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One-neuron model

z ' state variable of a neuron (membrane potential, elapsed time since last
discharge, ...), Z the set of state variables.

The state Zt ∈ Z of one neuron is a time dependent random variable and evolves
accordingly to the SDE

(1) dZt = F (Zt ,Mt , dLt),

Mt := given neuron network activity,
dLt := noise process (Brownian, Poissonian)

We are only saying that the neuronal network environment is here known and
then one neuron evolves according to a general Markov (no autonomous) process.

Problem 1. Mathematical analyse of equation (1). That is a job for probabilists.
We will come back on that issue later.
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N-neuron network

Consider an finite assembly (Z 1, ...,ZN) of neurons in interaction.

The evolution equation for each neuron Z i
t is exactly the same

(2a) dZ i
t = F (Z i

t ,Mt , dLi
t),

excepted that the neuronal network activity Mt is determined by the electric
activity of every neurons:

(2b) Mt =M
[ 1

N

N∑
i=1

δZ i
[0,t]

]
and Li

t are independent stochastic noise processes.

⇒ Neurons are indistinguishable. Simple and quite weak interaction (possibly
with delay) between neurons through a same quantity M(t)

Problem 2. Mathematical analyse of equation (2) is really a job for probabilists.
We will not consider that issue here.
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Mean field limit

When N becomes very large, in the mean field limit, we expect

L(Z i
s ) −→

N→∞
fs , same limit,

L(Z i
s ,Z

j
s ) −→

N→∞
fs ⊗ fs , asymptotic independence (chaos),

and
1

N

N∑
i=1

δZ i
s
−→
N→∞

fs , functional law of large numbers.

As a consequence,

ft = L(Zt) = law of a typical neuron

and Zt evolves according to the same (but now nonlinear) SDE
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Mean field limit

In the mean field limit

1

N

N∑
i=1

δZ i
|[0,t]
→ f|[0,t] := L(Z|[0,t]) = law of a typical neuron

where Zt evolves according to the mean field SDE

(3) dZt = F (Zt ,Mt , dLt), Mt =M
[
f|[0,t]

]
.

Problem 3. Establish the mean field limit N →∞. That is a large number law
+ the proof of asymptotic independence between pairs of neurons (using a
propagation of chaos argument). That can be done using several strategies
• BBGKY method (BBGKY, ...)
• Semigroup method (Kac, McKean, Grünbaum, ...)
• Coupling method (Tanaka, Sznitman, ...)
• Nonlinear Martingale method (Sznitman, ...)

B For the first (elapsed time) model: see the recent papers by Fournier,
Löcherbach, Quiñinao, Robert, Touboul.
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Mean field PDE

For any test function ϕ : Z→ R and from Itô formula, one deduces

E[ϕ(Zt)]− E[ϕ(Z0)] =

∫ t

0
E[(L∗Ms

ϕ)(Zs)] ds,

for a suitable integro-differential linear operator L∗m.

As a consequence, the law f := L(Z ) is a solution to the evolution PDE

(4) ∂t f = LM(t)f , M(t) =M(f|[0,t]), f (0, ·) = f0.

Other possible definition/equation on the network activity are

M(t, x) =M(f|[0,t], x), M(t) =M(f|[0,t],M(t)).

Problem 4. Well-posedness of equation (4) and perform a qualitative
analyze of the solutions.
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Existence and uniqueness of solutions

From the fact that Zt is a stochastic process, we find

〈ft〉 :=

∫
Z

ft = E[1] ≡ 1, ∀ t ≥ 0.

Number of neurons is conserved (that is good!) and it is the only general
available qualitative information on the solutions.

Under general and mild assumptions on the operators F and M

Theorem 1. For any 0 ≤ f0 ∈ L1, there exists (at least) one global solution
f ∈ C ([0,∞); L1) to the PDE (4).

B Be careful with Noisy Leaky Integrate and Fire model for which blow up can
occur

Theorem 2. There exists (at least) one stationary solution 0 ≤ G ∈ L1 to the
evolution PDE (4), that is

(5) 0 = LMG , M =M(G ,M).

B proof: intermediate value theorem or Brouwer fixed theorem
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No connectivity regime ' one-neuron model

We introduce a small parameter ε > 0 corresponding to the strength of the
connectivity of neurons with each other, and thus to the nonlinearity of the model:

(4ε) ∂t f = LεM(t)f , M(t) =Mε(f|[0,t],M(t)), f (0, ·) = f0.

