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Results are picked up from

@ Gualdani, M., Mouhot, Factorization for non-symmetric operators and
exponential H-Theorem, arXiv 2010

e M., Mouhot, Exponential stability of slowing decaying solutions to the
kinetic Fokker-Planck equation, arXiv 2014

@ M., Scher, Spectral analysis of semigroups and growth-fragmentation egs,
to appear in Annales IHP

@ Tristani, Boltzmann equation for granular media with thermal force in a
weakly inhomogeneous setting, arXiv 2013

@ Ndao, Convergence to equilibrium for the Fokker-Planck equation with a
general force field, in progress

@ Kavian, M., The Fokker-Planck equation with subcritical confinement
force, in progress

@ M., Semigroups in Banach spaces - factorization approach for spectral
analysis and asymptotic estimates, in progress
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Outline of the talk

@ Introduction

@ Spectral theory in an abstract setting
@ Spectral mapping theorem
@ Weyl's theorems and extension theorems

@ small perturbation theorem
@ Krein-Rutman theorem

© The Fokker-Planck equations
o Fokker-Planck equation with strong confinement
@ kinetic Fokker-Planck equation
@ Fokker-Planck equation with weak confinement
@ Discret Fokker-Planck equation

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis May 28, 2015

3/37



© Introduction

© Spectral theory in an abstract setting
@ Spectral mapping theorem
@ Weyl's theorems and extension theorems
@ small perturbation theorem
@ Krein-Rutman theorem

© The Fokker-Planck equations
o Fokker-Planck equation with strong confinement
@ kinetic Fokker-Planck equation
o Fokker-Planck equation with weak confinement
@ Discret Fokker-Planck equation



Revisit the spectral theory in an abstract setting

At

Spectral theory for general operator A and its semigroup Sp(t) = €”f in general

(large) Banach space X which then only fulfills a growth estimate
[Sx(t)lsx) < Ce®, C>1, beR.

e Spectral map Theorem — ¥ (et") =~ e>(\) and s(A)

~ Y os(B)

w(A) =
e Weyl's Theorems < compact perturbation ¥ es(A + B)
§(Z(A)NA,) < N(a)

< distribution of eigenvalues
e Small perturbation — Y (A;) ~X(A)ifA. — A
e Krein-Rutman Theorem — s(A) = supReX(A) € X4(A) when Sy >0

e functional space extension (enlargement and shrinkage)
— X(L)~X(L)when L =L
— tide of (essential?) spectrum phenomenon

Structure: operator which splits as
AN=A+B, A=<B, Bdissipative

Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators and
W?P(m) weighted Sobolev spaces
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Applications / Motivations :

e (1) Convergence rate in large Banach space for linear dissipative and
hypodissipative PDEs (ex: Fokker-Planck, growth-fragmentation)

e (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of
linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ¢ space

e (3) Existence, uniqueness and stability of equilibrium in “small perturbation
regime” in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck,
parabolic-parabolic Keller-Segel, neural network)

Is it new?

e Reminiscent ideas (e.g. Voigt 1980 on “power compactness”, Bobylev 1975,
Arkeryd 1988, Gallay-Wayne 2002 on the “enlargement” issue).

e first enlargement result in an abstract framework by Mouhot (CMP 2006)

e Unusual (and more quantitative) splitting

A= Ao + Bo = A. + A+ Bo
NN I

compact  dissipative smooth dissipative

e Our set of results is the first systematic and general (semigroup and space) works on
the “principal” part of the spectrum and the semigroup
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Old problems

e Fredholm, Hilbert, Weyl, Stone  (Functional Analysis & semigroup Hilbert
framework) < 1932

e Hyle, Yosida, Phillips, Lumer, Dyson, Dunford, Schwartz, ...
(semigroup Banach framework & dissipative operator) 1940-1960

e Kato, Pazy, Voigt (analytic operator, positive operator) 1960-1975

e Engel, Nagel, Gearhart, Metz, Diekmann, Priiss, Arendt, Greiner, Blake,
Mokhtar-Kharoubi, Yao, ... 1975-
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Still active research field

e Semigroup school (> 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,
Greiner, Metz, Mokhtar-Kharoubi, Nagel, Priss, Webb, Yao, ...

e Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,
Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjostrand, Wayne, ...

