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M., Quiñinao, Touboul, On a kinetic FitzHugh-Nagumo model of neuronal

network, Comm. Math. Phys. 2016

M., Weng, Relaxation in time elapsed neuron network models in the weak

connectivity regime, arXiv 2015
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Introduction

Goal: understand the qualitative (= long time) behaviour of several
nonlinear evolution PDEs modeling neuronal network

More precisely: identify some regimes (e.g. the weak connected regime) for
which solutions converge to a (unique) steady state.

But: neuroscientists look for (observe) periodic behaviour!

First motivation: understand the different neuronal network modeling by
nonlinear evolution PDEs. What is the interest of each one? In which sense
are they different? The issue is still not clear for me!

Second motivation: Develop some efficient mathematical tool to answer
about the stability issue for general PDEs: accurate and robust spectral
analysis of operators which enjoy suitable splitting

Λ = A+ B, A � B.
Not a a completely new idea since it goes back to Hilbert (1912,
applications to Boltzmann equation) and Weyl (1910, 1912, applications to
parabolic and integral equations). But a new impluse has been given since
Mouhot’s work (2006, about Boltzmann equation).
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One-neuron model

z ' electrical state variable of a neuron (membrane potential, elapsed time since
last discharge, ...), Z the set of states ⊂ Rd .

The state Zt ∈ Z of one neuron is a time dependent random variable and evolves
accordingly to the SDE

(1) dZt = F (Zt ,Mt , dLt),

Mt := given neuron network activity,
dLt := Levy noise process (Brownian, Poissonian)

• The neuronal network environment is here known and then one neuron evolves
according to a general Markov (no autonomous) process.

• (1) is modeling the evolution of the electrical activity = spikes (electrical
discharges) possibly due to (random noise) excitation

Problem 1. Mathematical analyse of equation (1). That is a job for probabilists.
But Krein-Rutman theorem makes the job.
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N-neuron network

Consider an finite assembly (Z 1, ...,ZN) of neurons in interaction.

The evolution equation for each neuron Z i
t is exactly the same

(2a) dZ i
t = F (Z i

t ,Mt , dLi
t),

excepted that the neuronal network activity Mt is determined by the electric
activity of every neurons:

(2b) Mt =M
[ 1

N

N∑
i=1

δZ i
[0,t]

]
and Li

t are independent stochastic noise processes.

⇒ Neurons are indistinguishable. Simple and quite weak interaction (possibly
with delay) between neurons through a same quantity M(t)

Problem 2. Mathematical analyse of equation (2) is really a job for probabilists.
We will not consider that issue here.
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Mean field limit: to a Boltzmann’s like statistical description

We are not interested by the electrical activity of one neuron in particular, but by
the neuronal network activity ' the activity of neurons in the mean. When N
becomes very large, in the mean field limit, we expect that the system simplifies.
More precisely, we expect

Law(Z i
s ) −→

N→∞
fs , same limit,

Law(Z i
s ,Z

j
s ) −→

N→∞
fs ⊗ fs , asymptotic independence (chaos),

and
1

N

N∑
i=1

δZ i
s
−→
N→∞

fs , functional law of large numbers.

As a consequence,

ft = Law(Zt) = law of a typical neuron

and Zt evolves according to the same (but now nonlinear) SDE
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Mean field limit: to a Boltzmann’s like statistical description

In the mean field limit

1

N

N∑
i=1

δZ i
|[0,t]
→ f|[0,t] := Law(Z|[0,t]) = law of a typical neuron

where Zt evolves according to the mean field SDE

(3) dZt = F (Zt ,Mt , dLt), Mt =M
[
f|[0,t]

]
.

Problem 3. Establish the mean field limit N →∞. That is a large number law
+ the proof of asymptotic independence between pairs of neurons (using a
propagation of chaos argument). That can be done using several strategies
• BBGKY method (BBGKY, ...)
• Semigroup method (Kac, McKean, Grünbaum, ...)
• Coupling method (Tanaka, Sznitman, ...)
• Nonlinear Martingale method (Sznitman, ...)

