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Relaxation in time elapsed neuron network models

e State of a neuron: local time (or internal clock) x > 0 corresponding to the
elapsed time since the last discharge;

e Dynamic of the neuron network: (age structured) evolution equation
Oif = —0xf — a(x, Am(t))f =: Lkm(t)fa f(t,0) = p(t)
on the density number of neurons f = f(t,x) > 0.

e a(x, A u) > 0: firing rate of a neuron in the state x for a network activity ;1 > 0
and a network connectivity parameter A > 0.

e p(t): total density of neurons undergoing a discharge at time t given by
(oo}
p(0) = PAF(E) m(e)). Paleosl = [ alx ().
0
e m(t): network activity at time t > 0 resulting from earlier discharges given by

m&r—Ampu—ywmm,

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = &y and then m(t) = p(t).
- Case with delay, when b is a smooth function.
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Hypothesis

e Monotony and smoothness of the firing rate
0xa>0, a =08,a>0,

0<a:= lim a(x,0) < lim a(x,p)=: a1 < oo,
X—00 X, i—> 00

aeLip,lL}:
VE > 0small, Vjio > 0, ¥ iso >0, 3Ao > 0, IAos > 0
/ la(Ap2) — a(Apa)| dx < & lpa — |,  Vpa, p2 € (0, o), YA € (0, o)
0

/ |a()\,LL2)*3(Aﬂ1)|dX§€|ﬂ27u1|, VMl,,UQ S (/L007OO)5 Ve ()‘00700)
0

e Without delay or smooth delay
b=2¢& or 3§>0, / e (b(y) + |b'(y)) dy < oco.
0

e Bounded and positive initial datum
fhelaNLl™, g>0, Ko:= / a(x,0)fo(x) dx > 0.
0
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Example

with
oy :=0(0), o_:=0(x), o_<o;<l,
and o satisfies the regularity condition
-1 1,00
o,0 € WHO(R,)

together with
so’(s) >0 as s— oo.
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Main results

Theorem 1. There exists a weak solution f € C([0,00); L*) N L>°(0, oo; L)
- in the delay case;

- in the case without delay in the strong/weak connectivity regime.

The solution is unique in the strong/weak connectivity regime.

Theorem 2. There exists (at least) one normalized and positive stationary
solution Fjy:

Lamy Fx = —0<Fx — a(x, AM\)Fx =0, F\(0) = M,,

My = Py[Fri My] = / a(x AMy) Fa(x)dx.
0

Theorem 3. The stationary solution F) is unique and exponentially stable in
the in the strong/weak connectivity regime:

da <0, ||f(t)—F)\||L1§Cﬁ)eat, Vt>0

when A € (0, A\g) U (Ao, 00).
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Auxiliary linear evolution equation

We introduce an auxiliary linear evolution equation
Oig +0xg +axg =0, g(t,0)="Palg(t, )],
with
o0
ay = a(x, AM,), Pilg] ::/ a)g dx.
0

The equation also writes

d
Eg = Lg = —0xg — arg + doPxlg].

Theorem 4 (Krein-Rutman). VX >0, 3a <0, 3C > 1 such that
Y(£)nA, = {0} and

I1Sc(t)eollx < Ce™llgollx, V>0,
for any go € X := L},, q>0.
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Sketch of the proof - 1 -
Lemma 1 (positivity). gy >0 = S.(t)go > 0.
Lemma 2 (strong macimum principle).

g€ DL), ge X;\{0}, (n—L)g>0 = g>0.

Corollary ¥(£) N Ag = {0} and N(L) = span(Fy).
We split L as
L=A+B, Ag:=0&Pilg]l, Bg:=—-0xg— arg.
We have for a < 0:
(1) (S5 A)9) + S = O(e™);

(2) (ReA)? = O(1/|z]), Rs(z) == (B —2)* = (Ss)(2);
(3) (RsA)? € B(X,Y), Y := D(£) N LL,, cC X.

Theorem 5. The conclusions of Weyl's theorem and the spectral mapping
theorem apply to £. Roughtly £(£) N A, C X4(L) the discrete spectrum and
Y(Sc(t)) = et>(4),
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Sketch of the proof - 2 -

We compute

(S8 A) D (t)g = ¢ Palgl,
with

pe(x) = P(t — x)exp(—Ax(x)), ¥(u) :==1,z0ar(u) e, A} =a,.

Since 1) € BV, we deduce

I(RsA)*(2)glx = lle”=~"0]|x

R 1
U(2)[[PAlg]l £ 7l lgllx

which is nothing but (2).

For proving Weyl's theorem and the spectral mapping theorem, we use the
itareted Duhamel formula and its resolvent contrepart

Re=Rp— -+ (-1)"YRpA)" *Rs + (-1)"(RA)"R.
(1)
S, =S+ ..+ (SB.A)(*(”_I))SB + % / (RBA)nRgeZt dz
Ta
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Coming back to the nonlinear equation

In the weak/strong connectivity regime, we may write

Of = —0xf — a(Ap[f])f + doi[f],

with g — ©[g] is the unique solution to the constraint equation
m=Palg.ml = [ a(x Am)g d.
0

Setting g := f — F, we deduce
Og = Lg + Z]g],
with the nonlinear term
Z[g] = —Qlg] + d(Qlgl), Qlg]:= (ax(#lf]) — ax(w(F)))f.
We conclude by obsering || Q[g]llx < e(\)||g]lx with e(A) — 0 as A — 0 or

A — 00.
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The case with delay

We introduce an auxiliary unknown u = u(t,y) and we rewrite the problem as an

autonnomous system
Oif = —0xf — ax(D[u])f + dop
Oru = —0,u+ dop,
with -
pi=P(F.D). D= [ wly)bly).
Similarly, we rewrite the stationary equation as
0 = —0,F — kn(M)F + 6oM
0=-0,U+ M,
with M = P(F, M), M = D[U].
The variations g := f — F, v := u — U satisfy
Oig = —0xg—ax(M)g+doPrlg, M] + Zi[g, V]
Orv = —0xv + doPirlg. M| + Z[g, v],

and we proceed similarly as in the case without delay.
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