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Growth and fragmentation equation

We will consider
∂t f = Λf = Df + F f

on f = f (t, x) ≥ 0 the number density of particles (or cells, polymers,
organisms, individuals),
t ≥ 0 is the time variable,
x ∈ (0,∞) is the size (or mass, age)

We take into account a fragmentation mechanism through

(F f )(x) :=

∫ ∞

x
k(y , x)f (y)dy − K (x)f (x),

and possibly a growth mechanism by choosing D = 0 or

(Df )(x) := −∂x(τ(x)f (x))− ν(x) f (x)
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Fragmentation mechanism

The fragmentation operator writes

F := F+ −F−, (F+f )(x) :=

∫ ∞
x

k(y , x)f (y)dy , (F−f )(x) := K(x)f (x),

with fragmentation kernel k and total rate of fragmentation K related by

K(x) =

∫ x

0

k(x , y)
y

x
dy .

Modeling the division (breakage) of a single mother particle of size x > 0 into two or
more pieces (daughter particles, offspring) of size xi > 0, conserving the mass

{x} k−→ {x1}+ ....+ {xi}+ ... , x =
∑

xi .

We observe that

(F∗φ)(x) =

∫ x

0

k(x , y) [φ(y)− y

x
φ(x)] dy .

As a consequence, for ϕα = xα, there hold

F∗ϕ0 > 0, F∗ϕ1 = 0, F∗ϕ2 < 0.

⇒ Mass is conserved and particles are produced.
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Growth mechanism

The growth operator models the growth (for particles and cells) or the aging (for
individuals) and the death. It writes

(Df )(x) := −∂x(τ(x)f (x))− ν(x) f (x),

with drift speed (or growth rate) function τ : [0,∞)→ R and a damping rate
ν : [0,∞)→ [0,∞). Schematically

{x} e−ν(x)

−→ {x + τ(x) dx}.

Observing
(D∗φ)(x) = τ(x)∂xφ(x)− ν(x)φ(x),

the only invariant is
φ(x) = φ0e

∫ x ν(y)/τ(y)dy 6= ϕ1

except when τ(x)/ν(x) = x . For instance: (Df )(x) := −∂x(xf (x))− f (x)

We will take τ(x) = 1 (constant growth) or τ(x) = x (self-similar growth).
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Well-posedness, conservation and steady state

The growth-fragmentation operator generates a

positive and C0-semigroup SΛ in L1.

From now, we exclude singular fragmentation kernels at the origine (⇒ shattering
phenomenon = lost of mass) of the discussion

Questions:

Is S∗Λ Markov? = conservation law?

∃ of invariant measure for S∗Λ? = ∃ of steady state for (GF) equation?

First answers:

In general, no trivial conservation law (except ϕ1 when D = 0).

In general, no explicit steady state.

For the pure fragmentation equation (D = 0) no steady state. But for a
total rate K (x) = xγ , γ > 0, we may change variables into ”self-similar”
variables (which adds a new growth operator Df := −∂x(xf )− f ) such that
the new equation have a steady state (a self-similar profile for the initial
equation). We denote this model as the (SSF) equation.
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A complete answer thanks to Krein-Rutman (Perron-Frobenius) theory

Krein-Rutmann theory says

∃ (λ,G , φ), λ ∈ R, G > 0, φ > 0, (Λ− λ)G = 0, (Λ∗ − λ)φ = 0.

Finite dimensional approximation and compactness argument

I Perthame, Ryzhik (2005), Michel (2006), Doumic, Gabriel (2010)

Semigroup and compactness argument

I Escobedo, M., Rodriguez (2005), M., Scher (2016)

Up to a change of unknown, we may then assume

∃ (G , φ), G > 0, φ > 0, ΛG = 0, Λ∗φ = 0.

