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Growth and fragmentation equation

We will consider
oif = Nf =Df + Ff

on f = f(t,x) > 0 the number density of particles (or cells, polymers,
organisms, individuals),

t > 0 is the time variable,

x € (0,00) is the size (or mass, age)

We take into account a fragmentation mechanism through

o0

(FNG) = [ Ky 070y — KPR,

X

and possibly a growth mechanism by choosing D = 0 or

(DF)(x) := =0x(1(x)f(x)) — v(x) f(x)
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Fragmentation mechanism

The fragmentation operator writes
F=F -F, (Ffx ::/ k(y,x)f(y)dy, (F f)(x) = K(x)f(x),
with fragmentation kernel k and total rate of fragmentation K related by
_ [ y
K(X)—/ k(x,y) = dy.
0 X

Modeling the division (breakage) of a single mother particle of size x > 0 into two or
more pieces (daughter particles, offspring) of size x; > 0, conserving the mass

{x} LN {ar+ .o+ {x}t+ ..., X:ZX,'.
We observe that

(F9)0) = [ k) oly) = 2 90] .

0
As a consequence, for p, = x“, there hold

Frpo >0, Fp1=0, Frp,<O.
= Mass is conserved and particles are produced.
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Growth mechanism

The growth operator models the growth (for particles and cells) or the aging (for

individuals) and the death. It writes

(PF)(x) = =0x(7(x)f(x)) = v(x) f(x),

with drift speed (or growth rate) function 7 : [0,00) — R and a damping rate

v :[0,00) — [0,00). Schematically

() 8 x4+ 7(x) dx).

Observing
(D*)(x) = 7(x)0x(x) — v(x) ¢(x),

the only invariant is _
Q(X) = (’)Oejx v(y)/7(y)dy # ©1

except when 7(x)/v(x) = x. For instance: (Df)(x) := —0x(xf(x)) — f(x)
We will take 7(x) = 1 (constant growth) or 7(x) = x (self-similar growth).
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Well-posedness, conservation and steady state

The growth-fragmentation operator generates a
positive and Co-semigroup Sy in L.

From now, we exclude singular fragmentation kernels at the origine (= shattering
phenomenon = lost of mass) of the discussion
Questions:

@ Is Sy Markov? = conservation law?

@ 3 of invariant measure for S;? = 3 of steady state for (GF) equation?
First answers:

@ In general, no trivial conservation law (except 1 when D = 0).

@ In general, no explicit steady state.

@ For the pure fragmentation equation (D = 0) no steady state. But for a
total rate K(x) = x7, v > 0, we may change variables into " self-similar”
variables (which adds a new growth operator Df := —0,(xf) — f) such that
the new equation have a steady state (a self-similar profile for the initial
equation). We denote this model as the (SSF) equation.
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A complete answer thanks to Krein-Rutman (Perron-Frobenius) theory

Krein-Rutmann theory says
J(N G,0), AeR, G>0,¢0>0 (AN—A)G=0, (N*—X\)¢=0.

@ Finite dimensional approximation and compactness argument

» Perthame, Ryzhik (2005), Michel (2006), Doumic, Gabriel (2010)
@ Semigroup and compactness argument

» Escobedo, M., Rodriguez (2005), M., Scher (2016)

Up to a change of unknown, we may then assume
3(G,¢), G>0, >0, A\G=0, N"¢=0.

As a consequence, any solution f to the GF equation satisfies

d d
G [fo=0 & [ir16)60=-Din <0

for any j : R — R convex function, with
f
f) - //k G*¢ ( *) —j/(u*)(u— u*)) dXdX*7 u .= E
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Main result: exponential rate of convergence

Assume (for simplicity)

1
Kxoy) = KR ply//x [ zolds) =1
0
K(x) ~x7, v >0;
(GF) 7(x) =1 and @ smooth and positive or @ = dy;
(SSF) 7(x) =x and p smooth and positive.

Theorem
There exist a < 0, C > 1 and a weight function m : [0,00) — [1, 00) such that

SA(t)fo — Maofolly < Ce™|[fo — Maofoll

for any fo € LL, with Maof := G (f, ¢).
Furthermore, a, C are constructive when K = cst as well as in the (SSF) case.

