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Results are picked up from

@ M., Quifinao, Touboul, On a kinetic FitzHugh-Nagumo model of neuronal
network, arXiv 2015, to appear in Comm. Math. Phys.

o M., Weng, Relaxation in time elapsed neuron network models in the weak
connectivity regime, arXiv 2015

o M., Quifinao, Touboul, A survey on kinetic models and methods for
neuronal networks, in progress
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Outline of the talk

@ Overarching framework for Neuronal Network

o

@ Models
@ Qualitative analyze and weak connectivity regime

Relaxation in time elapsed neuron network models
@ Model
@ Spectral analysis

On a FitzHugh-Nagumo statistical model for neural networks
@ Well-posedness and existence of steady states

@ Spectral analysis for vanishing connectivity

@ Spectral analysis for small connectivity
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Outline of the talk

@ Overarching framework for Neuronal Network
@ Models
@ Qualitative analyze and weak connectivity regime
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One-neuron model

z ~ state variable of a neuron (membrane potential, elapsed time since last
discharge, ...), Z the set of state variables.

The state Z; € Z of one neuron is a time dependent random variable and evolves
accordingly to the SDE

(1) dZt - F(Zt, Mt7 dﬁt),
M, := given neuron network activity,
dL; := noise process (Brownian, Poissonian)

We are only saying that the neuronal network environment is here known and
then one neuron evolves according to a general Markov (no autonomous) process.

Problem 1. Mathematical analyse of equation (1). That is a job for probabilists.
We will come back on that issue later.
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N-neuron network

Consider an finite assembly (Z1, ..., ZV) of neurons in interaction.

The evolution equation for each neuron Z/ is exactly the same
(2a) dZ} = F(Z}, M, dL}),

excepted that the neuronal network activity M; is determined by the electric
activity of every neurons:

1 N
(2b) M, = M {N 3 52[,-0&]}
i=1

and L} are independent stochastic noise processes.

= Neurons are indistinguishable. Simple and quite weak interaction (possibly
with delay) between neurons through a same quantity M(t)

Problem 2. Mathematical analyse of equation (2) is really a job for probabilists.
We will not consider that issue here.
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Mean field limit

When N becomes very large, in the mean field limit, we expect

L£(Z]) — f,, same limit,
N— oo

L£(Zi,2Z) P fs ® fs, asymptotic independence (chaos),
—00
and
1N
N -E,l Ozi N:; fs, functional law of large numbers.

As a consequence,

fr = L£(Z;) = law of a typical neuron

and Z; evolves according to the same (but now nonlinear) SDE
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Mean field limit

In the mean field limit
L
N Z (52{[0 . fio,] := £(Z)j0,5) = law of a typical neuron
i=1 "

where Z; evolves according to the mean field SDE

(3) dZ, = F(Zs, My, dLy), M= M [f‘[o,t]].

Problem 3. Establish the mean field limit N — oo. That is a large number law
+ the proof of asymptotic independence between pairs of neurons (using a
propagation of chaos argument). That can be done using several strategies

e BBGKY method (BBGKY, ...)

e Semigroup method (Kac, McKean, Griinbaum, ...)

e Coupling method (Tanaka, Sznitman, ...)

e Nonlinear Martingale method (Sznitman, ...)

> For the first (elapsed time) model: see the recent papers by Fournier,
Locherbach, Quifiinao, Robert, Touboul.
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Mean field PDE

For any test function ¢ : Z — R and from It6 formula, one deduces

Elo(Z0)] — Elo(20)] = /0 E{(Liy,0)(Z:)] ds,

for a suitable integro-differential linear operator L7,..

As a consequence, the law f := £(Z) is a solution to the evolution PDE
(4) Oif = Lyyf, M(t) = M(foq), f(0,-) = f.
Other possible definition/equation on the network activity are

M(t, x) = M(fio,g,x),  M(t) = M(fijo,¢, M(2)).

Problem 4. Well-posedness of equation (4) and perform a qualitative
analyze of the solutions.
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Existence and uniqueness of solutions

From the fact that Z; is a stochastic process, we find
(fy) ::/ft:]E[l]El7 Vt>0.
z

Number of neurons is conserved (that is good!) and it is the only general
available qualitative information on the solutions.

Under general and mild assumptions on the operators F and M

Theorem 1. For any 0 < fy € L1, there exists (at least) one global solution
f € C([0,00); L) to the PDE (4).

> Be careful with Noisy Leaky Integrate and Fire model for which blow up can
occur

Theorem 2. There exists (at least) one stationary solution 0 < G € L! to the
evolution PDE (4), that is

(5) 0=LyG, M=M(G,M).