As a consequence, any solution f to the GF equation satisfies

d

dt

∫
f φ = 0,

d

dt

∫
j(f /G )Gφ = −Dj(f ) ≤ 0

for any j : R→ R convex function, with

Dj(f ) :=

∫∫
k∗G∗φ(j(u)− j(u∗)− j ′(u∗)(u − u∗)) dxdx∗, u :=

f

G
.
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Main result: exponential rate of convergence

Assume (for simplicity)

k(x , y) = K (x)℘(y/x)/x ,

∫ 1

0

z ℘(dz) = 1;

K (x) ∼ xγ , γ ≥ 0;

(GF ) τ(x) = 1 and ℘ smooth and positive or ℘ = δ1/2;

(SSF ) τ(x) = x and ℘ smooth and positive.

Theorem

There exist a < 0, C ≥ 1 and a weight function m : [0,∞)→ [1,∞) such that

‖SΛ(t)f0 − ΠΛ,0f0‖L1
m
≤ C eat‖f0 − ΠΛ,0f0‖L1

m

for any f0 ∈ L1
m, with ΠΛ,0f := G 〈f , φ〉.

Furthermore, a,C are constructive when K = cst as well as in the (SSF) case.

S.Mischler (CEREMADE ) Growth-Fragmentation equation March 23, 2017 11 / 25



Several mathematical techniques for convergence and rate of convergence

compactness argument + Lyapunov/dissipation of entropy

I Escobedo, M., Rodriguez (2005); Michel, M., Perthame (2005),
Bernard, Doumic, Gabriel (arXiv 2016)

ad hoc W1 distance when K ∼ cst∗

I Perthame, Ryzhik (2005), Laurençot, Perthame (2009)

dissipation of entropy-entropy inequality∗

I Caceres, Cañizo, M. (2011), Balagué, Cañizo, Gabriel (2013)

spectral analysis of semigroup∗

I M., Scher (2016)

direct Laplace / Mellin analysis

I Doumic, Escobedo (2016); Bertoin, Watson (arXiv 2017)

∗ with constructive constants
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Spectral gap and semigroup decay

In the spirit of Perron-Frobenius (∼1907) and Krein-Rutman (1948) theory
' Positive semigroup theory by “german school” (Arendt, Engel, Grabosch,
Greiner, Groh, Nagel, Voigt, ... ∼ 80’s)
' The Harris-Meyn-Tweedie-Down theory about Markov chain and semigroup
(1956–90’s) (revisited by Hairer-Mattingly in 2011)

From positivity and conservation, we know that SΛ is a SG of contractions

⇒ Σ(Λ) ∩∆0 = ∅, ∆a := {z ∈ C, <e z > a}.

We also know that 0 ∈ Σ(Λ) and G ∈ E0 := eigenspace associated to the
eigenvalue 0.

Spectral analysis issues:

B E0 = Vect(G ) ? Σ(Λ) ∩∆a = {0} for some a < 0?

Semigroup issue:

B deduce the corresponding semigroup decay (∼ quantified spectral mapping
theorem)?
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Λ satisfies a “Lyapunov condition”

Proposition

There exist m : [0,∞)→ [1,∞), m(x)→∞ as x →∞, and a < 0, M ≥ 0, such
that

Λ∗m ≤ am + M

For the GF operator, assuming

K0 x
γ ≤ K (x) ≤ K1 x

γ , ∀ x ≥ x1,

and taking β > β∗ such that

℘β∗ = K0/K1 ∈ (0, 1], ℘β :=

∫ 1

0

zβ ℘(dz),

we may choose m(x) = e−K(x)1x≤x1 + xβ 1x≥x1 .

For the SSF operator, me may choose m(x) = xα1x≤1 + ηxβ1x≥1, whatever are
α < 1 < β and η > 0 small enough.

Key point: for ”large” particles fragmentation dominates growth while the inverse
holds for ”small” particles.
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Strong maximum principle and uniqueness of the steady state

Lemma (strong MP).

For any solution to Λf = 0, f ≥ 0, there holds f ≡ 0 or f > 0.

Proof: When f 6≡ 0, we have

τ(x)∂x f + (K(x) + µ)f ≥ F+f ≥ 0, 6≡ 0,

and we spread out positivity.

Corollary (uniqueness).