e Probability school (diffusion equation): Bakry, Barthe, Bobkov, Cattiaux, Douc,
Gozlan, Guillin, Fort, Ledoux, Roberto, Rockner, Wang, ...

e Kinetic school (~ Boltzmann):

> Guo, Strain, ..., in the spirit of Hilbert, Carleman, Grad, Ukai works (Spectral
analysis of the linearized (in)homogeneous Boltzmann equation, existence and
convergence to the equilibrium in “small spaces”)

> Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

> Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
Schmeiser, ... (Poincaré inequality & hypocoercivity)
> Arkeryd, Esposito, Pulvirenti, Wennberg, Mouhot, ... (Spectral analysis of the
linearized (in)homogeneous Boltzmann equation, existence and convergence to
the equilibrium in “large spaces”)
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A list of related papers

@ Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann
equation with hard potentials, CMP 2006

@ M., Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann
equation for inelastic hard spheres, CMP 2009

@ Arnold, Gamba, Gualdani, M., Mouhot, Sparber, The Wigner-Fokker-Planck equation:
Stationary states and large time behavior, M3AS 2012

@ Canizo, Caceres, M., Rate of convergence to the remarkable state for fragmentation and
growth-fragmentation equations, JMPA 2011 & CAIM 2011

@ Egana, M., Uniqueness and long time asymptotic for the Keller-Segel equation - the
parabolic-elliptic case, arXiv 2013

@ Carrapatoso, Exponential convergence ... homogeneous Landau equation, arXiv 2013

@ Tristani, Boltzmann equation for granular media with thermal force in a weakly
inhomogeneous setting, arXiv 2013

@ Carrapatoso, M., Uniqueness and long time asymptotic for the parabolic-parabolic
Keller-Segel equation, arXiv 2014

@ Briant, Merino-Aceituno, Mouhot, From Boltzmann to incompressible Navier-Stockes in
Sobolev spaces with polynomial weight, arXiv 2014

@ M., Quifinao, Touboul, On a kinetic FitzHugh-Nagumo model of neuronal network, arXiv
2015

@ Carrapatoso, Tristani, Wu, On the Cauchy problem ... non homogeneous Landau
equation, arXiv 2015
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Outline of the talk

@ Spectral theory in an abstract setting
@ Spectral mapping theorem
@ Weyl's theorems and extension theorems
@ small perturbation theorem
@ Krein-Rutman theorem
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Main issue

For a given operator A in a Banach space X, we want to prove
(1) Z(N)NA;={&} (or=0), &=0
with £(A) = spectrum, A, :={z € C, Rez > o}

(2) Mg, = finite rank projection, i.e. & € g4(A)
— at
Sl —
(3) IISA(/ = Mag)lIx=x < Gie™,  a < RNe&y

Definition:

We say that A is a-hypodissipative iff || ||x_x < Ce?, C >1
spectral bound = s(A) := sup ReX(A)

growth bound = w(A) :=inf{a € R, s.t. L — ais hypodissipative }
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Splitting structure and factorisation approach

Consider the generator A of a semigroup in several Banach spaces denoted
by E, &, X, X, Y, Y
We assume that A has the following splitting structure

AN=A+5,

and we make the following boundedness hypothesizes for a given a € R:
o Ais BY-bounded with 0 < ¢’ < 1.
e 3 is A-power dissipative in X

Ve, Spx(ASE)FI(t) et € L®(R,; B(X)).
e A is right Sg-power regular in (X,)), Y C X

In>1, (ASE) M (1) e € YRy ; B(X,)).
or e A is left Sg-power regular in (X,)), Y C X
3n>1, (SsA)M(t) e~ e YR, ; B(X,))).
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Growth estimates - characterization

Theorem 1. (Gearhart, Priiss, Gualdani, M., Mouhot, Scher)
Let A € G(X) and a* € R. The following equivalence holds:

(1) The operator A is a-hypodissipative in X Va > a*;
2) L:= Ay is a-hypodissipative in Y C X Va > a*, A=A+ B, B is A-power
|
dissipative in X, A is right Sp-power regular in (X, Y).
(2) Ljx = N for some operator £ which is a-hypodissipative in ¥ D X for any

a>a*, N= A+ B, Bis A-power dissipative in X, A is left Sg-power regular
in (Y, X).

(3) Z(A)NA,- =0 and A splitsas A = A+ B, A< B for some
0<{ < (<1, Bis A-power dissipative in X, A is left Sg-power regular in
(X, D(B)).

