 1;

(v) (FN) is Kac’s chaotic.
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Comments

Extensions by Carrapatoso, Fournier, Guillin, Hauray, M.

• Kac’s chaos, entropic chaos and Fisher’s chaos on Kac’s spheres and on
Boltzmann’s spheres

• For a mixture of probability measures = without chaos hypothesis

• Optimal rate of convergence of D∞(f ⊗N , f ) ∼ N1/d for f ∈ Pq(Rd), d ≥ 2

Based on many previous works from Funct Analysis, Proba, Stat, Geo, ...

• Mixture: de Finetti (1937), Hewitt-Savage (1955), Robinson-Ruelle (1967)

• Functional and quantified LLN (Glivenko-Cantelli ... Rachev-Rüschendorf ...
Barthe-Bordenave)

• local central limit theorem of Berry-Esseen

• HWI inequality of Otto and Villani

• Entropy inequalities: Carlen-Lieb-Loss (2004), Arstein-Ball-Barthe-Naor (2004)

• previous comparison, quantitative and qualitative results on chaos
Kac: Foundations of kinetic theory. (1956)
Sznitman: Topics in propagation of chaos. Saint-Flour -1989 (1991)
Carlen, Carvalho, Le Roux, Loss, Villani: Entropy and chaos ... (2010)
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Plan

1 Introduction

2 Short discussion about chaos

3 Short discussion about methods

4 Nonlinear Martingale method and the vortex model

5 sketch of the proof - a priori estimates

6 sketch of the proof - probability argument

7 Sketch of the proof - functional analysis argument

8 Sketch of the proof - PDE/SDE argument

9 Sketch of the proof - entropy argument

S.Mischler (Paris-Dauphine) Kac’s chaos December 16-18, 2015 19 / 53



At least four strategies

• BBGKY method (introduced by BBGKY!)
⊕ Quite easy to handle with and robust
	 not quantitative, nor qualitative (?), two body interaction only

• semigroups method (introduced by Kac, McKean, Grünbaum)
⊕ quantitative and uniform in time
	 rates are not sharp (at all!), maybe not well adapted to singular model

• coupling method (introduced by McKean, popularized by Sznitman)
⊕ best (and sharp) rate, uniform in time for some (“bounded”) model
	 non uniform in time for most models, not well adapted to singular model

• nonlinear Martingale method (introduced by Sznitman)
⊕ propagation of chaos results for singular models
	 no rate of convergence
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BBGKY method - Kac’s idea

For B bounded the Boltzmann-Kac operator is bounded and the semigroup writes

FN(t) = etΛN FN(0) =
∞∑
k=1

tk

k!
Λk
N FN(0).

Because ΛN is self-adjoint, for any ϕ ∈ Cb(E j), j ≤ N, we have

〈FN(t), ϕ〉 =
∞∑
k=1

tk

k!
〈FN(0),Λk

N ϕ〉.

We first consider ϕ ∈ Cb(E ), so that

〈FN(0),Λk
Nϕ〉 → 〈f ⊗k+1

0 , ϕk+1〉, ϕk+1 = Zkϕ ∈ C (E k+1),

and, then assuming FN → π as N →∞, we get

〈π1(t), ϕ〉 =
∞∑
k=1

tk

k!
〈f ⊗k+1

0 , ϕk+1〉.
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BBGKY method - Kac’s idea

Because ΛN is self-adjoint, for any ϕ ∈ Cb(E j), j ≤ N, we have

〈FN(t), ϕ〉 =
∞∑
k=1

tk

k!
〈FN(0),Λk

N ϕ〉.

We first consider ϕ ∈ Cb(E ), so that

〈FN(0),Λk
Nϕ〉 → 〈f ⊗k+1

0 , ϕk+1〉, ϕk+1 = Zkϕ ∈ C (E k+1),

and, then assuming FN → π as N →∞, we get

〈π1(t), ϕ〉 =
∞∑
k=1

tk

k!
〈f ⊗k+1

0 , ϕk+1〉.