In the not connected regime ε = 0, the equation is linear

(40) ∂t f = L0f , f (0, ·) = f0.

Theorem 3 (Krein-Rutman).
• There exists a unique normalized and positive stationary state G0 to the
evolution PDE (40), that is L0G0 = 0.
• G0 is stable for the associated semigroup: ∃ a < 0, C ≥ 1,

‖SL0 (t) f0‖ ≤ C eat ‖f0‖, ∀ t ≥ 0, ∀ f0, 〈f0〉 = 0.

B proof: KR ⇒ ∃!G0 ≥ 0, 〈G0〉 = 1, L0G0 = λG0, but λ = 0 because L∗01 = 0
(mass conservation) or because of Theorem 2.
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Small connectivity regime = a perturbative regime

Theorem 4.1. There exists ε0 > 0 such that the normalized and positive
stationary state Gε is unique for any ε ∈ (0, ε0).

B L−1
0 exists and use (half of the) implicit function theorem

Theorem 4.2. There exists ε1 > 0 such that Gε is exponentially linearly
stable for the associated semigroup: ∃ a < 0, C ≥ 1,

‖SLε(t) f0‖ ≤ C eat ‖f0‖, ∀ t ≥ 0, ∀ f0, 〈f0〉 = 0, ∀ ε ∈ (0, ε1).

B Σ(Lε) ∩∆a = {0} for ε > 0 small by a perturbation trick and then use
the spectral mapping theorem.

Theorem 4.3. There exists ε2 > 0 such that Gε is exponentially
nolinearly stable : ∃ a < 0, C ≥ 1,

‖f (t)− Gε‖ ≤ Cf0 e
at , ∀ t ≥ 0, ∀ f0, 〈f0〉 = 1, ∀ ε ∈ (0, ε2).

• What ever is the complexity of the model: asynchronous spiking holds in
the small connectivity regime. Synchronization comes from nonlinearity?
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Relaxation in time elapsed neuron network models

• State of a neuron: local time (or internal clock) x ≥ 0 corresponding to the
elapsed time since the last discharge;

• Dynamic of the neuron network: (age structured) evolution equation

∂t f = −∂x f − a(x , εm(t))f =: Lεm(t)f , f (t, 0) = p(t)

on the density number of neurons f = f (t, x) ≥ 0.

• a(x , ε µ) ≥ 0: firing rate of a neuron in the state x for a network activity µ ≥ 0
and a network connectivity parameter ε ≥ 0.

• p(t): total density of neurons undergoing a discharge at time t given by

p(t) := Pε[f (t);m(t)], Pε[g , µ] :=

∫ ∞
0

a(x , εµ)g(x)dx .

• m(t): network activity at time t ≥ 0 resulting from earlier discharges given by

m(t) :=

∫ ∞
0

p(t − y)b(dy),

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = δ0 and then m(t) = p(t).
- Case with delay, when b is a smooth function.
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Existence result

Monotony and smoothness assumptions

∂xa ≥ 0, a′ = ∂µa ≥ 0,

0 < a0 := lim
x→∞

a(x , 0) ≤ lim
x,µ→∞

a(x , µ) =: a1 <∞,

a ∈W 2,∞(R2
+).

b = δ0 or ∃δ > 0,

∫ ∞
0

eδy (b(y) + |b′(y)|)dy <∞.

Theorems 1,2. For any 0 ≤ f0 ∈ L1, there exists (at least) one global solution
f ∈ C ([0,∞); L1). There exists (at least) one normalized and positive stationary
solution Gε:

LεMε
Gε = −∂xGε − a(x , εMε)Gε = 0, Gε(0) = Mε,

Mε = Pε[Gε;Mε] =

∫ ∞
0

a(x , εMε)Gε(x)dx .

See also
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Small connectivity regime

Theorems 3, 4a, 4b. ∃ ε1 > 0 such that for any ε ∈ (0, ε1) the stationary
solution Gε is unique and exponentially stable for the associated linear semigroup.

B About the proof. The linearized equation for the variation

(g , n, q) = (f ,m, p)− (Gε,Mε,Mε)

around a stationary state (Gε,Mε,Mε), which writes

∂tg = −∂xg − a(x , εMε)g − n(t) ε(∂µa)(x , εMε)Fε, g(t, 0) = q(t),

with

q(t) =

∫ ∞
0

a(x , εMε)g dx + n(t) ε

∫ ∞
0

(∂µa)(x , εMε)Fε dx

n(t) :=

∫ ∞
0

q(t − y)b(dy).
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Intermediate evolution equation

We introduce an intermediate evolution equation

∂tv + ∂yv = 0, v(t, 0) = q(t), v(0, y) = 0,

where y ≥ 0 represent the local time for the network activity.