B For the first (elapsed time) model: see the recent papers by Fournier,
Löcherbach, Quiñinao, Robert, Touboul, Caceres et al. ... .

S.Mischler (CEREMADE) Neuronal Network June 13, 2016 8 / 31



Mean field PDE

For any test function ϕ : Z→ R and from Itô formula, one deduces

E[ϕ(Zt)]− E[ϕ(Z0)] =

∫ t

0

E[(Λ∗Ms
ϕ)(Zs)] ds,

for a suitable integro-differential linear operator Λ∗m.

As a consequence, the law f := Law(Z ) is a solution to an evolution PDE

(4) ∂t f = ΛM(t)f , M(t) =M(f|[0,t]), f (0, ·) = f0.

We insist again on the fact that Λm is a linear operator for any m. Nonlinearity is
due to the coupling with neuronal activity M(t).

Other possible definition/equation on the network activity are

M(t, x) =M(f|[0,t], x), M(t) =M(f|[0,t],M(t)).

Problem 4. Well-posedness of equation (4) and perform a qualitative analyze of
the solutions. At a formal level fall in that class of problems:
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Existence and uniqueness of solutions

From the fact that Zt is a stochastic process, we find

〈ft〉 :=

∫
Z

ft = E[1] ≡ 1, ∀ t ≥ 0.

Number of neurons is conserved (that is good!) and it is the only general
available qualitative information on the solutions.

Under general and mild assumptions on the operators F and M

Theorem 1. For any 0 ≤ f0 ∈ L1 ∩ Lp, there exists (at least) one global solution
f ∈ C ([0,∞); L1) ∩ L∞(0,∞, Lp) to the PDE (4).

B Be careful with Noisy Leaky Integrate and Fire model for which blow up can
occur

Theorem 2. There exists (at least) one stationary solution 0 ≤ G ∈ L1 ∩ L∞ to
the evolution PDE (4), that is

(5) 0 = ΛMG , M =M(G ,M).

B proof: intermediate value theorem or Brouwer fixed theorem
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No connectivity regime ' one-neuron model

We introduce a small parameter ε > 0 corresponding to the strength of the
connectivity of neurons with each other, and thus to the nonlinearity of the model:

(4ε) ∂t f = ΛεM(t)f , M(t) =Mε(f|[0,t],M(t)), f (0, ·) = f0.

In the not connected regime ε = 0, the equation is linear

(40) ∂t f = Λ0f , f (0, ·) = f0.

The equation is furthermore sign and mass preserving. The operator enjoys
suitable splitting.

Theorem 3 (Krein-Rutman).
• There exists a unique normalized and positive stationary state G0 to the
evolution PDE (40), that is Λ0G0 = 0.
• G0 is stable for the associated semigroup: ∃ a < 0, C ≥ 1,

‖SΛ0 (t) f0 − 〈f0〉G0‖ ≤ C eat ‖f0‖, ∀ t ≥ 0, ∀ f0.

B proof: KR ⇒ ∃!G0 ≥ 0, 〈G0〉 = 1, Λ0G0 = λG0, but λ = 0 because Λ∗01 = 0
(mass conservation) or because of Theorem 2.
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Small connectivity regime = a perturbative regime

Theorem 4.1. There exists ε0 > 0 such that the normalized and positive
stationary state Gε is unique for any ε ∈ (0, ε0).

B Λ−1
0 exists and use (half of the) implicit function theorem

Theorem 4.2. There exists ε1 > 0 such that Gε is exponentially linearly
stable for the associated semigroup: ∃ a < 0, C ≥ 1,

‖SΛε(t)f0 − 〈f0〉Gε‖ ≤ C eat ‖f0‖, ∀ t ≥ 0, ∀ f0, ∀ ε ∈ (0, ε1).

B Σ(Λε) ∩∆a = {0} for ε > 0 small by a perturbation trick and then use
the spectral mapping theorem.

