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Model case : the Fokker-Planck equation with weak confinement

We will mainly consider the longtime asymptotic of the solution f = f (t, x),
t ≥ 0, x ∈ Rd , to the Fokker-Planck equation

∂t f = ∆f + div (Ef ) =: Lf

for a weakly confinement vectors field

E ' x |x |γ−2 = ∇
( |x |γ
γ

)
, γ ∈ (0, 1),

and an initial datum in a weighted Lebesgue space

f (0, .) = f0 ∈ Lpm ⊂ L1.

The equation is mass conservative

〈f (t, ·)〉 = 〈f0〉, 〈g〉 :=

∫
Rd

g dx

and it generates a semigroup St = SL(t) which is positive

St f0 = f (t, ·) ≥ 0 if f0 ≥ 0.
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Model case : stationary problem and asymptotic behaviour

Theorem 1

(1) ∃! stationary state G ≥ 0, 〈G 〉 = 1, LG = 0. It is smooth and positive.

(2) For any f0 ∈ Lpm, 〈f0〉 = 0, there holds,

‖f (t, ·)‖Lp ≤ Θ(t)‖f0‖Lp
m
, ∀ t ≥ 0,

with

Θ(t) ' t−
k−k∗
2−γ , if m = 〈x〉k , k = k∗(E , p) =

d

p′

Θ(t) ' e−λt
s

2−γ
, if m = eκ〈x〉

s

, s ∈ (0, γ], κ > 0.

(3) As a consequence, for any f0 ∈ Lp(m), there holds,

‖f (t, ·)− 〈f0〉G‖Lp ≤ Θ(t)‖f0 − 〈f0〉G‖Lp
m
, ∀ t ≥ 0.

We use the notations 〈x〉 := (1 + |x |2)1/2 and ‖f ‖Lp
m

= ‖fm‖Lp for any weight
function m : Rd → [1,∞)

S.Mischler (CEREMADE) weakly dissipative semigroups June 27, 2018 3 / 36



Outline of the talk

1 Introduction

2 Weak Poincaré inequality
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A more general setting

We want to understand the longtime asymptotic behavior

f (t) as t →∞

of the solution to an evolution equation

∂t f = Lf , f (0) = f0,

when L is a linear operator acting on a Banach space X .

We wish establish that the semigroup SL, defined by SL(t)f0 := f (t), splits as

SL(t) = S0(t) + S1(t), S1(t) “simple”, S0(t) = o(S1(t)).

The simplest situation is S1(t) = P projection on N(L) of finite dimension, and
the issue is

‖SL(t)− P‖ = Θ(t)→ 0? Θ?

For the Fokker-Planck equation, Pf = 〈f 〉G , dimP = 1.
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Long history and still active domain of research

• Kinetic school: Hilbert, Weyl, Carleman, Grad, Vidav, Ukai, Arkeryd’s
school, french school, Guo’s school, chinese school, ...

• Semigroup school: Phillips, Dyson, Krein-Rutman, Vidav, Voigt, Engel,
Nagel, Gearhart, Metz, Diekmann, Prüss, Arendt, Greiner, Blake, Webb,
Mokhtar-Kharoubi, Yao, Batty, ...

• Probability school - Markovian approach / coupling method: Doeblin,
Harris, Meyn, Tweedie, Down, Douc, Fort, Guillin, Hairer, Mattingly,
Eberle, ...

• Probability school - Functional inequalities: Toulouse school, Rockner,
Wang, Wu, Guillin, Bolley, ...

• Spectral analysis approach: Gallay-Wayne, Nier, Helffer, Hérau, Lerner,
Burq, Lebeau, ...
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The classical framework

The classical equivalent notions are coercive (in Hilbert space) / dissipative (in
Banach space) operators and semigroup of contractions:

• L is coercive if (Lf , f )H ≤ 0, ∀ f ;

• SL is a contraction if ‖SL(t)‖H→H ≤ 1.

We are rather interested here by the two equivalent more accurate estimates

• L is coercive if (Lf , f )H ≤ a‖f ‖2H , a < 0, ∀ f ∈ N(L)⊥;

• ‖SL(t)− P‖H→H ≤ Θ(t) = Ceat , C = 1, a < 0.