We next consider γ := ϕ⊗ ψ ∈ Cb(E 2), and in the infinite particles limit, we get

〈π2(t), γ〉 =
∞∑
k=1

tk

k!
〈f ⊗k+1

0 , γk+1〉,

with

γk+1 =
k∑

i=1

ϕi ψk+1−i
k!

i !(k + 1− i)!
.
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BBGKY method - Kac’s idea and BBGKY’s idea

We recognize

〈π2(t), γ〉 =
∞∑
k,i

tk−i t i

i !(k + 1− i)!
〈f ⊗i0 , ϕi 〉〈f ⊗k+1−i

0 , ψk+1−i 〉,

= 〈π1(t)⊗ π1(t), ϕ⊗ ψ〉

We conclude that π2 = π1 ⊗ π1 and

π1(t) =
∞∑
k=1

tk

k!
Zk f

⊗k+1
0 (Wild Sum = f (t)).

B In general we cannot write such an explicit formula and we have to write the
all family of equations (for a two body problem)

∂tF
N
j = (ΛNF

N)j = ΛN,j+1F
N
j+1 −→

N→∞
∂tπj = Λ̄j+1πj+1 ∀ j ≥ 1.

B biblio: Bogolioubov (?), Born & Green (1946), Kirkwood (1935), Yvon (1935)
Lanford: Time evolution of large classical systems. (1974)
Spohn: On the Vlasov hierarchy (1981)
Arkeryd-Caprino-Ianiro: The homogeneous Boltzmann hierarchy ... (1991)
Gallagher-Saint-Raymond-Texier (2013), Bodineau-Gallagher-Saint-Raymond (2015)
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Semigroup method - idea 1 : splitting

We split〈
FN
kt − f ⊗kt , ϕ

〉
=

〈
FN
t − f ⊗Nt , ϕ⊗ 1⊗N−k

〉
=

=
〈
FN
t , ϕ⊗ 1⊗N−k − Rϕ(µN

V )
〉

(= T1)

+
〈
FN
t ,Rϕ(µN

V )
〉
−
〈
FN

0 ,Rϕ(SNL
t µN

V )
〉

(= T2)

+
〈
FN

0 ,Rϕ(SNL
t µN

V )
〉
−
〈
f ⊗kt , ϕ

〉
(= T3)

where Rϕ is the “polynomial function” on P(R3) defined by

Rϕ(ρ) =

∫
E k

ϕρ(dv1) ... ρ(dvk)

and SNL
t is the nonlinear semigroup associated to the nonlinear mean-field limit

equation by g0 7→ SNL
t g0 := gt .
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Semigroup method - idea 2 : a combinatory trick

|T1| =
∣∣∣〈FN

t , ϕ⊗ 1⊗(N−k)(V )− Rϕ(µN
V )
〉∣∣∣

=

∣∣∣∣〈FN
t ,

˜ϕ⊗ 1⊗(N−k)(V )− Rϕ(µN
V )

〉∣∣∣∣
≤

〈
FN
t ,

2 k2

N
‖ϕ‖L∞(E k )

〉
= O

( 1

N

)
where we use that FN is symmetric and a probability and we introduce the
symmetrization function associated to ϕ⊗ 1⊗(N−k) by

˜ϕ⊗ 1⊗(N−k)(V ) =
1

]SN

∑
σ∈SN

ϕ⊗ 1⊗(N−k)(Vσ).
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Semigroup method - idea 3 : functional LLN + uniform estimate

|T3| =
∣∣〈FN

0 ,Rϕ(SNL
t µN

V )− Rϕ(SNL
t f0)

〉∣∣
≤ [Rϕ]C 0,1

〈
FN

0 ,W1(SNL
t µN

V ,S
NL
t f0)

〉
≤ k ‖∇ϕ‖L∞(E k ) CT

〈
FN

0 ,W1(µN
V , f0)

〉
≤ k ‖∇ϕ‖L∞(E) CT WW1 (F̂N

0 , δf0 )

= O
(
D∞(FN

0 , f0)
)

but in fact
!

