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Results are picked up from

o Carrapatoso, M. Landau equation for very soft and Coulomb potentials
near Maxwellians, submitted

@ Kavian, M., The Fokker-Planck equation with subcritical confinement
force, submitted

@ M., Semigroups in Banach spaces - factorization approach for spectral
analysis and asymptotic estimates, in progress
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Outline of the talk

@ Introduction and main result
@ Hypodissipativity vs weak hypodissipativity
@ The Fokker-Planck equation with weak confinement

© Weak hypodissipativity in an abstract setting
@ From weak dissipativity to decay estimate
@ From decay estimate to weak dissipativity
@ Functional space extension (enlargement and shrinkage)
@ Spectral mapping theorem
@ Krein-Rutman theorem

© About the proof for the Fokker-Planck equation
e F=VV
@ general forces
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Reminder about dissipativity and hypodissipativity

For a semigroup Sp with generator 5 the following properties are “equivalent” :
(1) B is dissipative:

(f*,Bf)x < a||f||%, forany f e XP and f* € X’ dual element;

(2) Sg satisfies the growth estimate

[S5(t)Ix-x < €™

(3) B is hypodissipative:
(f*,Bf)x < al|f||%, for an equivalent norm || - |[x on X;
(4) Sg satisfies the growth estimate

[S5(t)|xx < Ce™, C>1.
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Reminder about dissipativity and hypodissipativity

For a semigroup Sp with generator 5 the following properties are “equivalent” :
(1) B is dissipative:

(f*,Bf)x < a||f||%, forany f € XP and f* € X’ dual element;

(2) Sp satisfies the growth estimate

[S5(t)x-x < €™
(3) B is hypodissipative:
(f*,Bf)x < a||f||%, for an equivalent norm || - |[x on X;

(4) Sg satisfies the growth estimate

[S(t)|x—x < Ce™, C>1.

(1) = (2): consequence of Gronwall lemma and the closed differential inequality

1d .
5 qlfellk = (F7. Bf) <allfell%, = Ss(t)h.
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Reminder about dissipativity and hypodissipativity

For a semigroup Sp with generator 5 the following properties are “equivalent” :

(1) B is dissipative:

(f*,Bf)x < a||f||%, forany f e XP and f* € X’ dual element;
5 satisfies the growth estimate
(2) S isfies the growth esti

1S5(t)|x—x < €%

(3) B is hypodissipative:

(f*,Bf)x < al|f||%, for an equivalent norm || - [|x on X;

(4) Sg satisfies the growth estimate

HSB(t)||X~>X < Ceat, Cc>1.
(4) = (3): one may choose the equivalent handy norm defined by
1% == 0l fI% +/0 ISs(r)fl% e *"dr, 7>0,b>a.
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Weakly hypodissipative framework

Possible extension to a weakly dissipative framework 7
We do not assume the dissipativity inequality (1) but the weaker inequality

(f*,Bf)y < a||f|%, YCZ, a<0.
> We cannot close a differential inequality with this only information.
However, assuming the additional (dissipativity) inequality
(f*,Bf)x <0, XcCY,
we may exploit these two inequalities together with an interpolation argument in
order to get some rate of decay to 0 (as for the Allen-Cahn equation)
That corresponds to the (no spectral gap) situation:

ZP(B) N Ao =), Z(B) N Ao £ 0.

In this weakly dissipative framework, we will present:
e some (not all) abstract spectral analysis results
e some application to the Fokker-Planck equation with weak confinement force

e some application to the Landau equation for Coulomb potential near

Maxwellians in the torus
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The Fokker-Planck equation with weak confinement

Consider the Fokker-Planck equation
Of = Nf = A f +div,(F 1)

on f=f(t,v) €R, t >0, v RY with a weak confinement force field term F
such that
F(v) = v(v)"™? ~€(0,1) (say=)

and an initial datum
f(0) =fy € W"P(m) (means mfy € W"P).
Here p € [1,00], r = 0 and m is a polynomial weight
m= ()", k>k(p,r"),
or a exponential weight

m=e , s€(0,7], k>0.
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Statement of the decay theorem

Theorem 1. (Kavian & M.)

