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Results are picked up from

Carrapatoso, M. Landau equation for very soft and Coulomb potentials

near Maxwellians, submitted

Kavian, M., The Fokker-Planck equation with subcritical confinement

force, submitted

M., Semigroups in Banach spaces - factorization approach for spectral

analysis and asymptotic estimates, in progress

Generalize to a weak dissipativity framework some related previous works available in a
dissipativity framework, in particular:

Gualdani, M., Mouhot, Factorization for non-symmetric operators and exponential
H-Theorem, arXiv 2010

M., Scher, Spectral analysis of semigroups and growth-fragmentation eqs,
Annales IHP 2016

Carrapatoso, Tristani, Wu, Cauchy problem and exponential stability for the
inhomogeneous Landau equation, ARMA 2016

which in turn formalize several reminiscent ideas from Bobylev 1975, Voigt 1980,
Arkeryd 1988, Gallay-Wayne 2002, Mouhot 2006, ... .

S.Mischler (CEREMADE ) Landau equation September 14, 2016 2 / 40



Outline of the talk

1 Introduction and main result
Hypodissipativity vs weak hypodissipativity
The Fokker-Planck equation with weak confinement
Landau equation with Coulomb potential near Maxwellians

2 Weak hypodissipativity in an abstract setting
From weak dissipativity to decay estimate
From decay estimate to weak dissipativity
Functional space extension (enlargement and shrinkage)
Spectral mapping theorem
Krein-Rutman theorem

3 About the proof for the Fokker-Planck equation
F = ∇V
general forces

4 About the proof for the Landau equation
Estimates on the nonlinear problem and natural large space
Splitting trick, dissipativity and decay estimates on the linear
operators
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Hypodissipative framework

With Mouhot, Gualdani and Scher, we have recently revisited the spectral theory
of operators and semigroups in an hypodissipative and abstract general Banach
framework, providing a set of results including:

• Spectral mapping Theorem

• Weyl’s Theorem about distribution of eigenvalues under compact perturbation

• Stability of the spectrum Theorem under small perturbation

• Krein-Rutman Theorem

• Functional space extension (enlargement and shrinkage) Theorem

These results were motivated by linear and nonlinear evolution PDEs to which
they have been applied

• Asymptotic behavior of linear PDEs in large space (Growth-Fragmentation,
Kinetic Fokker-Planck, Run-and-Tumble in W r ,p(m), −1 ≤ r ≤ 1 ≤ p ≤ ∞)

• Optimal (= linearized) exponential decay estimates for nonlinear PDE
(homogeneous (inelastic) Boltzmann, Parabolic-elliptic Keller-Segel)

• Existence, uniqueness and stability results in perturbative regime
(inhomogeneous (inelastic) Boltzmann, Parabolic-parabolic Keller-Segel, kinetic
FitzHugh-Nagumo and others neuronal networks)
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Main feature and next step 1

• Our theory is suitable for semigroups SΛ which split as

∃ a ∈ R, SΛ(t) = S1(t) + S2(t) =
∑

finite

SΛj (t)Πj +O(eat)

with S1 has asymptotically dominante finite dimensional range and S2 is
asymptotically negligible
with Λj = Λ|Πj

, Σ(Λj) = {λj}, <eλj > a, Πj commutes with Λ and dimΠj <∞
We establish a suitable characterisation of such semigroups with spectral gap
' quantified principal spectral mapping theorem

• Next step 1 (open problems): take into account PDEs with boundary conditions
such as the transport equation

∂t f + ∂x f + a(x)f = 0, f (t, 0) =

∫ ∞
0

a(y) f (t, y) dy , a = step function

with applications to neurons network models as in Pakdaman-Perthame-Salort
works, or kinetic PDEs

∂t f + v · ∇x f = C(f ) + Maxwell boundary condition

as in Guo and Briant-Guo works.
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Reminder about dissipativity and hypodissipativity

For a semigroup SB with generator B the following properties are “equivalent” :

(1) B is dissipative:

〈f ∗,Bf 〉X ≤ a‖f ‖2
X , for any f ∈ XB1 and f ∗ ∈ X ′ dual element;