S.Mischler (CEREMADE ) Growth-Fragmentation equation March 23, 2017 11 /25



Several mathematical techniques for convergence and rate of convergence

@ compactness argument + Lyapunov/dissipation of entropy

» Escobedo, M., Rodriguez (2005); Michel, M., Perthame (2005),
Bernard, Doumic, Gabriel (arXiv 2016)

@ ad hoc W; distance when K ~ cst™
» Perthame, Ryzhik (2005), Laurencot, Perthame (2009)
@ dissipation of entropy-entropy inequality*
» Caceres, Cafiizo, M. (2011), Balagué, Cafizo, Gabriel (2013)
@ spectral analysis of semigroup™
» M., Scher (2016)
@ direct Laplace / Mellin analysis

» Doumic, Escobedo (2016); Bertoin, Watson (arXiv 2017)

* with constructive constants
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Outline of the talk

© The spectral analysis approach
@ Spectral gap and semigroup decay
@ A Lyapunov condition
@ Some strong positivity conditions
@ the constant case
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Spectral gap and semigroup decay

In the spirit of Perron-Frobenius (~1907) and Krein-Rutman (1948) theory

~ Positive semigroup theory by “german school” (Arendt, Engel, Grabosch,
Greiner, Groh, Nagel, Voigt, ... ~ 80's)

~ The Harris-Meyn-Tweedie-Down theory about Markov chain and semigroup
(1956-90's) (revisited by Hairer-Mattingly in 2011)

From positivity and conservation, we know that Sp is a SG of contractions
= T(N)NAy=0, A,:={zeC, Rez> a}.

We also know that 0 € X(A) and G € E; := eigenspace associated to the

eigenvalue 0.

Spectral analysis issues:
> Eg = Vect(G) ? £(A)N A, = {0} for some a < 07

Semigroup issue:

> deduce the corresponding semigroup decay (~ quantified spectral mapping
theorem)?
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N satisfies a “Lyapunov condition”

Proposition

There exist m : [0,00) — [1,0), m(x) — oo as x — o0, and a < 0, M > 0, such
that
Nm<am-+ M

For the GF operator, assuming
Kox? < K(x) < Kix?, Vx2>x,

and taking 8 > f* such that

1
o5 = Ko/Ky € (0,1], g5 = / 2 p(dz),
0

we may choose m(x) = e *™1, o +xP1,5,.

For the SSF operator, me may choose m(x) = x“1,<1 + nx”1,>1, whatever are
a <1< B and n > 0 small enough.

Key point: for "large” particles fragmentation dominates growth while the inverse
holds for "small" particles.
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Strong maximum principle and uniqueness of the steady state

Lemma (strong MP).
For any solution to Af =0, f > 0, there holds f =0 or f > 0. J

Proof: When f # 0, we have
T(x)Oxf + (K(x) + p)f > F'f >0, £0,

and we spread out positivity.

Corollary (uniqueness).
Eo = Vect(G) J

Proof: Consider f another steady state. We may reduce to the case when f is
nonnegative and has unit mass. Then g := f — G satisfies Ag = 0. In particular,

Ag. > (sign, g)\g =0 and / (Ag )b = / g (M) =0,

so that Agy = 0. From the strong MP, we deduce gy = 0 or g > 0. In the second
case, we get g > 0 and then
1=(f]) > (f) >(G)=1 absurd!

In a similar way, we have g_ = 0 and we conclude with f — G = g = 0.
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Strong Kato's inequality and spectrum on the imaginary axis

Lemma (Strong Kato's inequality).

The case of saturation in Kato's inequality
A|f| = Re(signf) Af

implies Ju € C such that f = u|f|.

Fails in the case 7(x) = x and p = 015!

Corollary (about the spectrum on the imaginary axis). J

There is no other eigenvalue on /R: X(A) N iR = {0} and 0 is (algebraically) simple.

Proof: If Af = uf with Rep = 0, we write
0 = (Rep)|f| = Re(signf) Af < A|f|

and then A|f| = 0 by integration. We may applies the strong Kato's inequality to get
f = u|f| and then Af = 0. That implies u = 0.
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splitting structure

In X := L1 we split
N=A+B, A:=Fg,

and we proved (using in particular Proposition 1) that for some a* < 0
t— Sg* (AS)K(t) e 2"t € L®(Ry; B(X)), Vk>0,

t = (ASE) D (t) et e L°(R; B(X,Y)), Y c DAY?), Y cc X.

From Voigt's power compact version of Weyl's theorem, we have
Y cC X implies X(A)N A, is discrete.
Similarly, we have
Y c D(AY?) implies £(A)N A, is bounded, and thus finite!

Conclusion: Ja < 0 such that X(A)N A, = {0} and M := (-, $)G.
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More details about the spectral gap via Weyl's theorem

Lemma (spectral gap).

There is a < 0 such that X(A) N A, = {0}.

