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Results are picked up from

Carrapatoso, M. Landau equation for very soft and Coulomb potentials

near Maxwellian, in progress

Kavian, M., The Fokker-Planck equation with subcritical confinement

force, in progress

M., Semigroups in Banach spaces - factorization approach for spectral

analysis and asymptotic estimates, in progress

Generalize to a weak dissipativity framework some related previous works available in a
dissipativity framework, in particular:

Gualdani, M., Mouhot, Factorization for non-symmetric operators and exponential
H-Theorem, arXiv 2010

M., Scher, Spectral analysis of semigroups and growth-fragmentation eqs,
to appear in Annales IHP

Carrapatoso, Tristani, Wu, Cauchy problem and exponential stability for the
inhomogeneous Landau equation, arXiv 2015

which in turn formalize several reminiscent ideas from Bobylev 1975, Voigt 1980,
Arkeryd 1988, Gallay-Wayne 2002, Mouhot 2006, ... .
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Hypodissipative Framework

With Mouhot, Gualdani and Scher, we have recently revisited the spectral theory
of operators and semigroups in an hypodissipative and abstract general Banach
framework, providing a set of results including:

• Spectral mapping Theorem

• Weyl’s Theorem about distribution of eigenvalues under compact perturbation

• Stability of the spectrum Theorem under small perturbation

• Krein-Rutman Theorem

• Functional space extension (enlargement and shrinkage) Theorem

These results were motivated by linear and nonlinear evolution PDE to which they
have been applied

• Asymptotic behavior of linear PDE in large space (Growth-Fragmentation,
Kinetic Fokker-Planck in W σ,p(m), −1 ≤ σ ≤ 1 ≤ p ≤ ∞)

• Optimal (= linearized) exponential decay estimates for nonlinear PDE
(homogeneous (inelastic) Boltzmann, Parabolic-elliptic Keller-Segel)

• Existence, uniqueness and stability results in perturbative regime
(nonhomogeneous (inelastic) Boltzmann, Parabolic-parabolic Keller-Segel, kinetic
FitzHugh-Nagumo and others neuronal networks)
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Weak Hypodissipative Framework

In the present talk, we consider some possible extension to a weak hypodissipative
framework. Namely, when we do not have (or we do not exploit) any estimate

〈f ∗,Λf 〉X . −‖f ‖2
X ,

but we have (and exploit)

〈f ∗,Λf 〉X . −‖f ‖2
Y , X ⊂ Y .

When the estimate is sharp, = the operator is not “more dissipative”, that
corresponds to the situation

ΣP(Λ) ∩ ∆̄0 = ∅, Σ(Λ) ∩ ∆̄0 6= ∅.

More specifically, we present

• some (not all) abstract spectral analysis results

• some application to the Fokker-Planck equation with weak confinement force

• some application to the Landau equation for Coulomb potential near
Maxwellian in the torus
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Main result and Motivation

Landau equation

∂t f + v · ∇x f = Q(f , f )

f (0, .) = f0

on density of the plasma f = f (t, x , v) ≥ 0, time t ≥ 0, position x ∈ T3 (torus),
velocity v ∈ R3

Q = the Landau (binary) collisions operator

Q(g , f ) = ∂j

∫
R3

aij(v − v∗)(g∗∂j f − f ∂jg∗) dv∗

for the Coulomb potential cross section

aij(z) = |z |γ+3
(
δij −

zizj
|z |2

)
, γ = −3.
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around the H-theorem

We recall that ϕ = 1, v , |v |2 are collision invariants, meaning∫
R3

Q(f , f )ϕ dv = 0, ∀ f .

⇒ laws of conservation∫
f

 1
v
|v |2

 =

∫
f0

 1
v
|v |2

 =

 1
0
3


We also have the H-theorem, namely∫

Q(f , f ) log f

{
≤ 0

= 0 ⇒ f = Maxwellian

From both information, we expect

f (t, x , v) −→
t→∞

µ(v) :=
1

(2π)3/2
e−|v |

2/2.
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Existence, uniqueness and stability in small perturbation regime

Theorem 1. (Carrapatoso, M.)