The classical proofs to get such estimates are
• L∗ = L ≤ 0 & compactness argument ⇒ Σ(L) ⊂ R and discrete;
• SL > 0 & compactness argument ⇒ Σ(L) = {λ1} ∪ Σ′, sup<eΣ′ < λ1;
• L = A+ B, A small and B known.
The three points give us the spectral description of L. We get a growth
description of SL thanks to the spectral mapping theorem
• Alternatively, we may use Doeblin-Harris argument giving convergence under
recurrence assumption.
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The FP eq. with harmonic potential and beyond

These tools give satisfactory answer for the FP equation with Harmonic potential.
More precisely in X = H = L2(G−1), G := e−|x|

2/2, we get

∃λ1 ∈ R, S1(t) = eλ1t P, S0(t) = O(eat), a < λ1 = 0.

Around 2000’s at least four new (or more insistently) problems arise:

(1) Explicit / constructive growth estimates ?

(2) How to deal with operators L = S + T , S∗ = S, T ∗ = −T ∗ ?
→ hypocoercivity

(3) How to deal with the case without spectral gap ? → weak dissipativity

(4) How to change the functional space in which the spectral analysis / growth
estimate is obtained in order to fit with the nonlinear theory ?
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Some comments

(1) Exclude compactness argument but rather use robust constructive functional
inequalities or tractable dynamic (semigroup) arguments. Goes back to Bakry-Emery Γ2

theory ?

(2) Hypocoercivity : change (by twisting) the norm in order that L is
coercive/dissipative or equivalently accept (in the spectral gap case)

Θ(t) = Ceat , C > 1.

New name (and new techniques) but quite old idea !

(3) Weak dissipativity : Use two (in fact at least three) norms and Θ does not decay
exponentially fast. Motivated by
- Landau equation for Coulomb interaction (Guo-Strain, Carrapatoso-M., ...)
- Damped wave equation (Lebeau, Burq, Lerner, Léautaud, Anantharaman, ...)
- Free transport equation with Maxwellian reflexion (Aoki-Golse, ...)

(4) Explicit (basis decomposition) for Boltzmann (Bobylev) and harmonic FP
(Gallay-Wayne). Abstract version (Mouhot, Gualdani-M.-Mouhot) based on a splitting
L = A+ B, the (iterated) Duhamel formula

SL = SB + SL ∗ (ASB) = SB + ...+ SL ∗ (ASB)(∗n),

providing that (ASB)(∗n) has some smoothing property.
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Outline of the talk

• Constructive rate of convergence through weak Poincaré inequality (L2

approach)

• Existence of steady state under subgeometric Lyapunov condition
[ergodic theorem of Birkhoff-Von Neuman]

• Constructive rate of convergence under Doeblin-Harris condition (L1

approach)

• Perspective: weakly hypodissipativity equations

B Natural PDE formulations / simple deterministic proofs

B All these results use a splitting structure:

L = A+ B, A ≺ B, B weakly dissipative,

and in particular, the subgeometric Foster-Lyapunov condition

L∗w ≤ −ξ + b1ball, ξ << w

(geometric Lyapunov condition corresponds to ξ ∼ w)
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Vocabulary / notations

• Positive semigroup ≈ weak maximum principle ≈ Kato’s inequality

• steady state = invariance measure

• spectral gap = geometric Lyapunov condition
no spectral gap ≈ subgeometric Lyapunov condition

• strong positivity ≈ strong maximum principle ≈ Doeblin-Harris recurrent
condition

• A possible definition of weakly coercivity is

(Lf , f )H ≤ a‖f ‖2H, a < 0, H 6⊂ H,

but I do not know any kind of equivalent characterization in terms of semigroup
decay.

• We define the convolution

(U ∗ V )(t) =

∫ t

0

U(t − s)V (s)ds.

S.Mischler (CEREMADE) weakly dissipative semigroups June 27, 2018 12 / 36



Outline of the talk

1 Introduction

2 Weak Poincaré inequality
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Weak Poincaré inequality for the FP equation with weak confinement

Theorem 1 is true.
(Toscani-Villani 00, Rochner-Wang 01, Bakry-Cattiaux-Guillin 08, Kavian-M.)

The proof is based on 4 ideas.

Idea 1. We can prove the estimate for one value of p ∈ [1,∞] and m. Here
p = 2 and m = G−1−•. In the next part, we will choose p = 1.

Idea 2. Subgeometric Lyapunov condition. When p = 1, it is nothing but

L∗m ≤ −ν|x |s+γ−2 m + b 1BR
,

with m = 〈x〉k (s = 0) and m = exp(κ〈x〉s). Here b,R, ν > 0 are constants.