Theorem 4.3. There exists ε2 > 0 such that Gε is exponentially
nolinearly stable : ∃ a < 0, C ≥ 1,

‖f (t)− 〈f0〉Gε‖ ≤ Cf0 e
at , ∀ t ≥ 0, ∀ f0, ∀ ε ∈ (0, ε2).

• Whatever is the complexity of the model: asynchronous spiking holds in
the small connectivity regime. Synchronization comes from nonlinearity?
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Relaxation in time elapsed neuron network model − PPS 2010, 2013

• Dynamic of the neuron network: (age structured) evolution equation

∂t f = −∂x f − a(x ,m(t))f , f (t, 0) = p(t)

on the density number of neurons f = f (t, x) ≥ 0.

• a(x ,m) ≥ 0: firing rate for neurons in state x in network activity m ≥ 0.

• p(t): total density of neurons undergoing a discharge at time t given by

p(t) :=

∫ ∞
0

a(x ,m(t)) f (t, x) dx

• m(t): network activity at time t ≥ 0 resulting from earlier discharges
given by

m(t) :=

∫ ∞
0

p(t − y)b(dy),

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = δ0 and then m(t) = p(t).
- Case with delay, when b = δy=τ or b = τ−1 e−τ

−1y dy , τ > 0

• Total density of neurons conserved because of the flux condition
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A variant : variable refractory time (or kernel) model − PPS 2014

• Dynamic of the density number of neurons f = f (t, x) ≥ 0

∂t f + ∂x f + a(x ,M(t)) f = K[f ,M(t)] f (t, 0) = 0,

where the kernel K and the function a are defined by

K[f ,m] =

∫ ∞
0

k(x ′, x ,m) f (x ′) dx ′, a(x ,m) :=

∫ ∞
0

k(x , x ′,m) dx ′,

and the network activity function M(t) and the total density of spiking neurons
N(t) are defined as before.

• k(x ′, x ,m) = rate for a neuron in state x to jump to the state x ′. When

suppk(x ′, x ,m) ⊂ {x ′ ≤ x0 < x1 ≤ x}

the model takes into account a possible variable refractoty time (time during a
neuron does not spike).
The previous age structured model corresponds to k(x , x ′,m) := a(x ,m) δx′=0.

Total density number of neurons is conserved because

d

dt

∫ ∞
0

f (t, x) dx =

∫ ∞
0

K[f ,M(t)] dx −
∫ ∞

0

K (x ,M(t)) f (t, x) dx = 0.
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Noisy leaky integrate and fire model - I

The state x := membrane potential ∈ (−∞, x1) where x1 ∈ (0,∞) is a threshold
(firing voltage) or where x1 = +∞. Density of neurons f = f (t, x) ≥ 0 evolves

∂t f + ∂x [a(x ,M(t)) f ]− σ(M(t)) ∂2
xx f + φ(x ,M(t)) f = Q(t) δx=x0

with the boundary conditions

f (t,−∞) = f (t, x1) = 0 and x0 < x1.

The amplitude of stimulation of the network M(t) and the density of neurons
leaving the refractory period Q(t) are defined by

M(t) :=

∫ t

0

N(t − y) b(dy) and Q(t) =

∫ t

0

N(t − z) k(dz)

for some probability measures b and k . The discharges flux N(t) is defined by

N(t) = −σ(M(t)) ∂x f (t, x1) or N(t) =

∫ ∞
0

φ(x ,M(t)) f (t, x) dx

depending whether x1 < +∞ (and φ = 0) or x1 = +∞ (and φ 6≡ 0)
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Noisy leaky integrate and fire model - II

• x1 = 1, φ = 0, x0 = 0, and Q(t) = M(t) = N(t) is considered in Caceres,
Carrillo, Perthame 2011

• x1 = 1, φ = 0, x0 = 0 and M(t) = N(t) is considered in Caceres, Perthame
201? (k := τ−1 e−y/τ dy) and in Brunel 2000 (k := δy=τ )

• x1 = +∞, φ = φ(x) ≥ 0, φ 6≡ 0, M(t) = N(t) and k := τ−1 e−y/τ dy is
considered in Caceres, Perthame 201?