Take an “admissible” weight function m such that

〈v〉2+3/2 ≺ m ≺ e|v |
2

.

There exists ε0 > 0 such that if

‖f0 − µ‖H2
x L

2
v (m) < ε0,

there exists a unique global solution f to the Landau Coulomb equation and

‖f (t)− µ‖H2
x L

2
v
≤ Θm(t),

with

Θm(t) '

{
t−(k−2−3/2)/|γ| if m = 〈v〉k

e−λt
s/|γ|

if m = eκ|v |
s
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comments on the main Theorem 1

• Improves Guo and Strain’s results (CMP 2002, CPDE 2006, ARMA 2008) who
proved a similar theorem in the higher order and strongly confinement Sobolev
space H8

x,v (µ−θ), θ > 1/2.

• The proof does not use high order nonlinear energy estimates, but

- Simple nonlinear estimates and trap argument

- Decay and dissipativity estimates for the linearized equation in the
corresponding space

Π̄0 := projector on N(L̄), and next factorization and semigroup tricks in order to
get similar information in the space H2

xL
2(m).
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comments on the main Theorem 1

• The proof does not use high order nonlinear energy estimates, but

- Simple nonlinear estimates and trap argument

- Decay and dissipativity estimates for the linearized equation in the
corresponding space

• The method consists in introducing the variation function g = f − µ and the
corresponding Landau equation

∂tg = L̄g + Q(g , g),

L̄ = −v · ∇x + L, L = Q(·, µ) + Q(µ, ·)

As a starting point, we use the known weak dissipativity estimate

(Lg , g)L2(µ−1/2) . −‖(I − Π0)g‖2
H1
∗(µ1/2〈v〉(γ+2)/2),

Π0 := projector on N(L), in order to prove the weak hypodissipativity estimate

(L̄g , g)H1
x,v (µ−1/2) . −‖(I − Π̄0)g‖2

H1
x,v (µ1/2〈v〉(γ+2)/2),

Π̄0 := projector on N(L̄), and next factorization and semigroup tricks in order to
get similar information in the space H2

xL
2(m).
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Semigroup analysis in an abstract weak hypodissipative framework

For a given Banach space X , we want to develop a spectral analysis theory
for operators Λ enjoying the splitting structure

Λ = A+ B, A ≺ B, B weakly hypodissipative.

We will

• clarify the links between dissipativity and decay;

• present an extension of the decay estimate result;

• present a possible version of spectral mapping theorem;

• present a possible version of Krein-Rutman theorem.

• We do not present any version of Weyl’s theorem or perturbation theorem.

• Very few papers related to that topics. We may mention: Caflisch (CMP 1980),
Toscani-Villani (JSP 2000), Röckner-Wang (JFA 2001), Lebeau & co-authors (1993 &
after), Burq (Acta Math 1998), Batty-Duyckaerts (JEE 2008). That last is one of the
only reference in a abstract Banach (in a more restrictive framework than ours).
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From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator Λ. Assume

∀ f ∈ Y Λ
1 , 〈f ∗Y ,Λf 〉Y . −‖f ‖2

Z

∀ f ∈ XΛ
1 , 〈f ∗X ,Λf 〉X . 0 (or SΛ is bounded X )

∀R > 0, εR‖f ‖2
Y ≤ εR‖f ‖2

Z + θR‖f ‖2
X , εR ,

θR
εR
→ 0.

There exists a decay function Θ such that

‖SΛ(t)‖X→Y ≤ Θ(t)→ 0.

• We say that a Banach space E is regular if ϕ : E → R, f 7→ ‖f ‖2
E/2 is G-differentiable

and
{f ∗ ∈ E ′, 〈f ∗, f 〉E = ‖f ‖2

E = ‖f ∗‖2
E ′} = {f ∗E }, f ∗E := Dϕ(f ).