Idea 3. Dissipation by local Poincaré inequality. In the next part, dissipation is
given by the Doeblin-Harris recurrente condition.

Idea 4. A system of differential inequalities + interpolation (in contrast with the
only one differential inequality in the spectral gap case).
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Elements of proof of (2) - potential case - Step 1

We assume E = ∇V , G = e−V , V = |x |γ/γ. We fix f ∈ L2(G−1), 〈f 〉 = 0.∫
(Lf ) f G−1 = −

∫
|∇(f /G)|2G

= −
∫
|∇(f /G 1/2)|2 +

∫
f 2G−1ψ (Idea 2)

with ψ . −|∇V |2 + 1BR . Be careful with |∇V |2 ∼ |x |2(γ−1) → 0 as x →∞.

Both together, with h = f /G , we get∫
h2|∇V |2G .

∫
|∇h|2G +

∫
BR

h2G

We use Poincaré-Wirtinger inequality (Idea 3) in order to bound the red color term∫
BR

h2G .
∫
BR

|∇h|2G +
(∫

BR

hG
)2

=

∫
BR

|∇h|2G +
(∫

Bc
R

hG
)2

.
∫
BR

|∇h|2G +

∫
Bc
R

h2|∇V |2G
∫
Bc
R

|∇V |−2G → 0 as R →∞.
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Elements of proof of (2) - potential case - End of Step 1

All together and for R large enough, we get the weak Poincaré inequality∫
h2|∇V |2G .

∫
|∇h|2G

or equivalently ∫
f 2|∇V |2G−1 . (Lf , f )L2(G−1)

The consequence on the solution to the FP equation is the differential inequality

d

dt

∫
f 2G−1 . −

∫
f 2|∇V |2G−1

• When γ ≥ 1, then |∇V |2 & 1, and we may close the equation on the above
quantity (denoted by u), namely

d

dt
u ≤ au, a < 0, ⇒ u(t) ≤ eatu0.

• When γ ∈ (0, 1) we need another information
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Elements of proof of (2) - potential case - Step 2

We may prove the additional bound

(A)

∫
(ft/G )pG ≤

∫
(f0/G )pG , ∀ p ∈ [1,∞], take p > 2;

as well as

(B)

∫
f 2t m

2 ≤ C

∫
f 20 m

2, ∀ f0 ∈ L2m.

As a consequence, we have{
u′1 . −u0, u2 . u2(0)

(C ) u1 . u
α

1+α

0 u
1

1+α

2 or (D) u1 . ε−1R u0 + ηRu2,

with α > 0, εR , ηR → 0 as R →∞.

• In case (C), we then have

u′1 . −u
1+1/α
1 u2(0)−1/α ⇒ u1 .

u2(0)

tα
.

• In case (D), we then have

u′1 . −εRu1 + εRηRu2(0) ⇒ u1 . Θ(t)u2(0), Θ(t) := inf
R

{
e−εR t + ηR

}
.
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Elements of proof of (2) - potential case - Step 2 (A), (B), (C), (D)

• We get (A) by writing the FP equation in gradient flow form

∂t f = div(G∇(f /G )),

from what we have

1

p

d

dt

∫
(f /G )pG = −

∫
G∇(f /G )p−1 · ∇(f /G ) ≤ 0

• The proof of (B) is more tricky. It is similar to the Step 4 (4th idea) about the
change of functional space.

• To prove (D), we write∫
f 2G−1 ≤ R2(1−γ)

∫
BR

f 2G−1|∇V |2 + ‖f /G‖2L∞
∫
Bc
R

G |∇V |2.

• From a rough version of (D) we deduce (C) by optimising over R ∈ (0,∞).
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Elements of proof of (2) - general case - Step 3

We assume (in particular, that we have yet established point (1) in Theorem 1)

x · E ∼ |x |γ and ∃!G stationary state, G ∼ e−|x|
γ

.

We observe that for any weight function∗ W : Rd → [1,∞] we have

D[f ] :=

∫
(−Lh)hWG =

∫
|∇h|2GW − 1

2

∫
h2 (L∗W )G .