Proof. For an generator L we define the resolvent operator

R(z)=(L—2) "t = —/ Su(t) e dt.
0
From A = A+ B, we get
Rn = Rs — RAARs = R — Rs AR + Ry(ARg)’
from what we deduce
RA(2)(1 — (ARs(2))?) = Ra(z) — Re(2)ARs(2).

e From
IARs(2)h% < / 1ASs(t) Bl e 2 dt < G |16k, VheX, z€ A,
0

we get the estimate
ARp(z): X = Y as O(1), Vze A, a<0.
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End of the proof of the spectral gap

e On the one hand, together with the interpolation estimate

RB(Z) X1 — X as O(<Z>_1)

Rs(z) : X — X as O(1) } imply Rs(z):Xi2 — X as O(<z>—1/2)’

and observing that Y C X;,», we deduce
(ARs(2))? = ARs(2)(ARs(2)) : X — X as O((z)*/?).
In particular, | — (AR5(z))? is invertible in A, N B(0, M)< for M > 1 large.

e On the other hand, because Y C X with compact embedding, the operator
I — (ARs(2))? is an analytic and compact perturbation of the identity, and the
Ribari¢-Vidav-Voigt's version of Weyl's theorem implies that

Y(A)N A, = X4(N) N A, = discrete set.

e Both information together, we have
Y(A)N A, = X4(A) N A, = finite set.
We conclude by using that £(A) N Ag = {0}.
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Semigroup decay via spectral mapping theorem

Lemma (semigroup decay in L},).

Defining Mg := G(g, ¢), there holds

ISA(E)(] — M)||xox < e, Vt>0, Va> a*.

Proof. We set M+ =/ — I and we write
SN = NSz + ...+ Sp * (ASE) ") + Sy * (ASE)*M)}
N{Sg + ... + Sp * (ASE) "~} + / N*Ra(z)(ARg)" € dz.

Ta

12

Because ||lT+Ra(z)|| is uniformly bounded on A,, and ||(ARz)"(2)|| < (z)~3/2,
we obtain that each term is of order O(e?")
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2nd strong positivity condition and dissipation of entropy-entropy inequality
We may prove (with constructive constants in the (SSF) case)
A1€7H1A(X) S G(X) S Aoeiﬁol\(x), Ii,',A,‘ > 07

with A(x) = x7 in the (SSF) case and A(x) = x”*! in the (GF) case. We also recall
that ¢(x) = x in the (SSF) case and in the (GF) case, we may prove

Cal4+x)* < d(x) < C(1+x), Vae(0,1).

We recall
He(16) = [u-176o=]f - Gl ui= .
=Dy(f|G) = —%H2(f|G)://k*G*¢>(u—u*)2dxdx*.

Proposition In both (GF) and (SSF) cases, when v € (0,2) and g is smooth

32<0, DiF|G) > (—a)Mh(F|G). J
Corollary In both (GF) and (SSF) cases, when v € (0,2) and g is smooth

ISa(8)fo = Nf|[Ty < e™[lfo — Nfll7, Ve o. J
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3rd strong positivity condition and constructive spectral gap

For a normalized eigenvalue-eigenfunction (&, f) with £ € A, N X(A) C B(0,R),
we have
(Ifl.¢) =1, Iflly, < C [fllwre(ss-—) < C.

When @ is smooth, we deduce
Di(f|G) := Re(A|f| — (Af)@f,d)) >k:=—-3a">0,

with constructive constant when ¢(x) = x.
As a consequence:

Re¢ (|fl,¢) = Rel¢fsignf, )
= Re(Afsignf, ¢)
< (Nff,¢)+a™"

and then Ref < a**. As a consequence, A -« N X(A) = {0}.

Corollary

Constructive rate of convergence for (SSF) case when v > 0 and g is smooth.
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Open problems:

e Constructive exponential rate of convergence in the case v > 0

>> Generalize M. & Scher's spectral analysis approach to the more general
framework of Balagué, Cafiizo, Doumic, Gabriel?

> Make all the constants constructive in the upper and lower bound of G ?
I> Restriction on v? Prove first D(f|G) > ||f — G| for a weaker norm?

> Make all the constants constructive in the positivity and regularity estimates on
an eigenvector f when the associated eigenvalue £ € A, 7

e Meyn-Tweedie approach: Is is true
VC,R>0, 3T,k>0, (SA(T)h)(x) >k, Vx € (0,R)
for any £, > 0, (f,6) = 1, |[fllus, < C?

e Beyond spectral gap
> polynomial rate of convergence when v < 07 (subgeometric framework)

> rate of convergence for the ergodic behavior in the critical case (SSF) equation
with © = 6y /57
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