That last equation can be solved with the characteristics method

v(t, y) = q(t − y)10≤y≤t .

The equation on the variation n(t) of network activity writes

n(t) = D[v(t)], D[v ] :=

∫ ∞
0

v(y)b(dy),

and the equation on the variation q(t) of discharging neurons writes

q(t) = Oε[g(t), v(t)],

with
Oε[g , v ] := Nε[g ] + κεD[v ],

Nε[g ] :=

∫ ∞
0

aε(Mε)g dx , κε :=

∫ ∞
0

a′ε(Mε)Fε dx .
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Time autonomous equation and splitting structure

For the new unknown (g , v) the equation writes

∂t(g , v) = Λε(g , v) = Aε(g , v) + Bε(g , v),

where the operator Λε = (Λ1
ε,Λ

2
ε) is defined by

Λ1
ε(g , v) := −∂xg − aεg − a′εFεD[v ] + δx=0Oε[g , v ],

L2
ε(g , v) := −∂yv + δy=0Oε[g , v ],

B Bε is dissipative;

B SBε
∗ AεSBε

has a smoothing effect

B We may apply the spectral theory in general Banach space (Weyl’s Theorem,
spectral mapping Theorem, Krein-Rutman Theorem, perturbation Theorem)
developped by M., Scher, Tristani.
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A FitzHugh-Nagumo statistical model

∂t f = Qε(Jf , f ) = ∂x(Af ) + ∂v (Bf ) + ∂2
vv f on (0,∞)× R2

complemented withy an initial condition

f (0, .) = f0 ≥ 0 in R2.

where {
A = A(x , v) = ax − bv , B = Bε[Jf ] = B(x , v ;Jf )
B(x , v ;µ) = v3 − v + x + ε (v − µ), Jf :=

∫
R2 v f (x , v) dvdx

t ≥ 0 is the time variable, v ∈ R is the membrane potential of one neuron,
x ∈ R is an auxiliary variable

f = f (t, x , v) ≥ 0 is the time-dependent density of neurons in state (x , v) ∈ R2

a, b, ε are positive parameters and ε is the connectivity of the network

The equation being in divergence form the number of neurons is a constant along
time (that’s better!): ∫

R2

f (t, x , v)dxdv =

∫
R2

f0dxdv ≡ 1.
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Motivation: microscopic description

• As a simplification of the Hodgin-Huxley 4d ODE, FitzHugh-Nagumo 2d ODE
describes the electric activity of one neuron and writes

v̇ = v − v3 − x + Iext = −B0 + Iext

ẋ = bv − ax = −A,

with Iext = i(t) + σẆ exterior input split as a deterministic part + a stochastic
noise. We assume i(t) ≡ 0.

• For a network of N coupled neurons, the associated model writes for the state
Z i

t := (X i
t ,V i

t) of the neuron labeled i ∈ {1, ...,N}

dV i = [−B0(X i ,V i )−
N∑
j=1

εij (V i − V j)]dt + σ dW i

dX i = −A(X i ,V i )dt

where εij > 0 corresponds to the connectivity between the two neurons labeled i
and j . The model takes into account an intrinsic deterministic dynamic + mean
field interaction + stochastic noise.
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Motivation: to a statistical description (mean field limit)

We assume εij := ε/N, (Z1
0 ...,ZN

0 ) are i.i.d. random variables with same law f0
and we pass to the limit N →∞.
We get that (Z1

t , ...,ZN
t ) is chaotic which means that any two neurons Z i

t and Z j
t

are asymptotically independent and Z i
t → Z̄t = (X̄t , Ȳt) which is a solution to

the nonlinear ODS

V̄ = [−B0(X̄ , V̄)− ε (V̄ − E(V̄))]dt + σ dW
X̄ = −A(X̄ , V̄)dt.

From Ito calculus we immediately see that the law f (t, .) := L(X̄t , V̄t) satisfies
the associated backward Kolmogrov equation which is nothing but the FHN
nonlinear statistical equation (here and below we make the choice σ :=

√
2 for

the sake of simplification of notations).
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Global existence and uniqueness for the evolution PDE

We introduce the weight function m0 = m0(x , v) := 1 + x2/2 + v2/2 and the
weighted Lebesgue spaces Lp(m) associated to the norm

‖f ‖Lp(m) = ‖fm‖Lp , ‖f ‖W 1,p(m) = ‖f ‖Lp(m) + ‖∇f ‖Lp(m),

and the shorthand Lpk := Lp(m
k/2
0 ).