(2) SB satisfies the growth estimate

‖SB(t)‖X→X ≤ eat ;

(3) B is hypodissipative:

〈f ∗,Bf 〉X ≤ a |||f |||2X , for an equivalent norm ||| · |||X on X ;

(4) SB satisfies the growth estimate

‖SB(t)‖X→X ≤ C eat , C ≥ 1.
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‖SB(t)‖X→X ≤ eat ;

(3) B is hypodissipative:

〈f ∗,Bf 〉X ≤ a |||f |||2X , for an equivalent norm ||| · |||X on X ;

(4) SB satisfies the growth estimate

‖SB(t)‖X→X ≤ C eat , C ≥ 1.

(1)⇒ (2): consequence of Gronwall lemma and the closed differential inequality

1

2

d

dt
‖ft‖2

X = 〈f ∗t ,Bft〉 ≤ a ‖ft‖2
X , ft := SB(t)f0.
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〈f ∗,Bf 〉X ≤ a |||f |||2X , for an equivalent norm ||| · |||X on X ;

(4) SB satisfies the growth estimate

‖SB(t)‖X→X ≤ C eat , C ≥ 1.

(4)⇒ (3): one may choose the equivalent handy norm defined by

|||f |||2X := η‖f ‖2
X +

∫ ∞
0

‖SB(τ)f ‖2
X e−bτ dτ, η > 0, b > a.
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Next step 2: weakly hypodissipative framework

Possible extension to a weakly dissipative framework ?

We do not assume the dissipativity inequality (1) but the weaker inequality

〈f ∗,Bf 〉Y ≤ a‖f ‖2
Z , Y ⊂ Z , a < 0.

B We cannot close a differential inequality with this only information.

However, assuming the additional (dissipativity) inequality

〈f ∗,Bf 〉X ≤ 0, X ⊂ Y ,

we may exploit these two inequalities together with an interpolation argument in
order to get some rate of decay to 0 (as for the Allen-Cahn equation)

That corresponds to the (no spectral gap) situation:

ΣP(B) ∩ ∆̄0 = ∅, Σ(B) ∩ ∆̄0 6= ∅.

In this weakly dissipative framework, we will present:

• some (not all) abstract spectral analysis results

• some application to the Fokker-Planck equation with weak confinement force

• some application to the Landau equation for Coulomb potential near
Maxwellians in the torus
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The Fokker-Planck equation with weak confinement

Consider the Fokker-Planck equation

∂t f = Λf = ∆v f + divv (F f )

on f = f (t, v) ∈ R, t ≥ 0, v ∈ Rd , with a weak confinement force field term F
such that

F (v) ≈ v〈v〉γ−2, γ ∈ (0, 1) (say =)

and an initial datum

f (0) = f0 ∈W r ,p(m) (means m f0 ∈W r ,p).

Here p ∈ [1,∞], r = 0 and m is a polynomial weight

m = 〈v〉k , k > k∗(p, r , γ),

or a exponential weight

m = eκ〈v〉
s

, s ∈ (0, γ], κ > 0.
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Statement of the decay theorem

Theorem 1. (Kavian & M.)

There exists a unique “smooth”, positive and normalized steady state f∞.
For any f0 ∈ Lp(m)

‖f (t)− 〈f0〉 f∞‖Lp ≤ Θ(t) ‖f0 − 〈f0〉 f∞‖Lp(m),

with
Θ(t) =

C

〈t〉K
, K ∼ k − k∗(p)

2− γ
if m = 〈x〉k

= Ce−λt
σ

, σ ∼ s

2− γ
if m = eκ 〈x〉

s

.

B Improves (better rate and/or larger class of initial data) earlier results by
Toscani, Villani, 2000 (based on log-Sobolev inequality)
& Röckner, Wang, 2001 (based on weak Poincaré inequality).