E0 = Vect(G)

Proof: Consider f another steady state. We may reduce to the case when f is
nonnegative and has unit mass. Then g := f − G satisfies Λg = 0. In particular,

Λg+ ≥ (sign+g)Λg = 0 and

∫
(Λg+)φ =

∫
g+(Λ∗φ) = 0,

so that Λg+ = 0. From the strong MP, we deduce g+ = 0 or g+ > 0. In the second
case, we get g > 0 and then

1 = 〈|f |〉 ≥ 〈f 〉 > 〈G〉 = 1 absurd!

In a similar way, we have g− = 0 and we conclude with f − G = g = 0.
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Strong Kato’s inequality and spectrum on the imaginary axis

Lemma (Strong Kato’s inequality).

The case of saturation in Kato’s inequality

Λ|f | = <e(signf ) Λf

implies ∃u ∈ C such that f = u|f |.

Fails in the case τ(x) = x and ℘ = δ1/2!

Corollary (about the spectrum on the imaginary axis).

There is no other eigenvalue on iR: Σ(Λ) ∩ iR = {0} and 0 is (algebraically) simple.

Proof: If Λf = µf with <eµ = 0, we write

0 = (<eµ)|f | = <e(signf ) Λf ≤ Λ|f |

and then Λ|f | = 0 by integration. We may applies the strong Kato’s inequality to get
f = u|f | and then Λf = 0. That implies µ = 0.
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splitting structure

In X := L1
m, we split

Λ = A+ B, A := F+
R ,

and we proved (using in particular Proposition 1) that for some a∗ < 0

t 7→ SB ∗ (ASB)(∗k)(t) e−a
∗t ∈ L∞(R+;B(X )), ∀ k ≥ 0,

t 7→ (ASB)(∗2)(t) e−a
∗t ∈ L∞(R+;B(X ,Y )), Y ⊂ D(Λ1/2), Y ⊂⊂ X .

From Voigt’s power compact version of Weyl’s theorem, we have

Y ⊂⊂ X implies Σ(Λ) ∩∆a∗ is discrete.

Similarly, we have

Y ⊂ D(Λ1/2) implies Σ(Λ) ∩∆a∗ is bounded, and thus finite!

Conclusion: ∃ a < 0 such that Σ(Λ) ∩∆a = {0} and Π := 〈·, φ〉G .

S.Mischler (CEREMADE ) Growth-Fragmentation equation March 23, 2017 18 / 25



More details about the spectral gap via Weyl’s theorem

Lemma (spectral gap).

There is a < 0 such that Σ(Λ) ∩∆a = {0}.

Proof. For an generator L we define the resolvent operator

RL(z) = (L− z)−1 = −
∫ ∞

0

SL(t) e−zt dt.

From Λ = A+ B, we get

RΛ = RB − RΛARB = RB − RBARB + RΛ(ARB)2

from what we deduce

RΛ(z)(1− (ARB(z))2) = RB(z)− RB(z)ARB(z).

• From

‖ARB(z)f0‖2
Y ≤

∫ ∞
0

‖ASB(t) f0‖2
Y e−2at dt ≤ Ca ‖f0‖2

X , ∀ f0 ∈ X , z ∈ ∆a,

we get the estimate

ARB(z) : X → Y as O(1), ∀ z ∈ ∆a, a < 0.
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End of the proof of the spectral gap

• On the one hand, together with the interpolation estimate

RB(z) : X1 → X as O(〈z〉−1)
RB(z) : X → X as O(1)

}
imply RB(z) : X1/2 → X as O(〈z〉−1/2),

and observing that Y ⊂ X1/2, we deduce

(ARB(z))2 = ARB(z)(ARB(z)) : X → X as O(〈z〉−1/2).

In particular, I − (ARB(z))2 is invertible in ∆a ∩ B(0,M)c for M > 1 large.

• On the other hand, because Y ⊂ X with compact embedding, the operator
I − (ARB(z))2 is an analytic and compact perturbation of the identity, and the
Ribarič-Vidav-Voigt’s version of Weyl’s theorem implies that

Σ(Λ) ∩∆a = Σd(Λ) ∩∆a = discrete set.

• Both information together, we have

Σ(Λ) ∩∆a = Σd(Λ) ∩∆a = finite set.

We conclude by using that Σ(Λ) ∩ ∆̄0 = {0}.
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Semigroup decay via spectral mapping theorem

Lemma (semigroup decay in L1
m).