= O
( 1

logN

)
where

[Rϕ]C 0,1 := sup
W1(ρ,η)≤1

|Rϕ(η)− Rϕ(ρ)| = k ‖∇ϕ‖L∞

and we have to prove that the nonlinear flow satisfies

(A5) W1(ft , gt) ≤ CT W1(f0, g0) ∀ f0, g0 ∈ P(E )
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Semigroup method - idea 4 : duality + consistency + stability

T2 : We write

T2 =
〈
FN
t ,Rϕ(µN

V )
〉
−
〈
FN

0 ,Rϕ(SNL
t µN

V )
〉

=
〈
FN

0 ,T
N
t (Rϕ ◦ µN

V )− (T∞t Rϕ)(µN
V )
〉

with

TN
t = dual semigroup (acting on Cb(EN)) of the N-particle flow FN

0 7→ FN
t ;

T∞t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear
semigroup SNL

t defined by (T∞Φ)(ρ) := Φ(SNL
t ρ);
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Semigroup method - idea 4 : duality + consistency + stability

T2 : We write

T2 =
〈
FN
t ,Rϕ(µN

V )
〉
−
〈
FN

0 ,Rϕ(SNL
t µN

V )
〉

=
〈
FN

0 ,T
N
t (Rϕ ◦ µN

V )− (T∞t Rϕ)(µN
V )
〉

=
〈
FN

0 , (T
N
t πN − πNT∞t )Rϕ

〉
with

TN
t = dual semigroup (acting on Cb(EN)) of the N-particle flow FN

0 7→ FN
t ;

T∞t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear
semigroup SNL

t defined by (T∞Φ)(ρ) := Φ(SNL
t ρ);

πN = projection C (P(E ))→ C (EN) defined by (πNΦ)(V ) = Φ(µN
V ).
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Semigroup method - idea 4 : duality + consistency + stability

T2 =
〈
FN

0 , (T
N
t πN − πNT∞t )Rϕ

〉
=

〈
FN

0 ,

∫ T

0

TN
t−s (ΛNπN − πNΛ∞)T∞s ds Rϕ

〉

=

∫ T

0

〈
FN
t−s , (ΛNπN − πNΛ∞) (T∞s Rϕ)

〉
ds = O

( 1

N•

)
where

ΛN is the generator associated to TN
t and Λ∞ is the generator associated to

T∞t .

Now we have to make some assumptions

(A1) FN
t has enough bounded moments;

(A2) Λ∞Φ(ρ) = 〈Q(ρ),DΦ(ρ)〉;
(A3) (ΛNπNΦ)(V ) = 〈Q(µN

V ),DΦ(µN
V )〉+O([Φ]C 1,a/N)

(A4) SNL
t ∈ C 1,a(P(E );P(E )) “uniformly” in time t ∈ [0,T ]
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Example of result : Uniform in time propagation of chaos for the hard spheres

Boltzmann-Kac model and time relaxation to the equilibrium uniformly in the
number of particles

Theorem (M., Mouhot, 2013, a possible answer to Kac’s problems)

For any f0 ∈ P(E ) + conditions, there exists a sequence VN(0) of initial
conditions for the Boltzmann-Kac process for hard spheres such that

sup
t≥0

E(W1(µN
VN (t), f (t)) ≤ C

logN

H(VN(t)|γN)→ H(f (t)|γ)

sup
N≥1

W1(FN(t), γN) ≤ C

log t
.

B biblio: Kac: Foundations of kinetic theory (1956)
McKean: An exponential formula for Boltzmann eq. for a Maxwellian gas (1967)
Grünbaum: Propagation of chaos for the Boltzmann equation (1971)
Kolokoltsov: Nonlinear Markov Processes and Kinetic Equations (book, 2010)
M., Mouhot: Kac’s program in kinetic theory (2013)
M., Mouhot, Wennberg: A new approach to quantitative chaos propagation ... (2015)
Carrapatoso: Propagation of chaos for .. Landau eq. for Maxwellian molecules (2016)
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Coupling method - idea 1 : synchronous coupling for uniqueness

Consider two solutions to a smooth coefficients nonlinear Brownian SDE

dZ = (K ∗ f )(Z) dt + dB, f = L(Z )

dZ̄ = (K ∗ f̄ )(Z̄) dt + dB, f̄ = L(Z̄ ),

with same (synchronous) Brownian motion. We have

1

2

d

dt
|Z − Z̄|2 = [(K ∗ f )(Z)− (K ∗ f )(Z̄) + K ∗ (f − f̄ )(Z̄)](Z − Z̄)

. |Z − Z̄|2 + E(|Z − Z̄|2)

because ‖K ∗ (f − f̄ )‖∞ ≤ E(|Z − Z̄|2). Taking the expectation, we deduce from
the Gronwall lemma

E(|Zt − Z̄t |2) ≤ eLt E(|Z0 − Z̄0|2).
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Coupling method - idea 2 : synchronous coupling for chaos estimate

Consider a solution to a N-particle system of Brownian SDE

dZi =
1

N

N∑
j=1

K (Zi −Zj) dt + dBi

= (K ∗ µN
Z)(Zi ) + dBi .