Both works deal with a force field F = ∇V what is not necessary here.
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Landau equation for Coulomb potentials

Consider the Landau equation

∂t f + v · ∇x f = Q(f , f )

f (0, .) = f0

on density of the plasma f = f (t, x , v) ≥ 0, time t ≥ 0, position x ∈ T3 (torus),
velocity v ∈ R3

Q = the Landau (binary) collisions operator

Q(g , f ) = ∂j

∫
R3

aij(v − v∗)(g∗∂j f − f ∂jg∗) dv∗

for the Coulomb potential cross section

aij(z) = |z |γ+2
(
δij −

zizj
|z |2

)
, γ = −3.
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around the H-theorem

We recall that ϕ = 1, v , |v |2 are collision invariants, meaning∫
R3

Q(f , f )ϕ dv = 0, ∀ f .

⇒ laws of conservation∫
R6

f

 1
v
|v |2

 =

∫
R6

f0

 1
v
|v |2

 =

 1
0
3


We also have the H-theorem, namely∫

R3

Q(f , f ) log f

{
≤ 0

= 0 ⇒ f = Maxwellian

From both pieces of information, we expect

f (t, x , v) −→
t→∞

µ(v) :=
1

(2π)3/2
e−|v |

2/2.
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Existence, uniqueness and stability in small perturbation regime

Theorem 2. (Carrapatoso, M.)

Take an “admissible” weight function m such that

〈v〉2+3/2 ≺ m ≺ e|v |
2

.

There exists ε0 > 0 such that if

‖f0 − µ‖H2
x L

2
v (m) < ε0,

there exists a unique global solution f to the Landau Coulomb equation and

‖f (t)− µ‖H2
x L

2
v
≤ Θm(t),

with

Θm(t) '

{
t−(k−2−3/2)/|γ| if m = 〈v〉k

e−λt
s/|γ|

if m = eκ|v |
s
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Comments on the main Theorem 2

• Improves (larger space) Guo and Strain’s results (CMP 2002, CPDE 2006,
ARMA 2008) who proved a similar theorem in the higher order and strongly
confinement Sobolev space H8

x,v (µ−θ), θ > 1/2. Based on high order nonlinear
(hypercoercivity) energy estimates.

• A corollary improves (faster rate) Desvillettes and Villani’s result (Invent. Math
2005) who proved polynomial rate of convergence for a priori suitably bounded
solutions in a space inhomogeneous setting. Based on entropy and hypocoercivity
methods.

• A corollary improves (faster rate) Carrapatoso, Desvillettes and He result (arXiv
2015) who proved polynomial and exponential rate for weak solutions in a space
homogeneous setting. Based on an entropy method.

• Our proof mixes

- Simple nonlinear estimates and trap argument in large space
(no self-adjointness)

- Decay and dissipativity estimates in appropriate norms for the linearized
equation
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Spectral analysis for semigroups in an abstract weak hypodissipative framework

For a given Banach space X , we want to develop a spectral analysis theory
for operators Λ enjoying the splitting structure

Λ = A+ B, A ≺ B, B weakly hypodissipative.

We will

• clarify the links between dissipativity and decay;

• present an extension of the decay estimate result;

• present a possible version of spectral mapping theorem;

• present a possible version of Krein-Rutman theorem.

• We do not present any version of Weyl’s theorem or perturbation theorem.

• Very few papers related to that topics. We may mention: Caflisch (CMP 1980),
Toscani-Villani (JSP 2000), Röckner-Wang (JFA 2001), Lebeau & co-authors (1993 &
after), Burq (Acta Math 1998), Batty-Duyckaerts (JEE 2008).
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From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator Λ. Assume

∀ f ∈ Y Λ
1 , 〈f ∗Y ,Λf 〉Y . −‖f ‖2

Z

∀ f ∈ XΛ
1 , 〈f ∗X ,Λf 〉X ≤ 0 (or SΛ is bounded X )

∀R > 0, εR‖f ‖2
Y ≤ ‖f ‖2

Z + θR‖f ‖2
X , εR ,

θR
εR
→ 0.

There exists a decay function Θ such that

‖SΛ(t)‖X→Y ≤ Θ(t)→ 0.

• We say that a Banach space E is regular if ϕ : E → R, f 7→ ‖f ‖2
E/2 is G-differentiable

and
{f ∗ ∈ E ′, 〈f ∗, f 〉E = ‖f ‖2

E = ‖f ∗‖2
E ′} = {f ∗E }, f ∗E := Dϕ(f ).

Hilbert spaces and Lp spaces, 1 < p <∞, are regular spaces.