Defining Πg := G 〈g , φ〉, there holds

‖SΛ(t)(I − Π)‖X→X . eat , ∀ t ≥ 0, ∀ a > a∗.

Proof. We set Π⊥ = I − Π and we write

SΛ(t)Π⊥ = Π⊥{SB + ...+ SB ∗ (ASB)(∗n−1) + SΛ ∗ (ASB)(∗n)}

' Π⊥{SB + ...+ SB ∗ (ASB)(∗n−1)}+

∫
↑a

Π⊥RΛ(z)(ARB)n ezt dz .

Because ‖Π⊥RΛ(z)‖ is uniformly bounded on ∆̄a, and ‖(ARB)n(z)‖ . 〈z〉−3/2,
we obtain that each term is of order O(eat)
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2nd strong positivity condition and dissipation of entropy-entropy inequality

We may prove (with constructive constants in the (SSF) case)

A1e
−κ1Λ(x) ≤ G(x) ≤ A0e

−κ0Λ(x), κi ,Ai > 0,

with Λ(x) = xγ in the (SSF) case and Λ(x) = xγ+1 in the (GF) case. We also recall
that φ(x) = x in the (SSF) case and in the (GF) case, we may prove

Cα(1 + x)α ≤ φ(x) ≤ C (1 + x), ∀α ∈ (0, 1).

We recall

H2(f |G) :=

∫
(u − 1)2Gφ = ‖f − G‖2

L2
Ω
, u :=

f

G
,

−D2(f |G) := − d

dt
H2(f |G) =

∫∫
k∗G∗φ (u − u∗)

2 dxdx∗.

Proposition In both (GF) and (SSF) cases, when γ ∈ (0, 2) and ℘ is smooth

∃ a < 0, D2(f |G) ≥ (−a)H2(f |G).

Corollary In both (GF) and (SSF) cases, when γ ∈ (0, 2) and ℘ is smooth

‖SΛ(t)f0 − Πf0‖2
L2

Ω
≤ eat‖f0 − Πf0‖2

L2
Ω
, ∀ t ≥ 0.
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3rd strong positivity condition and constructive spectral gap

For a normalized eigenvalue-eigenfunction (ξ, f ) with ξ ∈ ∆a ∩ Σ(Λ) ⊂ B(0,R) ,
we have

〈|f |, φ〉 = 1, ‖f ‖L1
m
≤ C , ‖f ‖W 1,∞(δ,δ−1) ≤ C .

When ℘ is smooth, we deduce

D1(f |G ) := <e〈Λ|f | − (Λf )signf , φ〉 ≥ κ := −a∗∗ > 0,

with constructive constant when φ(x) = x .
As a consequence:

<eξ 〈|f |, φ〉 = <e〈ξf signf , φ〉
= <e〈Λf signf , φ〉
≤ 〈Λ|f |, φ〉+ a∗∗

and then <eξ ≤ a∗∗. As a consequence, ∆a∗∗ ∩ Σ(Λ) = {0}.

Corollary

Constructive rate of convergence for (SSF) case when γ > 0 and ℘ is smooth.
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Open problems:

• Constructive exponential rate of convergence in the case γ ≥ 0

B Generalize M. & Scher’s spectral analysis approach to the more general
framework of Balagué, Cañizo, Doumic, Gabriel?

B Make all the constants constructive in the upper and lower bound of G ?

B Restriction on γ? Prove first D(f |G ) ≥ ‖f − G‖2
∗ for a weaker norm?

B Make all the constants constructive in the positivity and regularity estimates on
an eigenvector f when the associated eigenvalue ξ ∈ ∆a ?

• Meyn-Tweedie approach: Is is true

∀C ,R > 0, ∃T , κ > 0, (SΛ(T )f0)(x) ≥ κ, ∀ x ∈ (0,R)

for any f0 ≥ 0, 〈f0, φ〉 = 1, ‖f0‖L1
m
≤ C?

• Beyond spectral gap

B polynomial rate of convergence when γ < 0? (subgeometric framework)

B rate of convergence for the ergodic behavior in the critical case (SSF) equation
with ℘ = δ1/2?
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