Hilbert spaces and Lp spaces, 1 < p <∞, are regular spaces.

• We denote EΛ
s := {f ∈ E , Λs f ∈ E} the abstract Sobolev spaces
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From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator Λ. Assume

∀ f ∈ Y Λ
1 , 〈f ∗Y ,Λf 〉Y . −‖f ‖2

Z

∀ f ∈ XΛ
1 , 〈f ∗X ,Λf 〉X . 0 (or SΛ is bounded X )

∀R > 0, εR‖f ‖2
Y ≤ εR‖f ‖2

Z + θR‖f ‖2
X , εR ,

θR
εR
→ 0.

There exists a decay function Θ such that

‖SΛ(t)‖X→Y ≤ Θ(t)→ 0.

• We say that m is an admissible if m = 〈v〉k or m = eκ〈v〉
s

. We then write m0 ≺ m1 or
m1 � m0 or if m0/m1 →∞.

• For X = Lp(m1), Y = Lp(m0), Z = Lp(m0〈v〉α/p), with α < 0 and m1 � m0, we get

Θ(t) '

{
t−(k1−k0)/|α| if mi = 〈v〉ki

e−λt
s/|α|

if m1 = eκ|v|
s

S.Mischler (CEREMADE & IUF) Landau equation September 14, 2015 13 / 35



Proof of Proposition 1

We define ft := SΛ(t)f0, f0 ∈ X , and we compute

d

dt
‖ft‖2

X ≤ 0, ⇒ ‖ft‖X ≤ ‖f0‖X

d

dt
‖ft‖2

Y . −‖ft‖2
Z

. −εR‖ft‖2
Y + θR‖f0‖2

X ,

and from Gronwall lemma

‖ft‖2
Y . e−εR t‖f0‖2

Y +
θR
εR
‖f0‖2

X

. Θ(t)2 ‖f0‖2
X ,

with

Θ(t)2 := inf
R>0

(
e−εR t +

θR
εR

)
.
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From decay estimate to weak dissipativity

Prop 2. Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator L.
Assume

• ‖SL(t)‖X→Z ≤ Θ(t), with Θ ∈ L2(R+) a decay function (i.e. which tends to 0)

• L = A+ B, A ≺ B, with

∀ f ∈ XB1 , 〈f ∗,Bf 〉X . −‖f ‖2
Y

∀ f ∈ XA1 , 〈f ∗,Af 〉X . ‖f ‖2
Z .

Then, L is weakly hypodissipative

〈〈f ∗,Lf 〉〉X . −‖f ‖2
Y

for the duality product 〈〈, 〉〉X associated to the norm defined by

|||f |||2 := η‖f ‖2
X +

∫ ∞
0

‖SL(τ)f ‖2
Zdτ,

for η > 0 small enough. That norm is equivalent to the initial norm in X .
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Proof of Proposition 2

We observe that ||| · ||| ∼ ‖ · ‖X because Θ ∈ L2(R+).

We set ft := SL(t)f0 and we compute

d

dt
|||ft |||2 = η〈f ∗t ,Lft〉X +

∫ ∞
0

d

dτ
‖SL(τ + t)f0‖2

Z dτ

= η〈f ∗t ,Bft〉X + η〈f ∗t ,Aft〉X − ‖ft‖2
Z

≤ −ηC1‖ft‖2
Y + (ηC2 − 1)‖ft‖2

Z

. −‖ft‖2
Y

as well as

d

dt
|||ft |||2 ' 〈〈f ∗t ,Lft〉〉X
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Functional space extension (enlargement and shrinkage)

Prop 3. Consider a decay function Θ such that

Θ−1(t) . Θ−1(t − s)Θ−1(s) for any 0 < s < t.