Consider a solutions to the associated the nonlinear Brownian SDE

dZ̄i = (K ∗ f̄ )(Z̄i ) dt + dBi
= (K ∗ µN

Z̄)(Z̄i ) dt + dBi + {(K ∗ f̄ )(Z̄i )− (K ∗ µN
Z̄)(Z̄i )}

with same (synchronous and independent) Brownian motions.
Using a functional LLN estimate, we similarly get

d

dt

1

N

N∑
i=1

E(|Zi − Z̄i |2) .
1

N

N∑
i=1

E(|Zi − Z̄i |2) +O
( 1

N

)
.
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Coupling method - other ideas : distances, truncation, not synchronous

coupling

• Write a differential inequality on an appropriate distance and use Gronwall
lemma

E(|ZN − Z̄N |q) or D∞(µN
ZN , f̄ ) ∼ DN(ZN , f̄ ) ∼ E(W 2

2 (µN
Z , f̄ ))1/2

• Uniqueness for Boltzmann and Landau equation

d

dt
W 2

2 (ft , gt) ≤ 0 or even ≤ −W 2
2 (ft , gt)

1+•

for Maxwellian molecules (γ = 0) and then

d

dt
Wq(ft , gt) . RγWq(ft , gt) + e−R

2

when ft has exponential moment bounds (but not gt) for hard potentials (γ > 0).

• Use a more convenient coupling that the same synchronous coupling or even
more than one coupling ...
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Example of result : sharp propagation of chaos for the Landau-Kac model

Theorem (Fournier, Guillin, 2015)

For any f0 ∈ P(R3) + conditions, there exists a sequence (VN
0 ) of initial

conditions for the Landau-Kac process for hard potential such that

sup
[0,T ]

E[W 2
2 (µN
VN (t), f (t))] ≤ CT

(
E[W 2

2 (µN
VN

0
, f0)] +

1

N1/3

)1−•

B biblio: McKean: Propagation of chaos for a class of non-linear parabolic eq. (1967)
Dobrushin: Vlasov equations (1979)
Tanaka: Probabilistic treatment of Boltzmann eq. for Maxwellian molecules (1978/79)
Sznitman: Topics in propagation of chaos. Saint-Flour -1989 (1991)
Graham-Méléard: Convergence rate for approximations to the Boltzmann eq. (1996)
Malrieu; Convergence to equilibrium for ... and their Euler schemes. (2003)
Fontbona-Guérin-Méléard: Convergence rate for Landau particle systems (2009)
Fournier: Particle approximation of some Landau equations (2009)
Fournier-M.: Rate of convergence for Nanbu particle system (arX 2013)
Cortez-Fontbona: Quantitative propagation of chaos for Kac particle systems (arX 2014)
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Nonlinear Martingale method and the vortex model

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its position XN

1 , ...,XN
N ∈ R2, which evolves according to

dXi =
1

N

N∑
j=1

K (Xi −Xj) dt +
√

2νdBi (Brownian SDE)

where ν > 0 is the viscosity and K : R2 → R2 is the Biot-Savart kernel defined by

∀ x = (x1, x2) ∈ R2, K (x) =
x⊥

|x |2
=
(
− x2

|x |2
,
x1

|x |2
)

= ∇⊥ log |x |,

The associated mean field limit is the 2D Navier-Stokes equation written in
vorticity formulation

∂twt(x) = (K ? wt)(x) · ∇xwt(x) + ν∆xwt(x), (1)

where w : R+ × R2 → R+ is the vorticity function

All that can be done for vortices which turn in both (trigonometric and
reverse) senses and thus w : R+ × R2 → R

S.Mischler (Paris-Dauphine) Kac’s chaos December 16-18, 2015 33 / 53



Propagation of chaos

Theorem (Fournier, Hauray, M., 2014, first version)

(1) If XN
0 is w0-Kac’s chaotic and ”appropriately bounded”

then XN
t is wt-Kac’s chaotic for any time t > 0.