For the choice W := w + λ∗ with w a Lyapunov function associated to L in the
sense that

L∗w ≤ −ξ + b 1U0 ,

for ξ ' |x |s+γ−2 w , the same computation as in the potential case leads to∫
|∇h|2GW ∗ − 1

2

∫
h2 (L∗W )G ≥ 1

4

∫
|∇h|2Gξ

for some λ > 0 large enough. We immediately deduce our first differential
inequality

d

dt

∫
f 2WG−1 ≤ −1

4

∫
f 2ξG−1.

∗ modified norm ' “hypodissipativity trick”
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Elements of proof of (2) - general case - Step 4

• L2 estimate from mass conservation. We split

L = A+ B, A := Mχ(x/R), 1B(0,1) ≤ χ ∈ D(Rd),

we use iterated Duhamel formula

SL = SB + ...+ (SBA)(∗n) ∗ SL

and we have to prove SB : Lp(m2)→ Lp(m1) with decay Θ ∈ L1t , m1 << m2, and
(SBA)(∗n) has some smoothing property (by Nash technique), namely
(SBA)(∗n) : L1(m1)→ L2.

• Lp decay from L2 decay. We use the iterated Duhamel formula

SL = SB + ...+ SL ∗ (ASB)(∗n)

and (ASB)(∗n) : Lp(m2)→ L2(G−1) if p < 2.
We use the iterated Duhamel formula

SL = SB + ...+ (SBA)(∗n) ∗ SL ∗ (ASB)

and (SBA)(∗n) : L2(G−1)→ Lp if p > 2.
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Existence of steady stade under subgeometric Lyapunov condition

We consider a Markov semigroup St = SL(t) defined on X := M1(E ),
meaning St ≥ 0 and S∗1 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
m0,m1 : E = Rd → [1,∞), m1 ≥ m0, m0(x)→∞ as x →∞, and two
real constants b,R > 0 such that

L∗m1 ≤ −m0 + b 1BR
.

Theorem 2 Douc, Fort, Guillin ? deterministic proof by Cañizo, M.

Any Feller-Markov semigroup (St) which fulfills the above Lyapunov condi-
tion has at least one invariant borelian measure G ∈ M1(m0).

Remark.

• m0 = m1 : geometric Lyapunov condition = spectral gap
(the result is true, the proof is simpler)

• Feller-Markov semigroup acts on C0(E ) and St := (SL∗(t))∗.
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Idea of the proof - splitting

We introduce the splitting

A := b1BR
, B := L −A.

We observe that SB is a submarkovian semigroup and

0 ≤ SB ∈ L∞t (B(M1(mi )));

∫ ∞
0

‖SB(t)f0‖M1(m0) dt ≤ ‖f0‖M1(m1).

We write the Duhamel formula

SL = SB + SB ∗ ASL,

and we consider the associated Cezaro means

UT :=
1

T

∫ T

0

SL dt, VT :=
1

T

∫ T

0

SB dt, WT :=
1

T

∫ T

0

SB ∗ ASL dt.
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Idea of the proof - Birkhoff, Von Neuman ergodic theorem

We define X := M1(m0), 0 ≤ f0 ∈ X , 〈f0〉 = 1, and we observe that

‖VT‖X→X :=
1

T

∥∥∥∫ T

0

SB dt
∥∥∥
X→X

≤ 1

On the other hand, by Fubini and positivity

‖WT f0‖M1(m0)
=

∥∥∥ 1

T

∫ T

0

SB(τ)

∫ T−τ

0

ASL(s) f0 dτds
∥∥∥
M1(m0)

≤ 1

T

∫ ∞
0

∥∥∥SB(τ)

∫ T

0

A SL(s) dsf0
∥∥∥
M1(m0)

dτ

≤ 1

T

∥∥∥∫ T

0

A SL(s) dsf0
∥∥∥
M1(m1)

≤ CA‖f0‖M1(m0)
,

We deduce UTk f0 → G weakly and G satisfies LG = 0 because for any s > 0:

SL(s)G − G = lim
k→∞

{ 1

Tk

∫ Tk

0

SL(s)SL(t)f0dt −
1

Tk

∫ Tk

0

SL(t)f0 dt
}

= lim
k→∞

1

Tk

{ ∫ Tk+s

Tk

SL(τ)f0dτ −
∫ s

0

SL(t)f0 dt
}

= 0.
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Coming back to Theorem 1 (1)

Let us denoted by G the steady state for the Fokker-Planck equation provided by
Theorem 2 under the general assumption x · E ∼ |x |γ , γ ∈ (0, 1).