(3") Z(N)N A, =0 and A splits as A = A+ B, A € B(X,D(B~¢")) for some
0<{ < (<1, Bis A-power dissipative in X, A is right Sg-power regular
in (D(B~¢, X).

(4) if X is a Hilbert space, the resolvent Ry is uniformly bounded on A,
Va> a*.
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Proof of the enlargement / shrinkage result (2) / (2') = (1)

We iterate the Duhamel formula
or + (SgA)x*Sp

but stop the Dyson-Phillips series (the Dyson-Phillips series corresponds to
the choice n = c0)

n—1

Sh=_ Sp#(ASg)D) + Sy (AS)HN)
£=0

or 4+ (SgA)t™ « Sy,

We observe that the n terms are O(e?").
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Proof of the Gearhart, Priiss theorem (4) = (1)

For f € D(A), we use the inverse Laplace formula
i a+ioco
SA(t)f = E s e*t R/\(Z)f dz
where Rp stands for the resolvent operator defined by
Rn(z) = (N —2)7 L.

and the resolvent identity

Ra(a+is) = (1 + (a— b) Ra(a+ is)) Ra(b + is).
Using the Cauchy-Schwartz inequality and Plancherel’s identity, we get

0o 1/2
ISa(Dflx < e ( / ||RA(a+fs)f||2de)

o0

oo

1/2
|Ra(b + is)f||% ds)

N

e (1+ (b — a)||Rall1=(a)) </

< e b= AlRalee) [

— 00

1/2
||e<A-b>f||é(X)ds) 1Flx
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Proof of the spectral mapping theorem (2) = (1)

We start again with the stopped Dyson-Phillips series

N—-1
Sn=>_ S+ (ASE)) + Sy x (ASp)*N) = T1 + Ta.
=0

The first N — 1 terms are fine. For the last one, we use the inverse Laplace
formula

i a+ioco

T(t)f = e” RA(2)(ARp(2))Vf dz

27 a—ioo

a+ioco
< et / R [(ARs(2)"]] dz If].
R —_——— — o ———

— 100

€Le=(1a)7? €LY(1,)?

where T,,={z=a+ iy, y € R}.
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The key estimate

We assume (in order to make the proof simpler) that ( = 1, namely
I(ASB) | x5x, = O(e™) Vit >0,
with X1 := D(A) = D(B), which implies
[(AR5(2)) Ix—x < Co Yz=a+iy, a> a.

We also assume (for the same reason) that ¢’ = 0, so that
1
A¢€ E(X) and RB(Z) = ;(RB(Z)B — /) S ﬁ(Xl,X)

imply
|ARB(2)||x,—»x < Ca/|z| Vz=a+ iy, a> a..

The two estimates together imply

(*) 1(AR5(2))™ Y |xox < Ca/{z) Vz=a+iy, a> a..

® In order to deal with the general case 0 < ¢’ < ¢ < 1 one has to use some additional
interpolation arguments
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We write
R\N1-V)=U

with
U= Z ) Rs(ARg), V= (-1)""1(ARp)"

For M large enough
() V(I <1/2 Vz=a+ly, [y[=M,
and we may write the Neuman series

Ra( ZV

oonded =0
~——
bounded

For N =2(n+ 1), we finally get from (x) and (xx)

bounde

IRM(2)(ARs(2)N| < C/(y)?, Vz=a+iy,ly|>M
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Spectral mapping - characterization

Variant 1 of Theorem 1. (M., Scher)
(0) A = A+ B, where A is B¢ -bounded with 0 < ¢/ < 1,
(1) IS5 * (AS)9|| x_xe 2t € L®(R,), Va > a*, V£ >0,

(2) 3n (IS5 * (ASB)*V||x_,prcye " € LH(Ry), Va > a*, with ¢ >,

(3) Z(M) N (Ag\Ag) = 0, 2" < a™,
is equivalent to

(4) there exists a projector 1 which commutes with A such that
A=Ay, € B(X1), X1 := RM, (A1) C A

ISA(t) (1 = Mx—x < Cae™, Va>a’

In particular
Y(e™M) N Agor = TNMBa vt >0 2> 3*
and
max(s(A), a*) = max(w(A), a*)
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Enlargement and shrinkage of the functional space

Variant 2 of Theorem 1. (Gualdani, M. & Mouhot)
Assume for some a € R

L=A+B, L=A+B, L=Lg, A=Ag, B=BE, ECE

(i) B is A-power dissipative in £, B is A-power dissipative in E,

(ii) A is right Sg-power regular in (£, E), A is left Sg-power regular in
(,E).

