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S. Mischler

(Paris-Dauphine)

27ème Journée Interne du

Laboratoire Jacques-Louis Lions

S.Mischler (CEREMADE) Neuronal Network Paris, 7 Novembre 2017 1 / 14



References

Voigt, A perturbation theorem for the essential spectral radius of strongly

continuous semigroups, Monatsh. Math. (1980)

Pakdaman, Perthame, Salort, Dynamics of a structured neuron

population, Nonlinearity (2010)

Pakdaman, Perthame, Salort, Relaxation and self-sustained oscillations in

the time elapsed neuron network model, SIAM J. Appl. Math. (2013)

M., Weng, Relaxation in time elapsed neuron network models in the weak

connectivity regime, arXiv 2015

M., Scher, Spectral analysis of semigroups and growth-fragmentation

equations, Ann. Inst. H. Poincaré Anal. Non Linéaire (2016)
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Relaxation in time elapsed neuron network models

• State of a neuron: local time (or internal clock) x ≥ 0 corresponding to the
elapsed time since the last discharge;

• Dynamic of the neuron network: (age structured) evolution equation

∂t f = −∂x f − a(x , λm(t))f =: Lλm(t)f , f (t, 0) = p(t)

on the density number of neurons f = f (t, x) ≥ 0.

• a(x , λ µ) ≥ 0: firing rate of a neuron in the state x for a network activity µ ≥ 0
and a network connectivity parameter λ ≥ 0.

• p(t): total density of neurons undergoing a discharge at time t given by

p(t) := Pλ[f (t);m(t)], Pλ[g , µ] :=

∫ ∞
0

a(x , λµ)g(x)dx .

• m(t): network activity at time t ≥ 0 resulting from earlier discharges given by

m(t) :=

∫ ∞
0

p(t − y)b(dy),

b delay distribution taking into account the persistence of electric activity
- Case without delay, when b = δ0 and then m(t) = p(t).
- Case with delay, when b is a smooth function.
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Hypothesis

• Monotony and smoothness of the firing rate

∂xa ≥ 0, a′ = ∂µa ≥ 0,

0 < a0 := lim
x→∞

a(x , 0) ≤ lim
x,µ→∞

a(x , µ) =: a1 <∞,

a ∈ LipµL
1
x :

∀ ξ > 0 small, ∀µ0 > 0, ∀µ∞ > 0, ∃λ0 > 0, ∃λ∞ > 0∫ ∞

0

|a(λµ2)− a(λµ1)| dx ≤ ξ |µ2 − µ1|, ∀µ1, µ2 ∈ (0, µ0), ∀λ ∈ (0, λ0)∫ ∞

0

|a(λµ2)− a(λµ1)| dx ≤ ξ |µ2 − µ1|, ∀µ1, µ2 ∈ (µ∞,∞), ∀λ ∈ (λ∞,∞)

• Without delay or smooth delay

b = δ0 or ∃δ > 0,

∫ ∞

0

eδy (b(y) + |b′(y)|) dy <∞.

• Bounded and positive initial datum

f0 ∈ L1
q ∩ L∞, q > 0, κ0 :=

∫ ∞

0

a(x , 0)f0(x) dx > 0.
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Example

a(x , µ) = 1x>σ(µ), σ′ ≤ 0,

with
σ+ := σ(0), σ− := σ(∞), σ− < σ+ < 1,

and σ satisfies the regularity condition

σ, σ−1 ∈W 1,∞(R+)

together with
sσ′(s)→ 0 as s →∞.
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Main results

Theorem 1. There exists a weak solution f ∈ C ([0,∞); L1) ∩ L∞(0,∞; L∞)
- in the delay case;
- in the case without delay in the strong/weak connectivity regime.
The solution is unique in the strong/weak connectivity regime.

Theorem 2. There exists (at least) one normalized and positive stationary
solution Fλ:

LλMλ
Fλ = −∂xFλ − a(x , λMλ)Fλ = 0, Fλ(0) = Mλ,

Mλ = Pλ[Fλ;Mλ] =

∫ ∞
0

a(x , λMλ)Fλ(x)dx .