Th 8. M., Quininao, Touboul

For any f0 ∈ E0 := L1
2 ∩ L1 log L1 ∩ P(R2) there exists a unique global solution

f ∈ C ([0,∞); L1 ∩ P) to the FHN statistical equation. It also satisfies∫
ftm ≤ max(Cm,

∫
f0m), ‖ft‖H1(m) ≤ max(C2, ‖f0‖H1(m)).

It depends continuously in the initial datum: fn,t → ft in L1
2 for any time t ≥ 0 if

fn,0 → f0 in L1
2 and ‖fn,0‖L1

4
+ H(fn,0) ≤ C .

For any τ > 0 there exists Cτ such that

sup
t≥τ
‖ft‖H1 ≤ Cτ .
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Steady state : existence, uniqueness and stability

Th 9. M., Quininao, Touboul

There exists at least one stationary solution G to the FHN statistical equation:

∃G ∈ H1(m) ∩ P(R2), 0 = ∂x(AG ) + ∂v (Bε[µG ]G ) + ∂2
vvG in R2.

Th 10. M., Quininao, Touboul

There exists ε∗ > 0 such that in the small connectivity regime ε ∈ (0, ε∗) the
stationary solution is unique and exponentially stable: there exist η∗ε > 0, a < 0
such that η∗ε →∞ when ε→ 0 and

∀ f0 ∈ L1
2 ∩ P, ‖f0 − G‖L1

2
≤ η∗ε there holds ‖f (t)− G‖L1

2
≤ C eat ∀ t ≥ 0

• We follow a strategy introduced in M., Mouhot (CMP 2009) for the inelastic homogenous
Boltzmann equation and improved in Tristani (arXiv 2013) in a weakly inhomogeneous setting.
• But we fundamentally use the fact that the limit equation (for ε = 0) is positive and it is then
exponentially asymptotically stable thanks to the Krein-Rutmann theorem (Theorem 4)
• We also use some “hypocoercive” calculus tricks developed by Hérau and Villani for the
kinetic Fokker-Planck equation
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Proof - L1
k estimate

The vector field (A,B) does not derive from a potential (even in the case ε = 0) but has
the following “confinement property”

−x A− v B = −ax2 + bxv − v 4 − (1 + ε)xv + εµx

≤ C(a, b, ε)− a

2
x2 − 1

2
v 4 + 2

ε2

a
µ2.

Also observe (Cauchy-Schwarz inequality)

J 2
f ≤

∫
f v 2dxdv ∀ f ∈ P(R2).

Lemma (uniform in time L1
k estimate, k ≥ 2)

For m0 := 1 + x2/2 + v 2/2 and any f ∈ P(R2), there holds for Ci > 0∫
Qε[µ, f ]m0 ≤ C1 (1 + µ2)− C2

∫
f (1 + x2 + v 4).

As a consequence, for any f ∈ P(R2)∫
Qε[Jf , f ]m0 ≤ C3 − C2

∫
f m0,

and for any f0 ∈ P(R2)

J 2
f (t) ≤

∫
ft m0 ≤ max

(C3

C2
,

∫
f0 m0

)
∀ t ≥ 0, m = m

k/2
0 .
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Proof - H1 estimate

In the same way for m = eκm0

d

dt

∫
f 2m2 = 2

∫
Qε[µ, f ] f m2 ≤ C1

∫
f 2 − C2

∫
f 2 m2m0 −

∫
|∂v f |2m2,

but we do not know how to conclude (in order to get uniform in times bound) !?

We introduce the (equivalent) twisted norm (reminiscent of hypocoercivity theory)

‖f ‖2
H1(m) := ‖f ‖2

L2(m) + ‖∇x f ‖2
L2(m) + α5/6(∇x f ,∇v f )L2(m) + α‖∇v f ‖2

L2(m)

for α > 0 small enough. For the associated scalar product 〈·, ·〉

〈Qε[µ, f ], f 〉 ≤ C1

∫
f 2 − C2

∫
f 2 m2m0 − α

∫
|∂v f |2m2 − α5/6

∫
|∂x f |2m2

≤ K1‖f ‖H1 − K2‖f ‖2
H1

by using Nash inequality
‖f ‖2

L2 ≤ C‖f ‖L1‖f ‖H1 .