> proof: intermediate value theorem or Brouwer fixed theorem
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No connectivity regime ~ one-neuron model

We introduce a small parameter ¢ > 0 corresponding to the strength of the
connectivity of neurons with each other, and thus to the nonlinearity of the model:

(45) 8tf = ['sM(t)ﬂ M(t) = ./\/lg(ﬁ[o’t]7 M(t)), f(O7 ) = fb

In the not connected regime £ = 0, the equation is linear

(40) Of = Lof, £(0,)) = fo.

Theorem 3 (Krein-Rutman).

e There exists a unique normalized and positive stationary state Gy to the
evolution PDE (4p), that is £oGy = 0.

e Gy is stable for the associated semigroup: 3a <0, C > 1,

1S20(t) foll < Ce* Ifoll, Vt=>0, Vi, () =0.

> proof: KR = 3Gy >0, (Go) =1, LoGo = AGp, but A = 0 because L1 =0
(mass conservation) or because of Theorem 2.
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Small connectivity regime = a perturbative regime

Theorem 4.1. There exists €9 > 0 such that the normalized and positive
stationary state G; is unique for any ¢ € (0, &p).

> Ly exists and use (half of the) implicit function theorem

Theorem 4.2. There exists €1 > 0 such that G; is exponentially linearly
stable for the associated semigroup: 4a <0, C > 1,

1Sc.(8) foll < Ce™|lfoll, Vt>0, Vh, (fo) =0, Ve € (0,e1).
> Y (L) N A, = {0} for e > 0 small by a perturbation trick and then use
the spectral mapping theorem.

Theorem 4.3. There exists € > 0 such that G, is exponentially
nolinearly stable : 3a <0, C > 1,

IF(t) — G|| < Cr e, Vt>0, Vo, (o) =1, Ve € (0,¢).

e What ever is the complexity of the model: asynchronous spiking holds in

the small connectivity regime. Synchronization comes from nonlinearity?
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Outline of the talk

@ Relaxation in time elapsed neuron network models
o Model
@ Spectral analysis
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Relaxation in time elapsed neuron network models

e State of a neuron: local time (or internal clock) x > 0 corresponding to the
elapsed time since the last discharge;

e Dynamic of the neuron network: (age structured) evolution equation
Oif = —0xf — a(x,e m(t))f =: Lemnf, f(t,0) = p(t)
on the density number of neurons f = f(t,x) > 0.

e a(x,e ) > 0: firing rate of a neuron in the state x for a network activity u > 0
and a network connectivity parameter € > 0.

e p(t): total density of neurons undergoing a discharge at time t given by
oo
p(0) = P m(e)], Polgon = [ axcmg(x)ax
0
e m(t): network activity at time t > 0 resulting from earlier discharges given by

m&r—Ampu—ywmm,

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = &y and then m(t) = p(t).
- Case with delay, when b is a smooth function.
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Existence result
Monotony and smoothness assumptions
0a>0, a=09,a>0,
0<a:= XILngO a(x,0) < x,;ljmoo a(x, p) =: a1 < oo,

a € W>>(R3).

b=4¢& or 35>0, / e (b(y) + |b'(y)|) dy < .
0

Theorems 1,2. For any 0 < f; € L}, there exists (at least) one global solution
f € C([0,00); L1). There exists (at least) one normalized and positive stationary
solution G;:

Loy, G = —04G. — a(x,e M.)G. =0, G.(0) = M.,
M& - Pg[GE. Ma] - / a(X,EMg) GE(X)dX,
0

See also
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Small connectivity regime

Theorems 3, 4a, 4b. Je; > 0 such that for any € € (0,¢1) the stationary

solution G; is unique and exponentially stable for the associated linear semigroup.

> About the proof. The linearized equation for the variation
(g,n.q) = (f,m,p) — (G, M, Mc)
around a stationary state (G, M., M.), which writes
0ig = —0xg — alx,e Mc)g — n(t) e(0,a)(x,eM:)F., g(t,0) = q(t),

with

oo

q(t):/ooo a(x,EME)gdx—i-n(t)E/O (9,3)(x, eM.)F. dx

(o) = [ )
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Intermediate evolution equation

We introduce an intermediate evolution equation
Ov+0,v =0, v(t,0)=q(t), v(0,y)=0,

where y > 0 represent the local time for the network activity.