Introducing the primitive function K and the quantity R(t) defined by

K (y) :=

∫ ∞
y

k(dy ′), R(t) :=

∫ t

0

N(s)K (t − s) dy ,

we observe that
R ′(t) = N(t)− Q(t),

and we deduce the following generalized mass conservation

d

dt

(∫ x1

−∞
f (t, x) dx + R(t)

)
= 0.
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Hodgkin- Huxley equation (for one neuron) is

4d ODE/SDE for dynamics of the nerve cell membrane
v̇ ' x4(v − VK )− y3z(v − VNa)− (v − VL)
dx = [ρx(v) (1− x)− ζx(v) x ] dt + σx(v , x) dW x

t

dy = [ρy (v) (1− y)− ζy (v) y ] dt + σy (v , y) dW y
t

dz = [ρz(v) (1− z)− ζz(v) z ] dt + σz(v , z) dW z
t

where
v : membrane potential;
x : voltage-gated persistent K+ (Potassium) current;
y : voltage-gated transient Na+ (Sodium) current;
z : Ohmic leak current (mostly Cl− ions).
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FitHugh-Nagumo: microscopic description

• As a simplification of the Hodgkin-Huxley 4d ODE, FitzHugh-Nagumo 2d ODE
describes the electric activity of one neuron and writes

v̇ = v − v3 − x + Iext = −B0 + Iext

ẋ = bv − ax = −A,

with Iext = i(t) + σẆ exterior input split as a deterministic part + a stochastic
noise. We assume i(t) ≡ 0.

• For a network of N coupled neurons, the associated model writes for the state
Z i

t := (X i
t ,V i

t) of the neuron labeled i ∈ {1, ...,N}

dV i = [−B0(X i ,V i )−
N∑
j=1

εij (V i − V j)]dt + σ dW i

dX i = −A(X i ,V i )dt

where εij > 0 corresponds to the connectivity between the two neurons labeled i
and j . The model takes into account an intrinsic deterministic dynamic + mean
field interaction + stochastic noise.
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FitHugh-Nagumo: a statistical description (mean field limit)

We assume εij := ε/N, (Z1
0 ...,ZN

0 ) are i.i.d. random variables with same law f0
and we pass to the limit N →∞.
(Z1

t , ...,ZN
t ) is chaotic and Z i

t → Z̄t = (X̄t , Ȳt) solution to the nonlinear SDE

V̄ = [−B0(X̄ , V̄)− ε (V̄ − E(V̄))]dt + σ dW
X̄ = −A(X̄ , V̄)dt.

From Ito calculus, the law f (t, x , v) := Law(X̄t , V̄t) satisfies

∂t f = ∂x(Af ) + ∂v (Bf ) + ∂2
vv f on (0,∞)× R2

where {
A = A(x , v) = ax − bv , B = B(x , v ;Jf )
B(x , v ;µ) = v3 − v + x + ε (v − µ), Jf :=

∫
R2 v f (x , v) dvdx
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Relaxation in time elapsed neuron network models

• State of a neuron: local time (or internal clock) x ≥ 0 corresponding to the
elapsed time since the last discharge;

• Dynamic of the neuron network: (age structured) evolution equation

∂t f = −∂x f − a(x , εm(t))f =: Lεm(t)f , f (t, 0) = p(t)

on the density number of neurons f = f (t, x) ≥ 0.

• a(x , ε µ) ≥ 0: firing rate of a neuron in the state x for a network activity µ ≥ 0
and a network connectivity parameter ε ≥ 0.

• p(t): total density of neurons undergoing a discharge at time t given by

p(t) := Pε[f (t);m(t)], Pε[g , µ] :=

∫ ∞
0

a(x , εµ)g(x) dx .