Then the following for (X,A) = (E, L), (€, L) are equivalent:

JKx C A, compact and a projector Np € B(X) which commute with A

and satisfy ¥ (Ajq,) = Ka, so that

V>0, HS/\(t) — Sa(t) nAHX%X < Croet

In particular KL = Z(L)N A, =X(L)NA,=Ke and M =TNgle
May 28, 2015
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Compact perturbation Weyl's theorem (at the level of the generator)

Theorem 2. (Ribari¢, Vidav, Voigt, M., Scher)

Assume

(0) A = A+ B, where A is B¢ -bounded with 0 < ¢’ < 1,

(1) [|S5 * (ASg)9||x xe™ @t € L®(Ry), V£ >0,

in particular Z(B) N A, =0,

(2) 30 [[(ASE) xsx, e € L1(Ry), with ¢ > ¢/,

(3) Im ||(ASE) ™ ||xye 2t € LY(R,), with Y C X compact.

Then, for any a > a* there exists a finite number of eigenvalues &1, ...

with finite algebraic multiplicity such that
SN N A, = {&1, ., 6} C Ta(X).
In particular, we deduce a “principal” Weyl's result:
Tess(N) N Age = Tess(B) N A = 0.
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Semigroup compact perturbation Weyl's theorem - characterization

Corollary 2. (M., Scher)

(0) A = A+ B, where A is B<-bounded with 0 < ¢’ < 1,

(1) 1S5 * (AS)9||xx < Cre, Ya> a*, V>0,

(2) 3n [|(ASB)"M||Ixx, e~ € LY(Ry), Va > a, with ¢ > ¢,

(3") 3m [|(ASE) ™| x_y € L}(Ry), Va > a*, with Y C X compact,
is equivalent to

(4') there exist &1,...,& € A, there exist My, ..., T, some finite rank
projectors, there exists T; € B(RI;) such that AN; = M;A = T;1;,
Y(Tj) = {¢}, in particular

SN NA, ={&,...&} C Ta(%)

and there exists a constant C, such that
J
ISa(t) = > etiMjllxox < Goe, Va>a'
j=1

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis May 28, 2015 22 /37



Distribution of eigenvalues Weyl's Theorem

Theorem 3. (M., Scher)

Assume

(0) A= A+ B, where A is B¢ -bounded with 0 < ¢’ < 1,

(1) 18 * (ASE)*D||xx < Cret, Vi >0,

(2) (ASB) | xx, €% € LH(Ry), with ¢ > ¢,

(3") Im ||(ASB)*™||x_y e~ € LY(R,), with ¥ C X compact,
(3") 1(S8A) ™ || x_y et € LY(R,), for the same m and Y,

4) 3 projectors (my) on X with rank N, 3 positive real numbers (gp)
with ey — 0 and 3C such that

vieY, |myflx <enlflly.

Then, there exists a (constructive) constant N* such that
HE(A) NAL) = #(Xa(N) N AL) < N

and the algebraic multiplicity of any eigenvalue is less than N*.
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Small perturbation

Theorem 4. (M. & Mouhot; Tristani)
Consider a family (A;) of generators, ¢ > 0. Assume
(0) ANe=A.+B:inX;, Xy CcCc Xo=XCC Xy, A: < Be
(1) IS5, * (A-55.)"9||x sx.e 72t bdd L, Va>a* V£>0,i=0,+1
(2) ||(A- SBE)(*")HX_,X ~2t bounded L'(Ry), Va>a*, i=0,-1
(3) Xiv1 C D(B:x;), D(A¢x;) for i = —1,0 and
[ Ae — Aollx;—x_, + [1B: = Bollx;—x,_; <m(e) =0, i=0,1,
(4) the limit operator satisfies (in both spaces Xy and Xj)
Z(No) N Az = {&1, -, &k} C Zg(Mo).