We consider two sets of Banach spaces X1 ⊂ X0 and Y1 ⊂ Y0 and a generator Λ.
We assume

• ‖SΛ(t)‖X1→X0 Θ−1 ∈ L∞

• Λ = A+ B, A ≺ B, with

∀ `, ‖SB ∗ (ASB)(∗`)‖Y1→Y0 Θ−1 ∈ L∞

∃ n, ‖(ASB)(∗n)‖Y1→X1 Θ−1 ∈ L1 if X0 ⊂ Y0 (enlargement)

∃ n, ‖(SBA)(∗n)‖X0→Y1 Θ−1 ∈ L1 if Y1 ⊂ X1 (shrinkage)

Then,
‖SΛ(t)‖Y1→Y0 Θ−1 ∈ L∞.
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Proof of Proposition 3

Enlargement result. We iterate the Duhamel formula

SΛ = SB + SΛ ∗ (ASB)

to get a “stopped Dyson-Phillips series” (the D-P series corresponds to n =∞)

SΛ =
n−1∑
`=0

SB ∗ (ASB)(∗`) + SΛ ∗ (ASB)(∗n) =: S1 + S2.

From the assumptions, we immediately have

‖SΛ‖Y1→Y0 Θ−1 ≤ ‖S1‖Y1→Y0 Θ−1 +‖SΛΘ−1‖X1→X0 ∗‖(ASB)(∗n)Θ−1‖Y1→X1 ∈ L∞

Shrinkage result. We argue similarly staring with the iterated the Duhamel
formula / stopped Dyson-Phillips series

SΛ =
n−1∑
`=0

SB ∗ (ASB)(∗`) + (SBA)(∗n) ∗ SΛ.
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Spectral mapping theorem

Prop 4. (incorrect statement?) We consider two Banach spaces X ⊂ Y and a

generator Λ. We assume X 1
Λ ⊂ Y is compact and Θ(t) ≈ e−λt

1/(1+j)

• ΣP(Λ) ∩ ∆̄0 = ∅, with ∆0 := {z ∈ C; <ez > 0}

• Λ = A+ B, with A ∈ B(Y ,X ), ζ ∈ (0, 1] and

(a1) ∀ `, ‖SB ∗ (ASB)(∗`)‖X→Y Θ−1 ∈ L∞

(a2) ∀ `, sup
z∈∆̄0

‖(RB(z))`‖X→Y ≤ C (`!)j

(a3) ∀ `, sup
z∈∆̄0

‖RB(z)‖Y→XΛ
ζ
≤ C (`!)j

Then,
‖SΛ(t)‖X→Y Θ−1 ∈ L∞.
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Proof of Proposition 4

We start again with the stopped Dyson-Phillips series

SΛ =
N−1∑
`=0

SB ∗ (ASB)(∗`) + SΛ ∗ (ASB)(∗N) = S1 + S2

The first N − 1 terms are fine. For the last one, we use the inverse Laplace
formula

S2(t)f =
i

2π

∫
↑0

ezt RΛ(z)(ARB(z))N f dz

≈ 1

tk

∫
↑0

ezt
dkΦ

dzk
dz f

.
C k

tk
k!

∫
↑0

sup
|α|≤k

‖R1+α1

Λ (z)‖X→Y︸ ︷︷ ︸
∈L∞(↑0) ?

‖AR1+α1

B ...AR1+αN

B (z)‖X→X︸ ︷︷ ︸
∈L1(↑0) ?

dz ‖f ‖X ,

where ↑0:= {z = 0 + iy , y ∈ R} and because

dkΦ

dzk
≈
∑
|α|≤k

α!R1+α0

Λ AR1+α1

B ...AR1+αN

B
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Key estimates

• Using (a2), (a3), the compact embedding X 1
Λ ⊂ Y and the fact that there is

not punctual spectrum in ∆̄0, we get

sup
z∈∆̄0

‖RΛ(z)`‖X→Y ≤ C (`!)j

• A ∈ B(Y ,X ) and the resolvent identity

RB(z) =
1

z
(RB(z)B − I ) ∈ B(X1,X )

imply
‖ARB(z)‖X1→X ≤ C/|z | ∀ z ∈ ∆̄0.