• We denote EΛ
s := {f ∈ E , Λs f ∈ E} the abstract Sobolev spaces

S.Mischler (CEREMADE ) Landau equation September 14, 2016 17 / 40



From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator Λ. Assume

∀ f ∈ Y Λ
1 , 〈f ∗Y ,Λf 〉Y . −‖f ‖2

Z

∀ f ∈ XΛ
1 , 〈f ∗X ,Λf 〉X ≤ 0 (or SΛ is bounded X )

∀R > 0, εR‖f ‖2
Y ≤ ‖f ‖2

Z + θR‖f ‖2
X , εR ,

θR
εR
→ 0.

There exists a decay function Θ such that

‖SΛ(t)‖X→Y ≤ Θ(t)→ 0.

• We say that m is an admissible if m = 〈v〉k or m = eκ〈v〉
s

. We then write m0 ≺ m1 or
m1 � m0 or if m0/m1 →∞.

• For X = Lp(m1), Y = Lp(m0), Z = Lp(m0〈v〉α/p), with α < 0 and m1 � m0, we get

Θ(t) '

{
t−(k1−k0)/|α| if mi = 〈v〉ki

e−λt
s/|α|

if m1 = eκ|v|
s
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Proof of Proposition 1

We define ft := SΛ(t)f0, f0 ∈ X , and we compute

d

dt
‖ft‖2

X ≤ 0 ⇒ ‖ft‖X ≤ C‖f0‖X , C ≥ 1,

d

dt
‖ft‖2

Y . −‖ft‖2
Z

. −εR‖ft‖2
Y + θR‖f0‖2

X ,

and from Gronwall lemma

‖ft‖2
Y . e−εR t‖f0‖2

Y +
θR
εR
‖f0‖2

X

. Θ(t)2 ‖f0‖2
X ,

with

Θ(t)2 := inf
R>0

(
e−εR t +

θR
εR

)
.
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From decay estimate to weak dissipativity / perturbation of weak dissipativity

Prop 2. Consider three “regular” Banach spaces X ⊂ Y ⊂ Z and a generator L.
Assume

• ‖SL(t)‖X→Z ≤ Θ(t), with Θ ∈ L2(R+) a decay function (i.e. which tends to 0)

• L = A+ B, A ≺ B, with

∀ f ∈ XB1 , 〈f ∗,Bf 〉X . −‖f ‖2
Y

∀ f ∈ XA1 , 〈f ∗,Af 〉X . ‖f ‖2
Z .

Then, L is weakly hypodissipative

〈〈f ∗,Lf 〉〉X . −‖f ‖2
Y

for the duality product 〈〈, 〉〉X associated to the norm defined by

|||f |||2 := η‖f ‖2
X +

∫ ∞
0

‖SL(τ)f ‖2
Zdτ,

for η > 0 small enough. That norm is equivalent to the initial norm in X .
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Proof of Proposition 2

We observe that ||| · ||| ∼ ‖ · ‖X because Θ ∈ L2(R+).

We set ft := SL(t)f0 and we compute

d

dt
|||ft |||2 = 2η〈f ∗t ,Lft〉X +

∫ ∞
0

d

dτ
‖SL(τ + t)f0‖2

Z dτ

= 2η〈f ∗t ,Bft〉X + η〈f ∗t ,Aft〉X − ‖ft‖2
Z

≤ −2ηC1‖ft‖2
Y + (ηC2 − 1)‖ft‖2

Z

. −‖ft‖2
Y

as well as

d

dt
|||ft |||2 ' 〈〈f ∗t ,Lft〉〉X
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Functional space extension (enlargement and shrinkage)

Prop 3. Consider a decay function Θ such that

Θ−1(t) . Θ−1(t − s)Θ−1(s) for any 0 < s < t.