That last equation can be solved with the characteristics method
V(ta)/) = q(t - y)IOSySt-
The equation on the variation n(t) of network activity writes
o0
n(t) =Dlv()l. Dli= [ vib(ay).
0
and the equation on the variation g(t) of discharging neurons writes

q(t) = Oclg(t), v(1)],

with
Oe[gv V] = Ns[g] + HED[V]v
oo e
Ng] ::/ a.(M)gdx, k. := / al(M.)F. dx.
0 JO
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Time autonomous equation and splitting structure

For the new unknown (g, v) the equation writes
Oi(g,v) =Nc(g,v) = A(g.v) + B(g, v),
where the operator A. = (AL A2) is defined by
N(g.v) = —0.g —ag—aF.D[v] +0,=00:[g, V],
Li(g,v) = —0v+3,200:g, V],
> B. is dissipative;

> Sp. * A:Sp. has a smoothing effect

> We may apply the spectral theory in general Banach space (Weyl's Theorem,
spectral mapping Theorem, Krein-Rutman Theorem, perturbation Theorem)
developped by M., Scher, Tristani.
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Outline of the talk

© On a FitzHugh-Nagumo statistical model for neural networks
@ Well-posedness and existence of steady states
@ Spectral analysis for vanishing connectivity
@ Spectral analysis for small connectivity
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A FitzHugh-Nagumo statistical model
Oif = Q.(Tr, f) = Ox(Af) + 0, (Bf) + 92,f on (0,00) x R?
complemented withy an initial condition
f(0,.)=f >0 inR%.

where
A= A(x,v) =ax—bv, B=B.][Jf]=B(x,v;Jr)
B(x,vip)=v:—v+x+e(v—p), Jr:= [pvIF(x,v)dvdx

@ t > 0 is the time variable, v € R is the membrane potential of one neuron,
x € R is an auxiliary variable

@ f = f(t,x,v) >0 is the time-dependent density of neurons in state (x, v) € R?
@ a, b, e are positive parameters and ¢ is the connectivity of the network

The equation being in divergence form the number of neurons is a constant along
time (that's better!):

/f(t,x,v)dxdv:/ fodxdv = 1.
R2

R2
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Motivation: microscopic description

e As a simplification of the Hodgin-Huxley 4d ODE, FitzHugh-Nagumo 2d ODE
describes the electric activity of one neuron and writes

V=v—V3 =X+l = —Bo + lexe

X =bv —ax = —A,
with le = i(t) + oW exterior input split as a deterministic part + a stochastic
noise. We assume i(t) = 0.

e For a ngtwqu of N coupled neurons, the associated model writes for the state
Z, = (X[, V;) of the neuron labeled i € {1,..., N}

Vi=[-By(X, V') Zgu —W)dt + o dW'

dX" = —AX' ) V)dt

where €;; > 0 corresponds to the connectivity between the two neurons labeled i
and j. The model takes into account an intrinsic deterministic dynamic + mean
field interaction + stochastic noise.
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Motivation: to a statistical description (mean field limit)

We assume ¢ := /N, (Z3..., Z}') are i.i.d. random variables with same law f,
and we pass to the limit N — oo. _
We get that (21, ..., ZN) is chaotic which means that any two neurons Z! and 2/
are asymptotically independent and Z! — Z: = (X, V¢) which is a solution to
the nonlinear ODS

P

= [=Bo(
X =—A(

v, V) —e(V—E(V))]dt + o dW

,V)dt.

From Ito calculus we immediately see that the law f(t,.) := L(X;, V;) satisfies
the associated backward Kolmogrov equation which is nothing but the FHN

nonlinear statistical equation (here and below we make the choice o := /2 for
the sake of simplification of notations).
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Global existence and uniqueness for the evolution PDE

We introduce the weight function my = mo(x, v) := 14 x?/2 4+ v?/2 and the
weighted Lebesgue spaces LP(m) associated to the norm

[Fllo(my = Mmllces (Fllwrem) = [Fllogmy + [Vl o(m)
and the shorthand L := LP(mg’?).

Th 8. M., Quininao, Touboul

For any fy € & = L} N [tlogL! N P(R?) there exists a unique global solution
f € C(J0,0); L N'P) to the FHN statistical equation. It also satisfies

[ fim < max(Co [ fom).  [fllsimy < max(Gas o)

It depends continuously in the initial datum: f, ; — f; in L% for any time t > 0 if
fao — fo in L} and \|f,,70||L1 + H(f,0) < C.
For any 7 > 0 there exists C, such that

sup ||l < G,
t>7
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Steady state : existence, uniqueness and stability

Th 9. M., Quininao, Touboul

There exists at least one stationary solution G to the FHN statistical equation:

3G € HY(m)NP(R?), 0= 0,(AG)+ d,(B:[uc]G)+92,G inR?