Together with (a2) (where we assume that ζ = 1 in order to make the proof
simpler) we get

‖ARB(z)`1ARB(z)`2‖X→X ≤ C (`1!)j(`2!)j 〈z〉−1

• Choosing N = 4 and gathering the two estimates, we get

‖d
kΦ

dzk
(z)‖X→Y ≤ C k (k!)j 〈z〉−2 ∈ L1(↑0).
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End of the proof

Coming back to the term S2, we have

S2(t) . C kk(1+j)kt−k .

. e−λt
1/(1+j)

= Θ(t),

by choosing appropriately k = k(t)
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Krein-Rutman theorem

Prop 5.

Consider a semigroup generator Λ on a Banach lattice X , and assume
(1) Λ such as the spectral mapping Theorem holds (for ‖f ‖Y = 〈|f |, φ〉);
(2) φ ∈ D(Λ∗), φ � 0 such that Λ∗φ = 0;
(3) SΛ is positive (and Λ satisfies Kato’s inequalities);
(4) −Λ satisfies a strong maximum principle.

There exists 0 < f∞ ∈ D(Λ) such that

Λf∞ = 0, ΣP(Λ) ∩ ∆̄0 = {0}, ΣP(Λ1) ∩ ∆̄0 = ∅

with Λ1 := Λ|X1
, X1 = R(I − Π0) = (I − Π0)X ,

Π0f = 〈f , φ〉 f∞ ∀ f ∈ X .

Moreover the decay function Θ defining in the spectral mapping Theorem :

‖SΛ(t)(I − Π0)f0‖Y . Θ(t) ‖(I − Π0)f0‖X ∀ t ≥ 0, ∀ f0 ∈ X .
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The Fokker-Planck equation with strong confinement

Consider the Fokker-Planck equation

∂t f = Λf = ∆v f + divv (F f )

with a weak confinement force field term F such that

F (v) ≈ v〈v〉γ−2 γ ∈ (0, 1)

and an initial datum

f (0) = f0 ∈W σ,p(m) (means mf0 ∈W σ,p).

Here p ∈ [1,∞], σ = 0 and m is a polynomial weight

m = 〈v〉k , k > k∗(p, σ, γ),

or a exponential weight

m = eκ〈v〉
s

, s ∈ (0, γ], κ > 0.

For latter reference, we define σ = 0 if m is a polynomial and σ = s if m is a
exponential.
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Statement of the decay theorem

Theorem 2. (Kavian & M.)

There exists a unique “smooth”, positive and normalized steady state f∞.
For any f0 ∈ Lp(m)

‖f (t)− 〈f0〉 f∞‖Lp ≤ Θ(t) ‖f0 − 〈f0〉 f∞‖Lp(m),

with
Θ(t) =

C

〈t〉K
, K ∼ k − k∗(p)

2− γ
if m = 〈x〉k

= Ce−λt
σ

, σ ∼ s

2− γ
if m = eκ 〈x〉

s

.

B Improve by providing a better rate and/or a larger class of initial data earlier
results by Toscani, Villani, 2000 (based on log-Sobolev inequality)
& Röckner, Wang, 2001 (based on weak Poincaré inequality)
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Elements of proof of Theorem 2

We introduce the splitting Λ = A+ B, with A a multiplicator operator

Af = MχR(v)f , χR(v) = χ(v/R), 0 ≤ χ ≤ 1, χ ∈ D(Rd)

B A ∈ B(X0,X1), Xi = W σ,p(mi ), m1 � m0

B B is not a-dissipative in X = W σ,p(m) with a < 0. However, it is weakly
dissipative. For p ∈ (1,∞), and M,R > 0 large enough, we have

〈f ∗,Bf 〉Lp . −‖f ‖2
Lp(m〈v〉(γ−2+σ)/p)

That is a consequence of the identity∫
(Λf )f p−1mp = (p − 1)

∫
|∇(fm)|2(fm)p−1 +

∫
(fm)pψ

ψ = (
2

p
− 1)

∆m

m
+ 2(1− 1

p
)
|∇m|2

m2
+ (1− 1

p
)divF − F · ∇m

m

∼ −F · ∇m
m
∼ −〈v〉σ+γ−2
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• the estimate
(1) ‖SB ∗ (ASB)(∗`)‖X1→X0 ≤ Θ(t)

follows from Proposition 1.