We consider two sets of Banach spaces X1 ⊂ X0 and Y1 ⊂ Y0 and a generator Λ.
We assume

• ‖SΛ(t)‖X1→X0 Θ−1 ∈ L∞

• Λ = A+ B, A ≺ B, with

∀ `, ‖SB ∗ (ASB)(∗`)‖Y1→Y0 Θ−1 ∈ L∞

∃ n, ‖(ASB)(∗n)‖Y1→X1 Θ−1 ∈ L1 if X0 ⊂ Y0 (enlargement)

∃ n, ‖(SBA)(∗n)‖X0→Y1 Θ−1 ∈ L1 if Y1 ⊂ X1 (shrinkage)

Then,
‖SΛ(t)‖Y1→Y0 Θ−1 ∈ L∞.
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Proof of Proposition 3

Enlargement result. We iterate the Duhamel formula

SΛ = SB + SΛ ∗ (ASB)

to get a “stopped Dyson-Phillips series” (the D-P series corresponds to n =∞)

SΛ =
n−1∑
`=0

SB ∗ (ASB)(∗`) + SΛ ∗ (ASB)(∗n) =: S1 + S2.

From the assumptions, we immediately have

‖SΛ‖Y1→Y0 Θ−1 ≤ ‖S1‖Y1→Y0 Θ−1 +‖SΛΘ−1‖X1→X0 ∗‖(ASB)(∗n)Θ−1‖Y1→X1 ∈ L∞

Shrinkage result. We argue similarly staring with the iterated the Duhamel
formula / stopped Dyson-Phillips series

SΛ =
n−1∑
`=0

SB ∗ (ASB)(∗`) + (SBA)(∗n) ∗ SΛ.
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Spectral mapping theorem

Prop 4. (rough version) We consider two Banach spaces X ⊂ Y and a generator

Λ. We assume X 1
Λ ⊂ Y is compact and Θ(t) ≈ e−λt

1/(1+j)

• ΣP(Λ) ∩ ∆̄0 = ∅, with ∆0 := {z ∈ C; <ez > 0}

• Λ = A+ B, with A ∈ B(Y ,X ), ζ ∈ (0, 1] and

(a1) ∀ `, ‖SB ∗ (ASB)(∗`)‖X→Y Θ−1 ∈ L∞

(a2) ∀ `, sup
z∈∆̄0

‖(RB(z))`‖X→Y ≤ C (`!)j

(a3) ∀ `, sup
z∈∆̄0

‖RB(z)‖Y→XΛ
ζ
≤ C (`!)j

Then,
‖SΛ(t)‖X→Y Θ−1 ∈ L∞.
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Proof of Proposition 4

We start again with the stopped Dyson-Phillips series

SΛ =
N−1∑
`=0

SB ∗ (ASB)(∗`) + SΛ ∗ (ASB)(∗N) = S1 + S2

The first N − 1 terms are fine. For the last one, we use the inverse Laplace
formula

S2(t)f =
i

2π

∫
↑0

ezt RΛ(z)(ARB(z))N f dz

≈ 1

tk

∫
↑0

ezt
dkΦ

dzk
dz f

.
C k

tk
k!

∫
↑0

sup
|α|≤k

‖R1+α1

Λ (z)‖X→Y︸ ︷︷ ︸
∈L∞(↑0) ?

‖AR1+α1

B ...AR1+αN

B (z)‖X→X︸ ︷︷ ︸
∈L1(↑0) ?

dz ‖f ‖X ,

where ↑0:= {z = 0 + iy , y ∈ R} and because

dkΦ

dzk
≈
∑
|α|≤k

α!R1+α0

Λ AR1+α1

B ...AR1+αN

B
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Key estimates

• Using (a2), (a3), the compact embedding X 1
Λ ⊂ Y and the fact that there is

not punctual spectrum in ∆̄0, we get

sup
z∈∆̄0

‖RΛ(z)`‖X→Y ≤ C (`!)j

• A ∈ B(Y ,X ) and the resolvent identity

RB(z) =
1

z
(RB(z)B − I ) ∈ B(X1,X )

imply
‖ARB(z)‖X1→X ≤ C/|z | ∀ z ∈ ∆̄0.

Together with (a2) (where we assume that ζ = 1 in order to make the proof
simpler) we get

‖ARB(z)`1ARB(z)`2‖X→X ≤ C (`1!)j(`2!)j 〈z〉−1

• Choosing N = 4 and gathering the two estimates, we get

‖d
kΦ

dzk
(z)‖X→Y ≤ C k (k!)j 〈z〉−2 ∈ L1(↑0).
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End of the proof

Coming back to the term S2, we have

S2(t) . C kk(1+j)kt−k .