• Thanks to a bootstrap argument: G is smooth, or at least a bit smoother than E , and
in any cases G ∈W 1,p(Rd) for any p ∈ [1,∞).

• From Step 4 in the proof of Theorem 1 (2), we get

G ≤ e−κ1|x|γ , κ1 > 0.

• Because of the strong maximum principle, we have G > 0. More accurately, using a
comparison to a subsolution technique , we have

G ≥ e−κ1|x|γ , κ2 > 0.
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Hypothesis

We consider a Markov semigroup St = SL(t) defined on X := L1(Rd),
meaning St ≥ 0 and S∗t 1 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
m0,m1 : Rd → [1,∞), m1 ≥ m0, m0(x)→∞ as x →∞, and two real
constants b,R > 0 such that

L∗m1 ≤ −m0 + b 1BR
.

(H2) Doeblin-Harris condition. ∃T > 0 ∀R > 0 ∃ ν ≥ 0, 6≡ 0, such that

STg ≥ ν
∫
BR

g , ∀ g ∈ X+.

(H3) There are two other weight functions m2,m3 : Rd → [1,∞),

m3 ≥ m2 ≥ m1 such that

L∗mi ≤ −m0 + b 1BR

and m2 ≤ mθ
0m

1−θ
3 with θ ∈ (1/2, 1].
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Conclusion

Theorem 3 Douc, Fort, Guillin, Hairer, deterministic proof by Cañizo, M.

Consider a Markov semigroup S on X := L1(m2) which satisfies (H1), (H2),
(H3). There holds

‖St f0‖L1 . Θ(t)‖f0‖L1(m2), ∀ t ≥ 0, ∀ f0 ∈ X , 〈f0〉 = 0,

for the function Θ given by

Θ(t) := inf
λ>0

{
e−ελt + ξλ

}
,

where

m1 ≤
1

2ελ
m0 + ηλm2, ∀λ, ελ, ηλ → 0 as λ→∞.
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Comments

• For the Fokker-Planck equation, assumption (H2) can be proved in a similar
way (maybe a bit more tricky) as for the lower bound in Theorem 1 (1).

• The assumption (H3) is not necessary: m1 satsisfies a Lyaponov condition
implies that φ(m1) satsisfies a Lyaponov condition for any φ : R+ → R+ concave.

• The probabilistic proof use Martingale argument, renewal theory and (if
possible?) constants are not easily tractable.

• In the probabilistic result, one writes m0 = ξ(m1), ξ : R+ → R+ concave, and

Θ̃(t) :=
C

ξ(H−1(t))
, H(u) :=

∫ u

1

ds

ξ(s)
.

- If ξ(s) = s then Θ̃(t) = e−λt ;

- If m1 = 〈x〉k , m0 := 〈x〉k+γ−2 then Θ̃(t) = t1−
k

2−γ >> Θ(t);

- If m1 = eκ〈x〉
s

, m0 := 〈x〉s+γ−2eκ〈x〉s then Θ̃(t) ' e−λt
s

2−γ ' Θ(t).

S.Mischler (CEREMADE) weakly dissipative semigroups June 27, 2018 29 / 36



Contraction and strict contraction

Rk 1. Assuming just that (St) is a Markov semigroup, we have

|St f | = |St f+ − St f−| ≤ |St f+|+ |St f−| = St |f |.
Integrating, we deduce that (St) is a L1 contraction∫

|St f | ≤
∫

St |f | =

∫
|f |S∗t 1 =

∫
|f |.

Rk 2. We assume furthermore the strong Doeblin-Harris condition:

(H2′) ∃T , ∃ ν, STg ≥ ν
∫
Rd

g , ∀ g ∈ X+.

For f ∈ L1, 〈f 〉 = 0, we have

ST f± ≥ ν
∫
Rd

f± =
ν

2

∫
Rd

|f | =: η.

We may adapt the proof in Rk 1 in the following way

|ST f | = |ST f+ − η − (ST f− − η)|
≤ |ST f+ − η|+ |ST f− − η| = ST |f | − 2η.