Lemma uniform in times H1 estimate)

For any f0 ∈ P(R2)

‖ft‖H1(m) ≤ max
(K1

K2
, ‖f0‖H1(m)

)
∀ t ≥ 0.
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Proof - local a priori bound and existence

We compute

d

dt

∫
f log f =

∫
(∂vv f ) log f +

∫
(∂x(Af ) + ∂v (Bf )) log f

= −
∫

(∂v f )2

f
+

∫
(∂xA + ∂vB)f

≤ −Iv (f ) +

∫
m0f , Iv (f ) :=

∫
(∂v f )2

f
.

We conclude by standard (weak L1 compacteness) argument to the existence of a
solution f ∈ C([0,∞); L1) such that

sup
[0,T ]

∫
f (m2

0 + log f ) +

∫ T

0

Iv (f ) dt ≤ CT ∀T > 0

for any f0 ∈ L1
4 ∩ P ∩ L1 log L1.

S.Mischler (CEREMADE) Neuronal Network 4 Novembre 2015 26 / 34



More about the proof - uniqueness

For any two solutions f1 et f2 to the FHN equation

∂t fi = ∂x(Afi ) + ∂v (Bi fi ) + ∂2
vv fi

with Bi := B0 + ε(v − Jfi ), the difference f = f2 − f1 satisfies

∂t f = ∂x(Af ) + ∂v (B1f ) + εJf ∂v f2 + ∂2
vv f .

As a consequence, by Kato’s inequality

∂t |f | ≤ ∂x(A|f |) + ∂v (B1|f |) + ε |∂v f2| |Jf |+ ∂2
vv |f |.

Using the inequality∫
|∂v f2|m1/2

0 ≤
(∫

f2 m0

)1/2(∫ |∂v f2|2
f2

)1/2

≤ C Iv (f2)1/2

we get

d

dt

∫
|f |m1/2

0 ≤
∫
|f |(−A∂xm1/2

0 − B∂vm
1/2
0 ) + εC Iv (f2)1/2

∫
|f |m1/2

0 +

∫
|f |

≤ (C + εIv (f2))

∫
|f |m1/2

0 .

We conclude to the uniqueness by Gronwall lemma.
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Proof - existence of stationary solution

Define
Z := {f ∈ H1(m) ∩ P; ‖f ‖H1(m) ≤ K1/K2}

and
S = (St) by St f0 := ft solution of the FHN equation.

• Z is a convex and strongly compact subset of the Banach space L1
2;

• S leaves Z invariant and it is a L1
2-continuous semigroup.

A direct application of the Schauder fixed point theorem implies

∃G ∈ Z such that StG = G ∀ t ≥ 0

or equivalently

G is a stationary solution to the FHN equation (for any given a, b, ε > 0).

We may simplify that existence part by working in the space of symmetric solutions S
(i.e. f ∈ S iff f (−x ,−v) = f (x , v)) in which space the FHN equation is linear.
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Proof - rough spectral analysis of the linearized operator

For any stationary state Gε ∈ Z, we define the linearized operator

Lεh := ∂x(Ah) + ∂v ((B0 + ε(v − µGε))h)− εµh∂vGε + ∂2
vvh

We write
Lε = A+ Bε, Ah := MχR(x , v) h

and we have

(1) ‖SB ∗ (ASB)(∗k)‖B(X ) ≤ Ck e
−t

and

(2) ‖SB ∗ (ASB)(∗n)‖B(L1(m),H1(mm0)) ≤ Cn e
−t

As a consequence, the Weyl theorem (Theorem 2) implies

Σ(L) ∩∆−1 = finite ⊂ Σd(L).
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Proof of estimates (1) and (2)

• the estimate
(1) ‖SB ∗ (ASB)(∗k)‖B(X ) ≤ Ck e

−t

is a consequence of the fact that
B A ∈ B(X ), X = L1(m), L2(m), H1(m);
B B is −1-dissipative in X = L1(m), L2(m), H1(m) as a consequence of the already
established estimates∫

Qε[µ, f ]f p−1mp ≤ C1

∫
f p − C2

∫
f pmpm0

and the similar estimate in H1(m).