. e−λt
1/(1+j)

= Θ(t),

by choosing appropriately k = k(t)
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Krein-Rutman theorem

Prop 5.

Consider a semigroup generator Λ on a Banach lattice X , and assume
(1) Λ such as the spectral mapping Theorem holds (for ‖f ‖Y = 〈|f |, φ〉);
(2) φ ∈ D(Λ∗), φ � 0 such that Λ∗φ = 0;
(3) SΛ is positive (and Λ satisfies Kato’s inequalities);
(4) −Λ satisfies a strong maximum principle.

There exists 0 < f∞ ∈ D(Λ) such that

Λf∞ = 0, ΣP(Λ) ∩ ∆̄0 = {0}, ΣP(Λ1) ∩ ∆̄0 = ∅

with Λ1 := Λ|X1
, X1 = R(I − Π0) = (I − Π0)X ,

Π0f = 〈f , φ〉 f∞ ∀ f ∈ X .

Moreover the decay function Θ defined in the spectral mapping Theorem :

‖SΛ(t)(I − Π0)f0‖Y . Θ(t) ‖(I − Π0)f0‖X ∀ t ≥ 0, ∀ f0 ∈ X .
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Elements of proof of Theorem 1 - The case : F = ∇V , V = |v |γ/γ

• Weak Poincaré inequality

〈Λf , f 〉E0 . −‖f ‖2
E∗ , ∀ f ∈ E0, 〈f 〉 = 0,

with E0 := L2(f
−1/2
∞ ), f∞ := e−V , and E∗ := L2(〈v〉γ−1f

−1/2
∞ ).

• By the generalized relative entropy inequality

∀ f , ∀ p ≥ 1, 〈Λf , (f /f∞)p−1〉 ≤ 0,

and passing to the limit as p →∞, we deduce the semigroup (of contractions)
estimate

‖ft‖E1 ≤ ‖f0‖E1 , E1 := L∞(f −1
∞ ).

• For any f0 ∈ E1, 〈f0〉 = 0, both inequalities and an interpolation argument imply
(as in Prop 1)

‖ft‖E0 ≤ Θ(t)‖f0‖E1 , Θ(t) ' e−t
γ

2−γ
.
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Elements of proof of Theorem 1 - General case

We introduce the splitting Λ = A+ B, with A a multiplication operator

Af = MχR(v)f , χR(v) = χ(v/R), 0 ≤ χ ≤ 1, χ ∈ D(Rd)

B A ∈ B(X0,X1), Xi = W r ,p(mi ), m1 � m0

B B is not a-dissipative in X = W r ,p(m) with a < 0. However, it is weakly
dissipative. For p ∈ (1,∞), and M,R > 0 large enough, we have

〈f ∗,Bf 〉Lp . −‖f ‖2
Lp(m〈v〉(γ−2+s)/p), s := 0 for polynomial weight

That is a consequence of the identity∫
(Λf )f p−1mp = (1− p)

∫
|∇(fm)|2(fm)p−1 +

∫
(fm)pψ

ψ = (
2

p
− 1)

∆m

m
+ 2(1− 1

p
)
|∇m|2

m2
+ (1− 1

p
)divF − F · ∇m

m

∼ −F · ∇m
m
∼ −〈v〉s+γ−2
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• the estimate
(1) ‖SB ∗ (ASB)(∗`)‖X1→X0 ≤ Θ(t)

follows from Proposition 1.