Th 10. M., Quininao, Touboul

There exists e* > 0 such that in the small connectivity regime ¢ € (0,e*) the
stationary solution is unique and exponentially stable: there exist nf > 0, a < 0
such that 7 — oo when ¢ — 0 and

VhelanP, |fy— Glly < nZ there holds [|f(t) — G|y < Ce'Vt>0

e We follow a strategy introduced in M., Mouhot (CMP 2009) for the inelastic homogenous
Boltzmann equation and improved in Tristani (arXiv 2013) in a weakly inhomogeneous setting.
e But we fundamentally use the fact that the limit equation (for e = 0) is positive and it is then
exponentially asymptotically stable thanks to the Krein-Rutmann theorem (Theorem 4)

e We also use some “hypocoercive” calculus tricks developed by Hérau and Villani for the
kinetic Fokker-Planck equation
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Proof - L} estimate

The vector field (A, B) does not derive from a potential (even in the case £ = 0) but has

the following “confinement property”
—xA—vB = —ax’+bxv— v —(1+&)xv+ eux
2

1 €
< C(a,b,e) — gx2 — §v4+2;;12.

Also observe (Cauchy-Schwarz inequality)
J? < /fvzdxdv Vf e P(R?).
Lemma (uniform in time Lj estimate, k > 2)
For mo := 14 x?/2 + v?/2 and any f € P(R?), there holds for C; > 0
/Qg[u, flmo < G (1+ %) — G / f(1+ x>+ vY.
As a consequence, for any f € P(R?)
/Qs[jf, flmo < G — Cz/fmm
and for any f, € P(R?)

Th < /ﬂmo < max(%;/fomo) Vt>0, m=m?
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Proof - H! estimate

In the same way for m = "™

% / Pm? = 2/95[% FFm? < cl/ -G / £2 m?mo — / 10, F[2m?,
but we do not know how to conclude (in order to get uniform in times bound) !?
We introduce the (equivalent) twisted norm (reminiscent of hypocoercivity theory)

Hf”?Hl(m) = ||f|ﬁ2(m) + Hva”iZ(m) +a”°(V.f, Vof)i2m + aHvaH%Z(m)
for & > 0 small enough. For the associated scalar product (-, -)

(Qc[u, f], ) G / -G / 2 m*mo — a/\avf\2m2 - (15/6/ |0, F|*m?
Kil[fllan — KelIf 30
by using Nash inequality

IN

A

2
(£l < ClFll e[l
Lemma uniform in times ' estimate)

For any f € P(R?)

K
|#llragm < max (- [ llsam) ¥t 0.
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Proof - local a priori bound and existence

We compute
%/flogf _ /(8Wf)|ogf+/(8x(Af)+6V(Bf))|ogf

_ 7/(6vff)2 +/(8XA+8VB)f

—Iv(f)+/mof, Z.(f) ::/(8\,:)2.

IA

We conclude by standard (weak L' compacteness) argument to the existence of a
solution £ € C([0, o0); L') such that

;
sup/f(m§+|ogf)+/ T.(f)dt< Cr YT>0
[0,T] 0

forany fo € LiNPN L' log L .
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More about the proof - uniqueness

For any two solutions f; et f» to the FHN equation
Oef; = Ox(AF) + 0, (Bif)) + O3
with B := By + ¢(v — J5), the difference f = f, — f; satisfies
Oif = O (AF) + 8, (Bif) + £ TrDo o + O F.
As a consequence, by Kato's inequality
|| < O(Alf]) + 0u(Bilf) + e |0ufal | T¢| + O |-

Using the inequality

1/2 2\1/2
[iosim < ([ am) ([ 2E0) " < cay
2
we get

d 1/2
& [ nmy

IN

/'f‘(‘Aaxmé” - Bavmé”)+eczv(fz)l/2/|f|m3/2+/lf|

IN

(C + <T.(5)) / |Fmb2.

We conclude to the uniqueness by Gronwall lemma.
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Proof - existence of stationary solution

Define
Z={f e H(m)NP; |[fllsa(m < Ki/Ka}

and
S = (S¢) by Sify := f; solution of the FHN equation.

e Z is a convex and strongly compact subset of the Banach space L3;
e S leaves Z invariant and it is a L3-continuous semigroup.

A direct application of the Schauder fixed point theorem implies
dG € Zsuchthat ;G=G Vt>0

or equivalently

G is a stationary solution to the FHN equation (for any given a, b,e > 0).