Then

T(A) N A=A 15 & aes - €1r -+ €k} € Za(Ae),

& —&pl<me) >0 V1<j<k V1<) <dj

dimR(I_I/\Efﬁ + ...+ nAE’SjE,dj) = dlmR(ﬂ/\O@),
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Krein-Rutman for positive operator

Theorem 5. (M. & Scher) Consider a semigroup generator A on a “nice”
Banach lattice X, and assume
(1) A such as the semigroup Weyl's Theorem for some a* € R;
(2) 3b > a* and ¢ € D(A*) N X \{0} such that A*¢p > b);
(3) Sa is positive (and A satisfies Kato's inequalities);
(4) —A satisfies a strong maximum principle.
Defining A := s(A\), there holds
a* < A=w(N), A is simple,

and there exists 0 < f,, € D(A) and 0 < ¢ € D(A*) such that

Noo = Ao, N =X, RIp ) = Vect(fy),
and then

Manf =(f,¢)fc VFfeX.
Moreover, there exist a € (a*, ) and C > 0 such that for any f, € X
ISA(t)fo — M Manhllx < Ce* |Ify — Manhlx Vit >0.
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Discussion / perspective

e In the application of these Theorems one can take n =1 in the simplest
situations (most of space homogeneous equations in dimension d < 3), but
one need to take n > 2 for the space inhomogeneous Boltzmann equation

e Open problem: (1) Beyond the “dissipative case”?

> example of the Fokker-Planck equation for “soft confinement potential”
and relation with “weak Poincaré inequality” by Rockner-Wang

> Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,
Batkal-E-P-S, Batty-D, ...

> applications to the Boltzmann and Landau equations associated with
“soft potential”

> Abstract theory in the "weak dissipative case”

(2) Spectral analysis for singular perturbation problems
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Outline of the talk

© The Fokker-Planck equations
o Fokker-Planck equation with strong confinement
@ kinetic Fokker-Planck equation
@ Fokker-Planck equation with weak confinement
@ Discret Fokker-Planck equation
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The Fokker-Planck equation with strong confinement
Consider the Fokker-Planck equation
Oef = Af = A f + div, (F f)

with a force field term F such that

and an initial datum
f(0) =fy € WPP(m) (means mfy € WP).
Here p € [1,00], 0 € {—1,0,1} and m is a polynomial weight
m= (V5 k> k*(p,o,7), ify>2,
or stretch exponential weight
m = ef{v)’

) 56[2_77715’7215
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Theorem 6. Gualdani, M., Mouhot, Ndao

There exists a unique “smooth”, positive and normalized steady state f,
Ao = A foo + div, (F f,) = 0.

That one is given by f, = exp(—®) is F = V.
There exist a = a,(p, m) < 0, C > 1, such that for any fo € W"(m)

1£(t) = (fo) Foollwep(my < C e [Ifo — (o) Foollwerp(m)-

Ifvye[2,2+1/(d—-1)],

WA(f (1), (fo) o) < C €™ WA(f, (fo) foc)

Proof: We introduce the splitting A = A + B, with A a multiplicator operator
Af = MXR(V)fv XR(V):X(V/R)v OSXS 13 XED(Rd),

so that A is bounded operator and 5 is a elliptic operator.
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About the proof : Factorization estimates

e the estimate

(1) 1S5 * (AS5) s < Cee™
is a consequence of the fact that
> A€ B(X), X =W7P(m)

> B is a-dissipative in X = W?P(m). For 0 =0, p € [1,00) that is a consequence of

the estimates

/(Af)f”*m” —(p-1) / NORGD / (fm)?y
2 pAm o L mP 1
w—(p 1) - +2(1 p) e +(1 p)d F—-F p= (<O)

e the estimate

(2) 1155 * (AS)" g (mpi(my < Cre™
use a “Nash + regularity” trick. More precisely, introducing

F(t,h):= HhHil(m) + t.HhHiZ(m) + t.vahHiZ(m)

we are able to prove (for convenient exponents e > 1)

d 1
LF(6,Sa(t)h) <O and then [|Ss(e)hlEngm < 1Ml
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The kinetic Fokker-Planck equation (with strong confinement)

Consider the Fokker-Planck equation
Of =Nf = —v -V, f +V, V-V, f+A,f +div,(vFf) inR? xR
with a confinement potential
V(x) =~ %|x|ﬂ B>1, H:i=1+|v]>+V¥(x)
and an initial datum
f(0) = fo € WoP(m), m=H¥or =e"".