There exists a unique “smooth”, positive and normalized steady state f..
For any fo € LP(m)

1£(t) = (fo) foolle < ©(t) [Ifo — (fo) foo [l Lo(m).

with C k — k*(p)
t) = —x, K~—"= if m=(x)*
o) = w 70 i m=()
= Ce M, o~ > if m=e"™.

2—n

> Improves (better rate and/or larger class of initial data) earlier results by
Toscani, Villani, 2000 (based on log-Sobolev inequality)
& Rockner, Wang, 2001 (based on weak Poincaré inequality).

Both works deal with a force field F = VV what is not necessary here.
See however Bakry-Cattiaux-Guillin.
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Outline of the talk

© Weak hypodissipativity in an abstract setting
@ From weak dissipativity to decay estimate
@ From decay estimate to weak dissipativity
@ Functional space extension (enlargement and shrinkage)
@ Spectral mapping theorem
@ Krein-Rutman theorem
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Spectral analysis for semigroups in an abstract weak hypodissipative framework

For a given Banach space X, we want to develop a spectral analysis theory
for operators A enjoying the splitting structure

AN=A+B, A=<DB, B weakly hypodissipative.

We will

e clarify the links between dissipativity and decay;

e present an extension of the decay estimate result;

e present a possible version of spectral mapping theorem;

e present a possible version of Krein-Rutman theorem.

e We do not present any version of Weyl's theorem or perturbation theorem.

e Very few papers related to that topics. We may mention: Caflisch (CMP 1980),
Toscani-Villani (JSP 2000), Réckner-Wang (JFA 2001), Lebeau & co-authors (1993 &
after), Burq (Acta Math 1998), Batty-Duyckaerts (JEE 2008).
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From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X C Y C Z and a generator A. Assume

VieY)  (f Ay < —|fl

~

VfeXx), (f£,Af)x < 0 (or Sy is bounded X)

Or

YR>0, el < IFIZ+0alIR, cr 2t 0.

IN

There exists a decay function © such that

[1SA(B)llx—y < ©(t) — 0.

e We say that a Banach space E is regular if o : E — R, f > ||f||2/2 is G-differentiable
and

{feE, (f.He=|Iflg = If"Ie} = {fe}, fE = De(f).
Hilbert spaces and LP spaces, 1 < p < oo, are regular spaces.

e We denote E/ := {f € E, A\°f € E} the abstract Sobolev spaces
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From weak dissipativity to decay estimate

Prop 1.

Consider three “regular” Banach spaces X C Y C Z and a generator A. Assume
vieYl, (R.AM)y S -IIflz

vfeXx], (f£,Af)x < 0 (or Sy is bounded X)

a 0
YR>0, Rl < IFIZ+0kIF. =k, 2% 0.

There exists a decay function © such that

[SA(t) Ix=y < ©(t) — 0.

e We say that m is an admissible if m = (v)¥ or m = ™). We then write mo < m; or
my > mg or if mo/m; — co.

e For X = LP(m), Y = LP(mo), Z = LP(mo(v)®/P), with & < 0 and my > mo, we get

t—(ki—ko)/lex| if m = <V>ki
o(t) ~

g/ 1l . s
e M if my = eVl
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Proof of Proposition 1
We define f, := Sp(t)fy, fo € X, and we compute

d
—|Ifdllk <0 = |fllx < Clflx, C>1,
dt

d
SR s -4

—erllflly + OrlIfoll

A

and from Gronwall lemma

_ Or
163 < e 5Rt||ﬁ)||§/+§||7r0||§<

< 02 lhlk,

with 0
. _ R
O(t)? := inf <e ER —)
R>0 ER
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From decay estimate to weak dissipativity / perturbation of weak dissipativity
Prop 2. Consider three “regular” Banach spaces X C Y C Z and a generator L.
Assume

o ||Sc(t)][x—z < ©(t), with © € L>(R) a decay function (i.e. which tends to 0)
o L=A+B, A=< B, with

VfeXE, (F*, Bf)x
Ve X, (F*, Af)x

—lIf1%
I1£1Z-

Then, L is weakly hypodissipative
(F Lohx S =Ny

for the duality product ((, ) x associated to the norm defined by

IEIZ = nllfllk + | 1Sc()flZdr,
0

for n > 0 small enough. That norm is equivalent to the initial norm in X.
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Proof of Proposition 2

We observe that || - ||| ~ || - || x because © € L2(R.).