Integrating, we deduce that (ST ) is a strict contraction

‖ST f ‖L1 ≤ ‖f ‖L1 − 2‖η‖L1 = (1− 〈ν〉) ‖f ‖L1
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Step 1. Variant under Doeblin-Harris condition (H2)

Rk 3. Assuming (H2), we have similarly∫
|ST f | ≤ θ

∫
|f | if

∫
|f |m0 ≤

m0(R)

4

∫
|f |,

with
θ := 1− 〈ν〉/2 ∈ (0, 1).

Indeed, we mainly observe that

ST f± ≥ ν

∫
Rd

f± − ν
∫
Bc
R

f±

≥ ν

2

∫
Rd

|f | − ν
∫
Bc
R

|f |

≥ ν

2

∫
Rd

|f | − ν

m0(R)

∫
Rd

|f |m0

≥ ν

2

∫
Rd

|f | − ν

4

∫
Rd

|f |

=
ν

4

∫
Rd

|f |,

and we then follow the same proof as when we have assumed (H2′).
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Step 2. ST is bounded in L1(m2)

We fix f0 ∈ L1(m3), we denote fBt := SB(t)f0.
From (H1) and (H3), we have

d

dt
‖fBt‖m3 ≤ −‖ fBt‖m0 ≤ 0

d

dt
‖fBt‖m2 ≤ −‖ fBt‖m0 ≤ −‖ fBt‖1/θm2

‖ f0‖1−1/θm3
≤ 0

so that t 7→ ‖fBt ‖m2 . 〈t〉−
θ

1−θ ‖ f0‖m3 ∈ L1(R+).

Using the splitting
SL = SB + SB ∗ ASL

and the L1 contraction, we deduce

‖SL(t)f0‖m2 ≤ M2 ‖f0‖m2 .
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Step 3. An alternative

We set tn+1 ' tn + T , A := m0(R)/4 ≥ 2b and we have the following alternative:

•Or ∃ t ∈ [tn, tn + T ),

∫
|ft |m0 ≤ A

∫
|ft |

and assuming t := tn (to make the discussion simpler) we get from the variant of
Doeblin-Harris contraction argument (using (H2) assumption)∫

|ftn+1 | ≤ θ
∫
|ftn |

•Or ∀ t ∈ [tn, tn + T ),

∫
|ft |m0 ≥ A

∫
|ft |,

and we simply compute (thanks to assumption (H2) and (H3))

d

dt

∫
|f |m1 ≤ b

∫
|f | −

∫
|f |m0

≤ −1

2

∫
|f |m0 ≤ −ελ

∫
|f |m1 + εληλC

∫
|f0|m2.

We deduce ∫
|ftn+1 |m1 ≤ e−ελT

∫
|ftn |m1 + (1− e−ελT ) ηλC

∫
|f0|m2.
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Step 4. Conclusion

We define
‖f ‖β := ‖f ‖L1 + β‖f ‖∗m1

, β > 0.

In both cases and for β > 0 small enough∗, we have

‖ftn+1‖β ≤ e−ελT ‖ftn‖β + (1− e−ελT ) ηλC

∫
|f0|m2.

After iteration, we deduce

‖ftn‖β ≤ e−ελtn ‖f0‖β + (1− e−ελtn) ηλC

∫
|f0|m2.

≤ [e−ελtn + ηλ] Cβ‖f0‖L1(m2).

∗ modified norm ' “hypodissipativity trick”
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Outline of the talk

1 Introduction

2 Weak Poincaré inequality

3 Existence of steady stade under subgeometric Lyapunov condition

4 Rate of convergence under Doeblin-Harris condition

5 Weakly hypocoercivity equations
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Extension to weakly hypocoercivity equations

• Fractional Fokker-Planck equation with weak confinement.
L. Lafleche (phD U. Paris-Dauphine & Ecole polytechnique) by
(generalized) weakly Poincaré inequality.

• Kinetic Fokker-Planck equation with weak confinement.
C. Cao (phD U. Paris-Dauphine) by twisting H1 norm technique (Villani)
and micro-macro decomposition (Hérau, Dolbeault-Mouhot-Schmeiser).

• Age structured equation: Cañizo,Yoldas by using Theorem 3 above.

• Relaxation equation with weak confinement.
Cañizo, Cao, ... by using Theorem 3 above.

• Free transport equation with Maxwellian reflexion (in general domain)
A. Bernou (phD U. Paris-Dauphine & Sorbonne U.) using coupling
method (I have not spoken about in this talk)

• What about the inelastic Boltzmann equation with very weak
confinement force with possible application to the stability of Saturn’s
rings ??
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