(2) If XN
0 is w0-entropy chaotic and has bounded moment of order k ∈ (0, 1]

then XN
t is wt–entropy chaotic for any time t > 0.

B biblio: Sznitman: Equations de type de Boltzmann, spatialement homogenes. (1984)
Osada: Propagation of chaos for the 2D Navier-Stokes equation (1985)–(1987)
Fournier-Hauray: Chaos propag for Landau eq with moderate soft potentials (arX 2015)
Fournier-Jourdain. Stochastic particle approximation of Keller-Segel equation (arX 2015)
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Nonlinear SDE for viscous vortex or stochastic NS vortex equation

We say that X = (Xt)t>0 a continuous stochastic process with values in R2 is a
solution to the stochastic NS vortex equation if it satisfies the nonlinear Brownian
SDE

dXt = (K ∗ wt)(Xt) +
√

2ν dBt
for some given brownian motion B and where wt = L(Xt) is the law of Xt .

It is important to point out that (thanks to Ito formula) the law wt of Xt then
satisfies the NS vortex equation

∂twt = (K ∗ wt) · ∇xwt + ν∆xwt .
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Propagation of chaos again

Theorem (Fournier, Hauray, M., 2014, second version)

Consider w0 ≥ 0 a function such that∫
R2

w0 (1 + |x |k + | logw0|) dx <∞, k ∈ (0, 1],

the vortices trajectories XN = (XN
t )t≥0 associated to an i.c. XN

0 ∼ w⊗N0 and X
the solution to the stochastic NS vortex equation associated to an i.c. X0 ∼ w0.
There holds

µN
XN ⇒ X in law in P(C ([0,∞);R2)) as N →∞
L(XN

1 (t))→ wt = L(Xt) strongly in L1(R2) as N →∞

The first convergence means

L(µN
XN ) ⇀ δL(X ) weakly in P(P(C ([0,∞);R2)) as N →∞

and the second can be improved into

L(XN
1 (t), ...,XN

j (t))→ w⊗jt strongly in L1(R2)j as N →∞
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strategy of the proof

The proof follow the by-now well-known “weak stability on nonlinear martingales”
approach, which goes back to Sznitman 1984.
Everything is standard except the fact that we use the Fisher information bound
in each step.

• A priori estimates (on entropy, moment and Fisher information)

• tightness of the law QN of the empirical process µN
XN in P(P(E ))

• pass to the limit and identify the set of limit points S as the probability
measures q ∈ P(E ) associated to a process X which solves the (Martingale
problem associated to the) stochastic NS vortex equation and has finite Fisher
information.

• if q ∈ S and q = L(X ) then wt := L(Xt) is the unique solution to the NS
vortex PDE

• the Martingale problem has a unique solution X̄ and then S = {q̄} where
L(q̄) = X̄ .

In conclusion, QN ⇀ δq̄ in P(P(E )). (that Kac’s chaos)
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a priori estimates

Using divK = 0, we get the entropy identity

H(FN
t ) + ν

∫ t

0

I (FN
s ) ds = H(FN

0 ).

As usually we need a control of a moment of FN
t in order to take advantage of

the entropy bound (we need a lower bound on H).

We define the moment Mk of order k ∈ (0, 1] by

Mk(FN) =

∫
R2N

FN 1

N

∑
j=1

〈xj〉k =

∫
R2

FN
1 〈x〉kdx

We then compute

d

dt
Mk(FN

t ) = ν

∫
R2

FN
1t ∆〈x〉k +

∫
R4

FN
2t K (x1 − x2) · ∇1〈x1〉k

≤ C1

∫
R2

FN
1t + C2

∫
R4

FN
2t

1

|x1 − x2|
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Control given by the Fisher information

Define gN := L(X2 − X1) and use (Carlen 1991) Fisher information inequalities

1

2
I1(gN) ≤ I2(FN

2 ) ≤ IN(FN)

as well as Gagliardo-Niremberg type inequalities in 2D

∀ g ∈ P(R2), ∀ p ∈ [1,∞) ‖g‖Lp ≤ Cp I (g)1−1/p.