Theorem 3. The stationary solution Fλ is unique and exponentially stable in
the in the strong/weak connectivity regime:

∃ a < 0, ‖f (t)− Fλ‖L1 ≤ Cf0 e
at , ∀ t ≥ 0

when λ ∈ (0, λ0) ∪ (λ∞,∞).
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Auxiliary linear evolution equation

We introduce an auxiliary linear evolution equation

∂tg + ∂xg + aλg = 0, g(t, 0) = Pλ[g(t, .)],

with

aλ := a(x , λMλ), Pλ[g ] :=

∫ ∞
0

aλg dx .

The equation also writes

d

dt
g = Lg := −∂xg − aλg + δ0Pλ[g ].

Theorem 4 (Krein-Rutman). ∀λ ≥ 0, ∃α < 0, ∃C ≥ 1 such that
Σ(L) ∩∆α = {0} and

‖SL(t)g0‖X ≤ C eαt‖g0‖X , ∀ t ≥ 0,

for any g0 ∈ X := L1
q, q > 0.
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Sketch of the proof - 1 -

Lemma 1 (positivity). g0 ≥ 0 =⇒ SL(t)g0 ≥ 0.

Lemma 2 (strong macimum principle).

g ∈ D(L), g ∈ X+\{0}, (η − L)g ≥ 0 =⇒ g > 0.

Corollary Σ(L) ∩ ∆̄0 = {0} and N(L) = span(Fλ).

We split L as

L = A+ B, Ag := δ0Pλ[g ], Bg := −∂xg − aλg .

We have for a < 0:

(1) (SBA)(∗`) ∗ SB = O(eat);

(2) (RBA)2 = O(1/|z |), RB(z) := (B − z)−1 = (ŜB)(z);

(3) (RBA)2 ∈ B(X ,Y ), Y := D(L) ∩ L1
q+1 ⊂⊂ X .

Theorem 5. The conclusions of Weyl’s theorem and the spectral mapping
theorem apply to L. Roughtly Σ(L) ∩∆a ⊂ Σd(L) the discrete spectrum and
Σ(SL(t)) = etΣ(L).
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Sketch of the proof - 2 -

We compute

(SBA)(∗2)(t)g = ϕt Pλ[g ],

with

ϕt(x) = ψ(t − x) exp(−Aλ(x)), ψ(u) := 1u≥0 aλ(u) e−Aλ(u), A′λ = aλ.

Since ψ ∈ BV , we deduce

‖(RBA)2(z)g‖X = ‖e−zx−Aλ(x)‖X |ψ̂(z)| |Pλ[g ]| . 1

|z |
‖g‖X ,

which is nothing but (2).

For proving Weyl’s theorem and the spectral mapping theorem, we use the
itareted Duhamel formula and its resolvent contrepart

RL = RB − · · ·+ (−1)n−1(RBA)n−1RB + (−1)n(RBA)nRL

SL = SB + ...+ (SBA)(∗(n−1))SB +
i(−1)n

2π

∫
↑a

(RBA)nRLezt dz
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Coming back to the nonlinear equation

In the weak/strong connectivity regime, we may write

∂t f = −∂x f − a(λϕ[f ])f + δ0ϕ[f ],

0 = −∂xF + a(λϕ[F ])F + δ0ϕ[F ],

with g 7→ ϕ[g ] is the unique solution to the constraint equation

m = Pλ[g ,m] =

∫ ∞
0

aλ(x , λm)g dx .

Setting g := f − F , we deduce

∂tg = Lg + Z [g ],

with the nonlinear term

Z [g ] := −Q[g ] + δ0〈Q[g ]〉, Q[g ] := (aλ(ϕ[f ])− aλ(ϕ(F )))f .

We conclude by obsering ‖Q[g ]‖X ≤ ε(λ)‖g‖X with ε(λ)→ 0 as λ→ 0 or
λ→∞.
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The case with delay

We introduce an auxiliary unknown u = u(t, y) and we rewrite the problem as an
autonnomous system

∂t f = −∂x f − aλ(D[u])f + δ0p

∂tu = −∂yu + δ0p,

with

p := P(f ,D[u]), D[w ] :=

∫ ∞
0

w(y) b(dy).

Similarly, we rewrite the stationary equation as

0 = −∂xF − kλ(M)F + δ0M

0 = −∂yU + δ0M,

with M = P(F ,M), M = D[U].

The variations g := f − F , v := u − U satisfy

∂tg = −∂xg − aλ(M)g + δ0Pλ[g ,M] + Z1[g , v ]

∂tv = −∂xv + δ0Pλ[g ,M] + Z2[g , v ],

and we proceed similarly as in the case without delay.
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