• the estimate
(2) ‖(ASB)(∗n)‖B(L1(m1),H1(m2)) ≤ Θ(t)

follows from (1) and the use a “Nash + regularity” trick for small time. More
precisely, introducing

F(t, h) := ‖h‖2
L1(m) + t•‖h‖2

L2(m) + t•‖∇vh‖2
L2(m)

we are able to prove (for convenient exponents • > 1)

d

dt
F(t,SB(t)h) ≤ 0 and then ‖SB(t)h‖2

H1(m) ≤
1

t•
‖h‖2

L1(m)

• In the case F = ∇V , we conclude thanks to Prop 3 (enlargement argument)

• For the general case, we use the Krein-Rutman theory. The Fokker-Planck
semigroup is obviously mass conservative and positive and the Fokker-Planck
operator satisfies the strong maximum principle. The last point in order to apply
Proposition 5 is to verify that assumption (a2) in Proposition 4 is satisfied.
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Strategy of proof of Theorem 2

The method consists in introducing the variation function g = f − µ and the
corresponding Landau equation

∂tg = L̄g + Q(g , g),

L̄ = −v · ∇x + L, L = Q(·, µ) + Q(µ, ·)

• As a starting point, we use the known weak dissipativity estimate

(Lg , g)L2(µ−1/2) . −‖Πg‖2
H1
∗'H1(µ1/2〈v〉(γ+2)/2),

Π := I − Π0, Π0 := projector on N(L),

• in order to prove the weak hypodissipativity estimate

(L̄g , g)H1
x,v (µ−1/2) . −‖Π̄g‖2

H1
xH

1
v∗'H1

x,v (µ1/2〈v〉(γ+2)/2),

Π̄ := I − Π̄0, Π̄0 := projector on N(L̄),

• and next factorization and semigroup tricks in order to get similar information
in the space X := H2

xL
2(m).
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Estimate on nonlinear operator

A classical result asserts that for any weight functions m, m1 � 〈v〉2+3/2 and m0 � 〈v〉2

〈Q(f , g), h〉L2(m) .
(
‖f ‖L2(m) ‖g‖H1

∗(m1) + ‖f ‖H1(m0) ‖g‖L2(m)

)
‖h‖H1

∗(m)

with
‖f ‖2

H1
∗(m) := ‖f ‖2

L2(m〈v〉(γ+σ)/2) + ‖∇̃f ‖2
L2(m〈v〉γ/2),

and

∇̃v f = Pv∇v f + 〈v〉(I − Pv )∇v f , Pvξ =

(
ξ · v

|v |

)
v

|v | .

As a consequence, we have

Prop 6.

for m � 〈v〉2+3/2, defining X := H2
xL

2
v (m), Y := H2

xH
1
v,∗(m), Z := H2

xH
−1
v,∗(m), we have

〈Q(f , g), h〉X .
(
‖f ‖X ‖g‖Y + ‖f ‖Y ‖g‖X

)
‖h‖Y

‖Q(f , g)‖Z .
(
‖f ‖X ‖g‖Y + ‖f ‖Y ‖g‖X

)
.
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Nonlinear a priori estimate

A introduce the equivalent norm on RΠ̄

|||g |||2X := η‖g‖2
X +

∫ ∞
0

‖SL̄(τ)g‖2
X0
dτ,

with X0 := H2
xL

2
v , Y0 := H2

xH
1
v,∗, Z0 := H2

xH
−1
v,∗ (without weight!)

We consider a solution g to the Landau equation

d

dt
g = L̄g + Q(g , g)

and we compute

1

2

d

dt
|||g |||2X = 〈〈L̄g , g〉〉X + η〈Q(g , g), g〉X

+

∫ ∞
0

〈SL̄(τ)Q(g , g), SL(τ)g〉X0 dτ =: T1 + T2 + T3.

From Propositions 1, 2, 3, we expect to have

T1 . −‖g‖2
Y .

Thanks to the choice of the norm and Proposition 6, we have

T2 ≤ C‖g‖X ‖g‖2
Y .
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Nonlinear a priori estimate (continuation)

For the last term, thanks to Proposition 6, we have

T3 =

∫ ∞
0

〈SL(τ)Q(g , g), SL(τ)g〉X0 dτ

.
∫ ∞

0

‖SL(τ)Q(g , g)‖Z0‖SL(τ)g‖Y0 dτ

. ‖Q(g , g)‖Z‖g‖Y
∫ ∞

0

Θ(τ)2 dτ . ‖g‖X‖g‖2
Y ,

under the condition that

t 7→ ‖SΛ(t)‖Y→Y0 , ‖SΛ(t)‖Z→Z0 ∈ L2(R+).