• the estimate
(2) ‖(ASB)(∗n)‖B(L1(m1),H1(m2)) ≤ Θ(t)

follows from (1) and the use a “Nash + regularity” trick for small time. More
precisely, introducing

F(t, h) := ‖h‖2
L1(m) + t•‖h‖2

L2(m) + t•‖∇vh‖2
L2(m)

we are able to prove (for convenient exponents • > 1)

d

dt
F(t,SB(t)h) ≤ 0 and then ‖SB(t)h‖2

H1(m) ≤
1

t•
‖h‖2

L1(m)

• The Fokker-Planck semigroup is obviously mass conservative and positive and
the Fokker-Planck operator satisfies the strong maximum principle. The last point
in order to apply Proposition 5 is to verify that assumption (a2) in Proposition 4
is satisfied.
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Estimate on nonlinear operator

A classical result (∼ Guo?) sates that for any weight functions m, m1 � 〈v〉2+3/2 and
m0 � 〈v〉2

〈Q(f , g), h〉L2(m) .
(
‖f ‖L2(m) ‖g‖H1

∗(m1) + ‖f ‖H1(m0) ‖g‖L2(m)

)
‖h‖H1

∗(m)

with
‖f ‖2

H1
∗(m) := ‖f ‖2

L2(m〈v〉(γ+σ)/2) + ‖∇̃f ‖2
L2(m〈v〉γ/2),

and

∇̃v f = Pv∇v f + 〈v〉(I − Pv )∇v f , Pvξ =

(
ξ · v

|v |

)
v

|v | .

As a consequence, we have

Prop 6.

for m � 〈v〉2+3/2, defining X := H2
xL

2
v (m), Y := H2

xH
1
v,∗(m), Z := H2

xH
−1
v,∗(m), we have

〈Q(f , g), h〉X .
(
‖f ‖X ‖g‖Y + ‖f ‖Y ‖g‖X

)
‖h‖Y

‖Q(f , g)‖Z .
(
‖f ‖X ‖g‖Y + ‖f ‖Y ‖g‖X

)
.
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Nonlinear a priori estimate

A introduce the equivalent norm

|||f |||2X := η‖f ‖2
X +

∫ ∞
0

‖SL(τ)f ‖2
X0
dτ,

with X0 := H2
xL

2
v , Y0 := H2

xH
1
v,∗, Z0 := H2

xH
−1
v,∗.

We consider a solution g to the Landau equation

d

dt
g = L̄g + Q(g , g)

and we compute

1

2

d

dt
|||g |||2X = 〈〈Lg , g〉〉X + η〈Q(g , g), g〉X

+

∫ ∞
0

〈SL(τ)Q(g , g), SL(τ)g〉X0 dτ =: T1 + T2 + T3.

From Proposition 1, we expect to have

T1 . −‖g‖2
Y .

Thanks to the choice of the norm and Proposition 6, we have

T2 ≤ C‖g‖X ‖g‖2
Y .
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Nonlinear a priori estimate (continuation)

For the last term, thanks to Proposition 6, we have

T3 =

∫ ∞
0

〈SL(τ)Q(g , g), SL(τ)g〉X0 dτ

.
∫ ∞

0

‖SL(τ)Q(g , g)‖Z0‖SL(τ)g‖Y0 dτ

. ‖Q(g , g)‖Z‖g‖Y
∫ ∞

0

Θ(τ)2 dτ . ‖g‖X‖g‖2
Y ,

under the condition that

t 7→ ‖SΛ(t)‖Y→Y0 , ‖SΛ(t)‖Z→Z0 ∈ L2(R+).