We set f; ;= S (t)fy and we compute

d . * g
GURIE = 20 LR+ [ iselr + 06l dr

2n(fy Bfe)x +n(f, Af)x — |IflIZ

< 2GR+ (G - 1IR3
< IR
as well as
d
Il = (7 Le)x
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Functional space extension (enlargement and shrinkage)

Prop 3. Consider a decay function © such that
O (t) SOt —s5)O71(s) forany 0 < s < t.

We consider two sets of Banach spaces X; C Xy and Y1 C Yp and a generator A.

We assume

o [ISA(8)llx—x,07" € L

o A=A+ B, A< B, with
Ve, ||Ss * (ASB)(*E)HYIH\/O@_I e L™
In, ||(ASE)" |y, 5x,© 7t € LY if Xy C Yo (enlargement)
3In, (SsA)|xov,©7t € LY if Yy C Xy (shrinkage)

Then,
ISA(t)lvis v, © 1 € L°°.

S.Mischler (CEREMADE ) weak hypodissipativity 6 Octobre, 2016

15 / 26



Proof of Proposition 3

Enlargement result. We iterate the Duhamel formula
Sn = Sp + Sp * (ASp)

to get a “stopped Dyson-Phillips series” (the D-P series corresponds to n = o)

n—1

Sn=>_ Sp*(ASg)) + Spx (ASE)") =: 5 + S,.
£=0

From the assumptions, we immediately have
1A% © 7" < [1S1llvive® F + [SAO HIx -0 * [I(ASE) POy, x, € L™

Shrinkage result. We argue similarly staring with the iterated the Duhamel
formula / stopped Dyson-Phillips series

n—1
Sn=_ Spx(ASg)") + (SpA)™ « Sp.
£=0
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Spectral mapping theorem

Prop 4. (rough version) We consider two Banach spaces X C Y and a generator
A. We assume X} C Y is compact and ©(t) ~ e~

e Tp(A)N Ay =0, with Ag := {z € C; Rez > 0}

o A=A+ B, with A€ B(Y, X), ¢ € (0,1] and

(a1) Ve, Sg*(AS8)O|xovO ! € L

(a2) V¢ sup [|(Rs(2))[lx—y < C (£
z€Ng

(33) Ve, sup ”RB(Z)”Y%XQ < C(él)"
zeN,

Then,

||5/\(t)||x_)y@_1 c L.
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Proof of Proposition 4

We start again with the stopped Dyson-Phillips series
N-1

Sn=Y_ Sp*(AS)) 4 Spx (ASg) M) = 5, + S,
£=0

The first N — 1 terms are fine. For the last one, we use the inverse Laplace
formula

S(t)f — 2,7T/¢ e Ra(2)(ARs(2))VF dz

1 dko
K eZt vy dz f
t To dZ

Q

Ck « [e3%
< t—kk!/ sup |RAT(2)Ixy RS ARG (2)||x=x dz || f]|x,
M

o la|<k

€L>°(T0) 7 €L (T0)?
where 19:= {z =0+ iy, y € R} and because
qu) ~ | 14+ag R1+041 Rl+a/\/
W ~ Z (64 R/\ A B A B
le| <k
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Key estimates

e Using (a2), (a3), the compact embedding X3 C Y and the fact that there is
not punctual spectrum in Ag, we get

sup [[Ra(2)"[|x—y < C (1Y
z€R,

e A € B(Y,X) and the resolvent identity
1
Rs(z) = _(Rs(2)B — 1) € B(X1, X)

imply _
| ARs()lIxx < C/lz| Yz e Ay,
Together with (a2) (where we assume that ( =1 in order to make the proof
simpler) we get
IMRs(2)* AR (2)"||x-x < C (A (€Y (2)7
e Choosing N = 4 and gathering the two estimates, we get
d“o -
1S @)lxoy < CH (kY ()72 € L (1o),
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End of the proof

Coming back to the term S,, we have

Sy(t) < CRkOHdke=k,
< e AEVOH) o(t),
by choosing appropriately k = k(t)
S.Mischler (CEREMADE )
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Krein-Rutman theorem

Prop 5.