• the estimate
(2) ‖SB ∗ (ASB)(∗n)‖B(L1(m),H1(mm0)) ≤ Cn e

−t

is similar to the Nash argument in the proof of the stability of Z. More precisely,
introducing

F(t, h) := ‖h‖2
L1(m) + t•‖h‖2

L2(m) + t•‖∇vh‖2
L2(m) + t•(∇vh,∇xh)L2(m) + t•‖∇xh‖2

L2(m)

we are able to prove (for convenient exponents • ≥ 1)

d

dt
F(t, SB(t)h) ≤ 0, ∀ t ∈ [0,T ].
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Spectral and semigroup analysis of the linear operator L0

We observe that in X = Lp(m)

L0h = ∂x(Ah) + ∂v ((B0h) + ∂2
vvh

is such that
(1) L = A+ B0 as above with a∗ = −1;
(2) ∃G0 ∈ Z, L0G0 = 0 and L∗0 1 = 0;
(3) L0 is strongly positive, in the sense that
B SL0 is a positive semigroup : f0 ≥ 0 implies SL0 (t)f0 ≥ 0;
B L0 satisfies a weak maximum principle: (L0 − a)f ≤ 0 and a large imply f ≥ 0;
B L0 satisfies Kato inequality : L0θ(f ) ≥ θ′(f )L0f , θ(s) = |s|, s+;
B L0 satisfies a strong maximum principle: (L0 − µ)f ≤ 0 and f ∈ X+\{0} imply f > 0.

The Peron-Frobenius-Krein-Rutman theorem asserts

G0 ∈ P L0G0 = 0, G0 is unique and stable.

More precisely
(1) ∃a < 0 such that Σ(L0) ∩∆a = {0};
(2) 0 is simple and kerL0 = vectG0;
(3) Π0h = 〈h〉G0 and L0 is invertible from R(I − Π0) onto X .
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Uniqueness in the small connectivity regime ∼ implicit function theorem

From the the Krein-Rutman theorem, for any solution L0f = g ∈ L2(m) with 〈g〉 = 0

‖f ‖L2(m) ≤ C ‖g‖L2(m).

Using the additional estimate

∀ f
∫

(L0f )f m0m
2 ≤ C1

∫
f 2m2 − κ1

∫
f 2m2

0m
2 − κ1

∫
(∂v f )2m0m

2,

we deduce the stronger bound

‖f ‖V := ‖f ‖L2(mH) + ‖∇v f ‖L2(mH1/2) ≤ C ‖g‖L2(m).

For any two stationary solutions, we now write

Gε − Fε = L−1
0

[
L0 Gε − L0 Fε

]
= εL−1

0

[
∂v
(

(v − J (Fε))Fε − (v − J (Gε))Gε
)]

and then

‖Fε − Gε‖V ≤ εC
∥∥∥∂v((v − J (Fε))(Fε − Gε) + (J (Fε)− J (Gε))Gε

)∥∥∥
L2(m)

≤ εC ‖Fε − Gε‖V .

which in turn implies that necessarily ‖Fε − Gε‖V = 0 for ε > 0 small enough.
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Stability in the small connectivity regime

The above Krein-Rutman theorem on L0 and the following properties on Lε

Lε → L0 and L∗ε1 = 0

imply (thanks to Theorem 5)

Σ(Lε) ∩∆a = {0}, a < 0, ε small > 0.

For any solution f the function h := f − Gε satisfies

∂th = Lεh − ε∂v [µh h].

From the spectral mapping theorem, we may compute (rigorously at the level of the
Duhamel formulation)

d

dt
‖h‖2

L2 ≤ 2a‖h‖2
L2 + 2a‖∂vh‖2

L2 + ε |µh| ‖h‖L2 ‖∂vh‖L2

≤ 2a‖h‖2
L2 + C ‖h‖4

L2 .

As a consequence, the set C := {‖h‖2
L2 ≤ |a|/C} is stable. Then for any h0 ∈ C, we get

‖h(t)‖L2 ≤ C eat .
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Open questions

• What about the “large” connectivity regime: ε is not small?

B unstability of “the” steady state?

B periodic solutions? local stability of one of them?

• What about a Hodgin-Huxley statistical model based on the Hodgin-Huxley 4d
ODE sytem?

S.Mischler (CEREMADE) Neuronal Network 4 Novembre 2015 34 / 34


	Overarching framework for Neuronal Network
	Models
	Qualitative analyze and weak connectivity regime 

	Relaxation in time elapsed neuron network models
	Model
	Spectral analysis

	On a FitzHugh-Nagumo statistical model for neural networks
	Well-posedness and existence of steady states
	Spectral analysis for vanishing connectivity
	Spectral analysis for small connectivity