• m(t): network activity at time t ≥ 0 resulting from earlier discharges given by

m(t) :=

∫ ∞
0

p(t − y)b(dy),

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = δ0 and then m(t) = p(t).
- Case with delay, when b is a smooth function.
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Existence result

Monotony (and smoothness) assumptions

∂xa ≥ 0, a′ = ∂µa ≥ 0,

0 < a0 := lim
x→∞

a(x , 0) ≤ lim
x,µ→∞

a(x , µ) =: a1 <∞,

examples : a ∈W 2,∞(R2
+) or a(x) = 1x≥σ(µ),

b = δ0 or ∃δ > 0,

∫ ∞
0

eδy (b(y) + |b′(y)|) dy <∞.

Theorems 1,2. For any 0 ≤ f0 ∈ L1, there exists (at least) one global solution
f ∈ C ([0,∞); L1) ∩ L∞(0,∞; Lp). There exists (at least) one normalized and
positive stationary solution Gε ∈ L1 ∩ L∞:

LεMε
Gε = −∂xGε − a(x , εMε)Gε = 0, Gε(0) = Mε,

Mε = Pε[Gε;Mε] =

∫ ∞
0

a(x , εMε)Gε(x)dx .
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Small connectivity regime

Theorems 3, 4. ∃ ε1 > 0 such that for any ε ∈ (0, ε1) the stationary solution
Gε is unique and exponentially stable for the associated linear semigroup.

BExtends Pakdaman, Perthame, Salort results to the case with delay.

B About the proof: The linearized equation for the variation

(g , n, q) = (f ,m, p)− (Gε,Mε,Mε)

around a stationary state (Gε,Mε,Mε) writes

∂tg = −∂xg − a(x , εMε)g − n(t) ε(∂µa)(x , εMε)Fε, g(t, 0) = q(t),

with a delay term at the boundary

q(t) =

∫ ∞
0

a(x , εMε)g dx + n(t) ε

∫ ∞
0

(∂µa)(x , εMε)Fε dx

n(t) :=

∫ ∞
0

q(t − y)b(dy).
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Intermediate evolution equation for incoding the delay term

We introduce an intermediate evolution equation

∂tv + ∂yv = 0, v(t, 0) = q(t), v(0, y) = 0,

where y ≥ 0 represent the local time for the network activity.

That last equation can be solved with the characteristics method

v(t, y) = q(t − y)10≤y≤t .

The equation on the variation n(t) of network activity writes

n(t) = D[v(t)], D[v ] :=

∫ ∞
0

v(y)b(dy),

and the equation on the variation q(t) of discharging neurons writes

q(t) = Oε[g(t), v(t)],

with
Oε[g , v ] := Nε[g ] + κεD[v ],

Nε[g ] :=

∫ ∞
0

aε(Mε)g dx , κε :=

∫ ∞
0

a′ε(Mε)Gε dx .
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Time autonomous equation and splitting structure

For the new unknown (g , v) the equation writes

∂t(g , v) = Λε(g , v) = Aε(g , v) + Bε(g , v),

where the operator Λε = (Λ1
ε,Λ

2
ε) is defined by

Λ1
ε(g , v) := −∂xg − aεg − a′εFεD[v ] + δx=0Oε[g , v ],

Λ2
ε(g , v) := −∂yv + δy=0Oε[g , v ],

B Bε is dissipative;

B (SBε
Aε)(∗2) has a smoothing effect in M1 when a is smooth

B We may apply the spectral theory in general Banach space (Weyl’s Theorem,
spectral mapping Theorem, Krein-Rutman Theorem, perturbation Theorem)
developped by M., Scher, Tristani.
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Linear stability when the spiking rate is a step function - I

We consider Bf := −∂x f − 1x≥1f ' −∂x f − f ,

Af := δ0K[f ], K[f ] :=

∫ ∞
0

1z≥1 f (z) dz .

B SB : Lp → Lp as O(e−t).

⇒ ASB : Lp → Cδ0 as O(e−t).

Proof : SB(t)f (x) ' e−t f (x − t) 1x−t≥0.

B SB ∗ ASB : L1 → L1 ∩ Lp as O(eat), ∀ a > −1.