We conclude with
d

dt
|||g |||2X . ‖g‖2

Y(1− C |||g |||X )

We deduce
B a priori uniform estimate for |||g0|||2X small, and then classically existence and
uniqueness
B considering two weight functions m � m̃, the above a priori estimate implies

d

dt
|||g |||2X̃ . −‖g‖2

Ỹ ,
d

dt
|||g |||2X . 0,

and we get decay estimate just repeating the proof of Proposition 1.
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Splitting of the operator

We introduce the splitting L̄ = A+ B
Ag := Q(g , µ) + MχRg = (aij ∗ g)∂ijµ− (c ∗ g)µ+ MχRg ,

Bg := Q(µ, g)−MχRg − v · ∇xg = (aij ∗ µ)∂ijg − (c ∗ µ)g −MχRg − v · ∇xg ,

with
bi (z) = ∂jaij(z) = −2 |z |γ zi , c(z) = ∂ijaij(z) = −8πδ0

We show
• Weak dissipativity of B in many spaces (twisting trick, duality trick)

(Bf , f )H2
x L

2(m) . −‖f ‖
2
H2
xH

1
∗,v (m)

(Bf , f )H2
xH

1
v (m) . −‖f ‖

2
H2
xH

1(m〈v〉(γ+2)/2)

(B∗f , f )H2
xH

1(m) . −...
• Decay estimate of SB in many spaces by Proposition 1.
• Regularization property of SB in many spaces by using “Hormander-Hérau-Villani”
hypoelliptic trick. More precisely, introducing

F(t, h) := ‖h‖2
L2(m) + t•‖∇vh‖2

L2(m) + t•(∇vh,∇xh)L2(m) + t•‖∇xh‖2
L2(m)

we get (for convenient exponents • ≥ 1)

d

dt
F(t, SB(t)h) ≤ 0, ∀ t ∈ [0, 1].

(Bf , f )H2
x L

2(m) . −‖f ‖
2
H2
xH

1
∗,v (m)

(Bf , f )H2
xH

1
v (m) . −‖f ‖

2
H2
xH

1(m〈v〉(γ+2)/2)

(B∗f , f )H2
xH

1(m) . −...
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and factorization trick

• A ∈ B(Hαx H
β
v (m0),Hαx H

β
v (m1)) for any weight functions m1 � m0.

• In the space of self-adjointness L2(µ−1/2) we have the nice dissipativity estimate

〈Lg , g〉L2(µ−1/2) . − ‖Πg‖2
H1
∗(µ−1/2)

from which we deduce thanks to the twisting hypocoercivity Nier-Hérau-Villini trick

〈〈L̄g , g〉〉H1
x,v (µ−1/2) . −‖Π̄g‖2

H1
xH

1
v∗(µ−1/2)

We deduce

• SL̄ is bounded in many spaces because SL̄ is bounded in one space and L̄ splits in a
suitable way (Proposition 3 of extension).

• SL̄ is fast decaying in one space B(H1
x,v (µ−3/2,H1

x,v (µ−3/2) because it is bounded in

H1
x,v (µ−3/2) and weakly dissipative in H1

x,v (µ−1/2) (Proposition 1).

• SL̄ is decaying in many space because SL̄ is decaying in one space and L̄ splits in a
suitable way (Proposition 3 of extension).
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decay estimates and weak dissipativity

As a conclusion, we are able to prove
• On the one hand,

‖SL‖X→X0 ≤ Θ(t),

and L = A+ B with

〈f ,Bf 〉X . −‖f ‖2
Y , 〈f ,Af 〉X . −‖f ‖2

X0

in order to use Proposition 2 and define the weak dissipative norm for L

• On the one hand,

t 7→ ‖SL‖Y→Y0 , ‖SL‖Z→Z0 ∈ L2(R+)

B That are the need properties in order to get the a priori nonlinear estimate !
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