We conclude with
d

dt
|||g |||2X . ‖g‖2

Y(1− C |||g |||X )

We deduce
B a priori uniform estimate for |||g0|||2X small, and then classically existence and
uniqueness
B considering two weight functions m � m̃, the above a priori estimate implies

d

dt
|||g |||2X̃ . −‖g‖2

Ỹ ,
d

dt
|||g |||2X . 0,

and we get decay estimate just repeating the proof of Proposition 1.
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Splitting of the operator

We introduce the splitting L̄ = A+ B
Ag := Q(g , µ) + MχRg = (aij ∗ g)∂ijµ− (c ∗ g)µ+ MχRg ,

Bg := Q(µ, g)−MχRg − v · ∇xg = (aij ∗ µ)∂ijg − (c ∗ µ)g −MχRg − v · ∇xg ,

with
bi (z) = ∂jaij(z) = −2 |z |γ zi , c(z) = ∂ijaij(z) = −8πδ0

We show
• Weak dissipativity of B in many spaces (twisting trick, duality trick)

(Bf , f )H2
x L

2(m) . −‖f ‖
2
H2
xH

1
∗,v (m)

(Bf , f )H2
xH

1
v (m) . −‖f ‖

2
H2
xH

1(m〈v〉(γ+2)/2)

(B∗f , f )H2
xH

1(m) . −...
• Decay estimate of SB in many spaces by Proposition 1.
• Regularization property of SB in many spaces by using “Hormander-Hérau-Villani”
hypoelliptic trick. More precisely, introducing

F(t, h) := ‖h‖2
L2(m) + t•‖∇vh‖2

L2(m) + t•(∇vh,∇xh)L2(m) + t•‖∇xh‖2
L2(m)

we get (for convenient exponents • ≥ 1)

d

dt
F(t, SB(t)h) ≤ 0, ∀ t ∈ [0, 1].

(Bf , f )H2
x L

2(m) . −‖f ‖
2
H2
xH

1
∗,v (m)

(Bf , f )H2
xH

1
v (m) . −‖f ‖

2
H2
xH

1(m〈v〉(γ+2)/2)

(B∗f , f )H2
xH

1(m) . −...
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and factorization trick

• A ∈ B(Hαx H
β
v (m0),Hαx H

β
v (m1)) for any weight functions m1 � m0.

• In the space of self-adjointness L2(µ−1/2) we have the nice dissipativity estimate

〈Lg , g〉L2(µ−1/2) . − ‖Πg‖2
H1
∗(µ−1/2)

from which we deduce thanks to the twisting hypocoercivity Nier-Hérau-Villini trick

〈〈L̄g , g〉〉H1
x,v (µ−1/2) . −‖Π̄g‖2

H1
xH

1
v∗(µ−1/2)

We deduce

• SL̄ is bounded in many spaces because SL̄ is bounded in one space and L̄ splits in a
suitable way (Proposition 3 of extension).

• SL̄ is fast decaying in one space B(H1
x,v (µ−3/2,H1

x,v (µ−3/2)) because it is bounded in

H1
x,v (µ−3/2) and weakly dissipative in H1

x,v (µ−1/2) (Proposition 1).

• SL̄ is decaying in many space because SL̄ is decaying in one space and L̄ splits in a
suitable way (Proposition 3 of extension).
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decay estimates and weak dissipativity

As a conclusion, we are able to prove
• On the one hand,

‖SL‖X→X0 ≤ Θ(t),

and L = A+ B with

〈f ,Bf 〉X . −‖f ‖2
Y , 〈f ,Af 〉X . −‖f ‖2

X0

in order to use Proposition 2 and define the weak dissipative norm ||| · |||X for L̄

• On the other hand,

t 7→ ‖SL‖Y→Y0 , ‖SL‖Z→Z0 ∈ L2(R+)

B That are the needed properties in order to get the a priori nonlinear estimate !
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Open problems:

• Suitable spectral analysis theory in an abstract setting and a weakly
dissipative framework ?

• What about the Boltzmann equation without Grad’s cut-off
(∼ fractional diffusion in the velocity variable)?

B Work in progress by Hérau, Tonon, Tristani, ...

• What about the grazing collisions limit (from Boltzmann to Landau)?
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