⇒ SB ∗ ASB : Cδ0 → L1 ∩ Lp as O(eat), ∀ a > −1.

⇒ SB ∗ (ASB)(∗k) : L1 ∩ Lp → L1 ∩ Lp as O(eat), ∀ a > −1.

Proof : SB ∗ ASB(t)f (x) ' e−t 1x≤tK[f (· − t + x)], K[f ] :=
∫∞

0
1z≥1 f (z) dz .

B (RBA)2 : L1 ∩ Lp → L1 ∩ Lp as O(〈z〉−1), ∀ z ∈ ∆a, ∀ a > −1.

Proof : We write

(SBA)(∗2)(t)f = ϕt K[f ], ϕt(x) := e−t 1x≤t−1,

(RB(z)A)2(z)f = ϕ̂z K[f ], ϕ̂z(x) =
1

1 + z
e−(1+z)(x+1)
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Linear stability when the spiking rate is a step function - II

B We may adapt the spectral theory in general Banach space (Weyl’s Th., spectral
mapping Th., Krein-Rutman Th., perturbation Th.) developped by M., Scher, Tristani.

We write the factorization formula

RΛ = RB − RΛARB
= RB + ...− RB(ARB)3 + RΛ(ARB)4 =: U + RΛV

and then
RΛ(I − V) = U

with U ,V : ∆a → B(X ) holomorphic and I −V is a compact perturbation of the identity.
B From Ribarič-Vidav-Voigt’s version of Weyl’s theorem:

Σ(Λ) ∩∆a = Σd(Λ) ∩∆a = discrete set.

B From the decay estimate on V, we get

Σ(Λ) ∩∆a = Σd(Λ) ∩∆a = finite set.

B From the positivity of SΛ, we conclude with

∃ a ∈ (−1, 0) Σ(Λε) ∩∆a = {0}.
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Linear stability when the spiking rate is a step function - III

We write the itared Duhamel formula

SΛ = SB + ...+ SB ∗ (ASB)(∗3) + SΛ ∗ (ASB)(∗4)

and deduce

ΠSΛ ' Π{SB + ...+ SB ∗ (ASB)(∗3)}+ eat
∫
↑a

ΠRΛ(ARB)4 dz .

In a similar way, for any solution g to the linear equation

∂tg = Λεg := −∂xg − a(εM)g + δ0〈a(εM)g〉, a(x , µ) := 1x≥σ(µ)

such that 〈g0〉 = 0, we have
d

dt
‖g‖L1 . a ‖g‖L1 .
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Nonlinear stability when the spiking rate is a step function

We consider a solution to the nonlinear time elapsed neuron network model

∂t f = −∂x f − a(εm)f + δ0〈a(εm)f 〉, m = 〈a(εm)f 〉, 〈f 〉 = 1,

and the associated steady state function

0 = −∂xG − a(εM)G + δ0〈a(εM)G〉, M = 〈a(εM)G〉, 〈G〉 = 1.

We define the variation g := f − G which satisfies

∂tg = Λεg + (a(εM)− a(εm))f + δ0 (a(εM)− a(εm))f .

We compute for ε > 0 small enough

d

dt
‖g‖L1 . a ‖g‖L1 + 2 ‖f ‖L∞ |σ(εM)− σ(εm)|

. a ‖g‖L1 + C ε ‖g‖L1 .

As a consequence, for ‖g0‖L1 ≤ η small enough, we have

‖f − G‖L1 . eat , ∀ t ≥ 0.
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Open problems

• What about other models? Is it possible to prove exactly the same results for :

B the couple voltage-conductance model?

B Hodgkin-Huxley statistical model based on the Hodgkin-Huxley 4d ODE sytem?

B ...

• What about“larger” connectivity coefficients: ε is not small?

B unstability of “the” steady state?

B periodic solutions? local stability of one of them?

• Is there any model which is more pertinent than the others? Depending of the
situation we are insterested in / the accurancy we want?

• What is the next step? Several kinds of neurons? Space dependence?
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