Coming back to the singular term in the moment equation, we compute∫
R4

FN
2t

|x1 − x2|
dx1dx2 =

√
2

∫
B1

gN
t (x)

|x |
dx +

√
2

∫
Bc

1

gN
t (x)

|x |
dx

≤
√

2 ‖| · |−1‖L3/2(B1) ‖gN
t ‖L3(B1) +

√
2 ‖gN

t ‖L1(Bc
1 )

≤ C3 I (g
N
t )2/3 + C4

≤ ν

4C2
I (gN

t ) + C5

≤ ν

2C2
I (FN

t ) + C5
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coming back to a priori estimates

Summing up the two equations on the entropy and on the moment of order k, we
find

Lemma (a priori estimates)

Uniformly in N

H(FN
t ) + Mk(FN

t ) +
ν

2

∫ t

0

I (FN
s ) ds

≤ H(FN
0 ) + Mk(FN

0 ) + (C1 + C2)t
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System of SDE and nonlinear SDE

We denote

XN := (XN
1 , ...,XN

N ) the exchangeable r.v. with value in EN

where XN
i = (XN

i (t))t≥0 ∈ E := C ([0,∞);R2) solution to the SDE

Xi (t) = Xi (0) +

∫ t

0

(K ∗ µN
X (s))(Xi (s)) ds +

√
2ν Bi (t)

and we want to show that each particle behaves asymptotically like N
independent copies of the same process X = (X (t))t≥0 defined as the solution to
the nonlinear SDE

X (t) = X (0) +

∫ t

0

(K ∗ ws)(X (s)) ds +
√

2ν B(t),

where ws := L(X (s)) and then is a solution (Ito formula) to the NS vortex
equation

∂tw = (K ? w) · ∇xw + ν∆xw .
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Tightness estimates on the trajectories of the N-vortex system

Lemma

the family of laws L(µN
XN )N≥1 is tight in P(P(E))

From classical compactness criterium (Sznitman 1984) it is enough to prove

that the family of laws L(XN
1 )N≥1 is tight in P(E). That is a consequence of

Lemma
For all T > 0, θ ∈ (0, 1/2)

E
[

sup
0<s<t<T

|XN
1 (t)−XN

1 (s)|
(t − s)θ

]
≤ C

(
1 +

∫ T

0

I (GN
u ) du

)
By Prokhorov, we get

Lemma
There exists Q ∈ P(P(E)) such that

QN ⇀ Q in P(P(E)).
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Identification of the the limit thanks to “Sznitman” argument.

Lemma

Assume that Q ∈ P(P(C([0,+∞),R2)) = P(P(E)) is a mixture measure obtained as a
limit point of some subsequence of QN . Then suppQ ⊂ S

S :=

{
q is the law of some X solution to stoch. NS vortex eq.

∀T > 0,
∫ T

0
I (L(Xs)) ds < +∞

}
= S0 ∩ S1

q ≈ X solves the stoch. NS vortex eq. iif for all times s, t, ψ, ϕ...

F(q) :=

∫∫
E2

q(dx)q(dy)ψ(x(s ≤ t))

[
ϕ(x(t))− ϕ(x(s))

−
∫ t

s

K(x(u)− y(u)) · ∇ϕ(x(u))du − ν
∫ t

s

∆ϕ(x(u))du

]
= 0

Q concentrated on S0 ⇐⇒ EQ [|F(·)|2] = 0 for all s, t, ψ, ϕ.

EQN [|F(·)|2]→ 0 as N → +∞.

Continuity P(P(E)) 3 R 7→ ER [|F(·)|2] under the condition ER

[∫ t

0
I (·s) ds

]
< +∞.

EP

[∫ t

0
I (·s) ds

]
< +∞, which is equivalently P ∈ S1.
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Level 3 Fisher information (for a mixture of probability measures)

Consider π ∈ P(P(E)), E = R2, and define

I(π) :=

∫
P(E)

I (ρ)π(dρ), I′(π) := sup
j≥1

I (πj) = lim
j→∞

I (πj)

where πj is given by (the easy part of) Hewitt and Savage theorem

πj :=

∫
P(E)

ρ⊗j π(dρ) ∈ Psym(E j).