We may simplify that existence part by working in the space of symmetric solutions S
(i.e. f e Siff f(—x,—v) = f(x,v)) in which space the FHN equation is linear.
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Proof - rough spectral analysis of the linearized operator

For any stationary state G. € Z, we define the linearized operator
Loh = 0(Ah) + 8,((Bo + e(v — pc.))h) — epund, G- + 92 h

We write
Le=A+B., Ah:= Mxgr(x,v)h

and we have

(1) 1155 * (AS5) g < Cre™*

and

(2) 1155 * (AS5)"" llequ (my, m (mmy) < Coe™"
As a consequence, the Weyl theorem (Theorem 2) implies

Y(L)N A_; = finite C X4(L).
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Proof of estimates (1) and (2)
o the estimate
(1) 1S5 * (ASE)“|lsx) < Cee™"

is a consequence of the fact that

> A€ B(X), X = L'(m), L*(m), H*(m);

> B is —1-dissipative in X = L*(m), L?(m), H'(m) as a consequence of the already
established estimates

/Qs[u, fIFPtmP < Cl/f"— cszpmpm0

and the similar estimate in H*(m).

e the estimate

(2) IS5 * (ASB)(*H)HB(Ll(m),Hl(mmo)) < Gef
is similar to the Nash argument in the proof of the stability of Z. More precisely,
introducing

F(t, h) = Hh“%1(m) + t.Hh”%Z(m) + t.HVvhHé(m) + t*(Vvh, Vih) 2(m) + t.Hvth%Z(m)
we are able to prove (for convenient exponents e > 1)

& F(tss(t)n) <0, Vee[o,T]
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Spectral and semigroup analysis of the linear operator L

We observe that in X = LP(m)
Loh = 8. (Ah) + d,((Boh) + d2,h

is such that

(1) L = A+ By as above with a* = —1;

(2) 3Gy € Z, LoGop = 0 and [,61 =0;

(3) Lo is strongly positive, in the sense that

> S, is a positive semigroup : fo > 0 implies Sg,(t)fo > 0;

> Lo satisfies a weak maximum principle: (Lo — a)f <0 and a large imply f > 0;

> Lo satisfies Kato inequality : Lo0(f) > 0'(f)Lof, 0(s) = |s|, s+;

> Lo satisfies a strong maximum principle: (Lo — p)f < 0 and f € X \{0} imply f > 0.

The Peron-Frobenius-Krein-Rutman theorem asserts
Go P LoGy =0, Gp isunique and stable.

More precisely

(1) 3a < 0 such that X(Lo) N A, = {0};

(2) 0 is simple and kerLy = vectGp;

(3) Moh = (h)Gy and Ly is invertible from R(/ — o) onto X.
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Uniqueness in the small connectivity regime ~ implicit function theorem

From the the Krein-Rutman theorem, for any solution Lof = g € L*(m) with (g) =0
11l 2m) < ClIgl 2(m)-
Using the additional estimate
Vf /(Eof)fm0m2 < Cl/f2m2 - ,{1/f2m§m2 — K1 /(Gvf)2mom2,
we deduce the stronger bound
Il = [Fll2gmty + IV Flli2minrzy < CllEl2(m)-
For any two stationary solutions, we now write
G.—F. = £5'[£oG.—LoF.]

e L5 [o.((v = T(F)F. - (v = 7(6.))6.)]

and then
Fe — Gellv

IN

e Cllo (v = TR - 6+ (T(F) - 7(6)6.)

e C||Fe — Ge|lv-

12(m)

IA

which in turn implies that necessarily ||F. — G.||v = 0 for ¢ > 0 small enough.
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Stability in the small connectivity regime

The above Krein-Rutman theorem on Ly and the following properties on L.
Le— Ly and LI1=0

imply (thanks to Theorem 5)

Y(L)NA,={0}, a<0, esmall >0.

For any solution f the function h := f — G, satisfies
Oth = Loh — €0, [un h].

From the spectral mapping theorem, we may compute (rigorously at the level of the
Duhamel formulation)

d
bz < 2a||l[7> + 2al|@uAllL> + & |nl || lli2 10w hll 2

IN

2alhl| 2 + C ||Al| 2.
As a consequence, the set C := {||h||?, < |a|/C} is stable. Then for any ho € C, we get
IA(t) 2 < C e,
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Open questions

e What about the “large” connectivity regime: ¢ is not small?
D> unstability of “the” steady state?

> periodic solutions? local stability of one of them?

e What about a Hodgin-Huxley statistical model based on the Hodgin-Huxley 4d
ODE sytem?
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