Theorem 7. M. & Mouhot
There exist a = a,(p, m) < 0, C > 1, such that for any fy € W%P(m)

[1£(t) = (fo) focllwer(m) < C €% ||fo — (fo) fos llwep(m)-
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About the proof - kinetic Fokker-Planck equation

We introduce
AN=A+DB, Ah:= Mxg(x,v)h
so that A is a bounded operator.

e For exhibiting the dissipativity properties of 5, we introduce the weight multiplier:

. B
M(x,v) == mw, W2=1+%XHQV, Ha ::1+a%+é

4

2
2 )

and we show for instance
/(Bf)f”’ll\/l” < a/ fPMP, a<0.
e For the regularizing estimate
(2) IS8 = (“ASB)(*H)||B(L1(m),H1(mm0)) < G e™,
we use a “Nash-Hormander-Hérau-Villani" hypoelliptic trick. More precisely, introducing
F(t,h) = Bl + A2 + NV A2y + £ (Vb Vih) 2y + £ V|2 ()

we are able to prove (for convenient exponents e > 1)
%J-‘(n Ss()h) <0, Vte[o,T]
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Fokker-Planck equation with weak confinement

Consider the Fokker-Planck equation
Of = Nf = A f +div,(F 1)

with a weak force field term F

Theorem 8. Kavian & M.

There exists a unique “smooth”, positive and normalized steady state f..
For any fy € LP(m)

1£(t) = (o) foclle < ©(t) [[fo — (fo) fos [l Lo (em).

with C k — k*(p)
o) = —%, K~——— |if = (x)k
® = 2 m= ()
= CM, o if m=m=e ¥,
2—vy

> Improve Toscani, Villani, 2000 (based on log-Sobolev inequality)
& Roéckner, Wang, 2001 (based on weak Poincaré inequality)
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Avout the proof - weak confinement

e We make the same splitting A = A+ B, Af = Mxrf, but now B is not a-dissipative

anynmore with a < 0.
e However, for p € [1,00), that is a consequence of the estimates

Jonretm = (-1 [ 19m)Empt+ [ (.

if m=(v)" then ¢) ~ —F - me ~ (V)72

e We choose E; = L({v)%) with ko < ki < ko, and we can prove

is not unifomly negative !

d
HfﬁHEl < =AMzl HfEHEz <0,

for some constant A\ > 0. Since for some « € (1, ) Co € (1,00)
Iflle < CalIFIE" IFlIE ", VF €.

We immediately deduce the (closed) differential inequality

d _ _
Selfelle < =X G Il I fe 2,
that we readily integrate, and we end with

o f
()6 < holle, g,

_1 1
((a — 1)A)o-T to-1
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Discret Fokker-Planck equation
Consider the discret FP equation (associated to a rescaled random walk)
Of =N.f = eiz(k8 xf —f)+div,(vr)

for any € > 0 and a given kernel k-(v) = e~ k(e 1v),

1 1
Klaon < ke WHERIN Ly [ kW) | v ) dee
VRV 214

with k,r >0, g > d/2 + 4.
Theorem 8. M. & Tristani

Forany e € (0,&p), €0 > 0, there exists a unique “smooth”, positive and normalized
steady state G..

For any fo € LY(m), m:= (v)9,

Ifz(t) — (fo) G|l a(my < Ce® ||fo — (fo) foollti(m), uniformly in & > 0.
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About the proof - discret FP

We split A as
A = A + B..

e A first possible (naive) choice is
1

A.f == Sk *f compact
€

and then B, is e~2-dissipative. Applying the Krein-Rutman that gives the
existence, uniqueness and (¢ dependent) exponential stability of a steady
state G..

e A second possible choice is

.Aef = MXR(kE*f).

One can show that B; is still a-dissipative with a < 0. That choice is
compatible with splitting of the limit Fokker-Planck operator

N = A f +divy(vf), Af =M xgf
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Uniform smoothing effect on the product A.Sp.

e The following elementary estimate holds
[ ke #x f”i‘p < K I(f),
with i
L= o [ (700 = F)P el — y) .
£ Rd xRd
e The energy estimate for the evolution equation
8tf == Bf
writes
Ny S —elR) — 1512
dt tih2(m) ~ e\lt tll(2(m)
< 2alke * fel|2, + 2all fell Famy

which implies
o0 o0
Au&%ﬁmmesz ke = fil12, 2% dt < [|fo]2
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