From I (f ⊗j) = I (f ) (good normalization), I is lsc, convex, proper and ≥ 0 on Psym(E j),
∀ j ≥ 1, and I′ is linear on disjoint convex combination, we deduce

Theorem (representation formula, Hauray-M.)

∀π ∈ P(P(E )) I(π) = I ′(π).

A similar formula is known for the entropy (Robinson-Ruelle, 1967)

Application: the Fisher information is Γ-lsc in the sense

Psym(EN) 3 FN ⇀ π ∈ P(P(E)) implies I(π) ≤ lim inf I (FN).

One line proof: for any j ≥ 1 by lsc of Ij : Ij(πj) ≤ lim inf Ij(F
N
j ) ≤ lim inf IN(FN).
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Consequence for the vortex problem

We know (from tightness) that

L(µN
X ) ⇀ Q weakly in P(P(E ))

with here E := C ([0,∞);R2). We define Qt := projection on the section
P(P({t} × R2)) so that

GN
t = L(XN

t ),L(µN
XN

t
) ⇀ Qt weakly in P(P(R2))

As a consequence, by Fubini, Γ-lsc property of the Fisher information and Fatou∫
P(E)

∫ T

0

I (qt)dt Q(dq) =

∫ T

0

∫
P(E))

I (qt)Q(dq) dt

=

∫ T

0

I(Qt) dt

≤
∫ T

0

lim inf
N

I (GN
t )dt ≤ lim inf

N

∫ T

0

I (GN
t )dt.

This last quantity is finite, so that
∫ T

0
I (qt)dt <∞ Q-a.s. and suppQ ⊂ S1.
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Uniqueness of the solution to the NS vortex equation

We claim that

∀ q ∈ S, q = L(X ), wt := L(Xt) = w̄t := unique solution of NS vortex.

• First, for q ∈ S, it is clear that wt := L(Xt) satisfies

w ∈ C ([0,T );P(R2)), I (w) ∈ L1(0,T )

and w is a weak solution to (take ν = 1)

∂tw = ∆w + (K ∗ w) · ∇w .

• Second, the uniqueness is known (Ben-Artzi 1994, Brézis 1994, improved by
Gallagher-Gallay 2005) in the class of function

t1/4 ‖w(t, .)‖L4/3 → 0 as t → 0.

• We have to prove by a “regularity argument” (through a renormalization trick)
that w satisfies the Ben-Artzi & Brézis criterium
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Uniqueness (in law) of linear SDE under the a priori condition.

If q ∈ S we consider the associated linear SDE

Xt = X0 +

∫ t

0

us(Xs) ds + νBt , us = K ∗ w̄s ,

Lemma
Strong uniqueness for the previous linear SDE holds (and thus weak uniqueness by
Yamada-Watanabe theorem). In other words, S = {q̄}.

Sketch of the proof

Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.

Two solutions X and Y satisfies

∀δ > 0, E
[

ln
(

1 +
1

δ
sup
s≤t
|Xs − Ys |

)]
≤ E

[∫ t

0

[M∇us(Xs) + M∇us(Ys)] ds

]
where M stands for maximal function.

Standard estimates + bounds on Fischer information helps to bound the r.h.s.

A variant of Chebichev ineq. allows to conclude.
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Entropic chaos

From

H(FN
t ) +

∫ t

0

I (FN
s ) ds = H(FN

0 )

and

H(wt) +

∫ t

0

I (ws) ds = H(w0),

as well as the Γ-lsc of H and I we get if

H(FN
0 )→ H(w0),

the conclusion

H(wt) +

∫ t

0

I (ws) ds ≤ lim inf
N→∞

{
H(FN

t ) +

∫ t

0

I (FN
s ) ds

}
≤ lim sup

N→∞

{
H(FN

t ) +

∫ t

0

I (FN
s ) ds

}
= lim sup

N→∞
H(FN

0 ) = H(w0)

and then
H(FN

t )→ H(wt) ∀ t > 0
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