Consider a semigroup generator A on a Banach lattice X, and assume
(1) A such as the spectral mapping Theorem holds (for |||y = (|f|,¢));
(2) ¢ € D(A*), ¢ = 0 such that A*¢ = 0;

(3) Sa is positive (and A satisfies Kato's inequalities);

(4) —A satisfies a strong maximum principle.

There exists 0 < f, € D(A) such that

Ao =0, Zp(N)NAy=1{0}, Zp(A))NAg=10
with A1 := Ajx,, X1 = R(/ —Tp) = (I — o)X,
Mof =(f,¢)fu VFeX.
Moreover the decay function © defined in the spectral mapping Theorem :

ISA(6)(1 = To)folly < ©(2) I(/ —To)follx ¥Vt >0, Vi € X.
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Outline of the talk

© About the proof for the Fokker-Planck equation
e F=VV
@ general forces
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Elements of proof of Theorem 1 - Thecase: F=VV, V = |v|7 /v

e Weak Poincaré inequality
(N Fe S -IIfIE, YfeE, (f)=0,

with B = L2(£cY?), £ = e, and E, = L2((v)7"1£5M?),

e By the generalized relative entropy inequality
Vi Vp =1 (M (F/R)P) <0,

and passing to the limit as p — oo, we deduce the semigroup (of contractions)
estimate
Ifelle, < Ifolle,  Ev=L2(FSh).

e For any fy € E, (fy) = 0, both inequalities and an interpolation argument imply
(as in Prop 1)

~

Ifdle, < ©@)lIflle, ©() ~e .
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Elements of proof of Theorem 1 - General case

We introduce the splitting A = A + B, with A a multiplication operator

Af = Mxgr(v)f, xr(v)=x(v/R), 0<x<1, x € DR
> Ac B(X(),Xl), X = W”p(m;), my = mg

> B is not a-dissipative in X = W"P(m) with a < 0. However, it is weakly
dissipative. For p € (1,00), and M, R > 0 large enough, we have

(F*, Bf )1 < —

~

||f\|ip(m<v>(7,2+s)/p), s := 0 for polynomial weight
That is a consequence of the identity

/(/\f)fpflmp =(1-p) / IV (fm) P (Fm)P? + /(fm)w

2 Am 1
¥ -

B |Vm|? 1. . Vm
(=17, 2= ) o+ (L= )dvF = P
~ —F-@N_W)”V*Z
m
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e the estimate

(1) 1155 * (ASE) " 1x-x < O(2)
follows from Proposition 1.

e the estimate
(2)  11(ASE) g (s (m),Hi(m)) < ©(t)

follows from (1) and the use a “Nash + regularity” trick for small time. More
precisely, introducing

F(t, h) = (Al 71 my + 1Al T2y + IV Al T2(m)

we are able to prove (for convenient exponents e > 1)

d 1
E}—(t’ Ss(t)h) <0 and then [|S(t)hl[3n(m < FHh”%I(m)

e In the case F = V'V, we conclude thanks to Prop 3 (enlargement argument)

e For the general case, we use the Krein-Rutman theory. The Fokker-Planck
semigroup is obviously mass conservative and positive and the Fokker-Planck
operator satisfies the strong maximum principle. The last point in order to apply
Proposition 5 is to verify that assumption (a2) in Proposition 4 is satisfied.

S.Mischler (CEREMADE ) weak hypodissipativity 6 Octobre, 2016 25 /26



Open problems:

e Suitable spectral analysis theory in an abstract setting and a weakly
dissipative framework ?

e What about the Boltzmann equation without Grad’s cut-off
(~ fractional diffusion in the velocity variable)?

> Work in progress by Hérau, Tonon, Tristani, ...

e What about the grazing collisions limit (from Boltzmann to Landau)?
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