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Model case : the Fokker-Planck equation with weak confinement

We will mainly consider the longtime asymptotic of the solution f = f(t, x),

t >0, x € RY, to the Fokker-Planck equation
of = Af +div (Ef) =: Lf

for a weakly confinement vectors field
x|
E~x|x"? = V(u% v €(0,1),
v
and an initial datum in a weighted Lebesgue space

£(0,.)=fo € Lh, C L.

The equation is mass conservative

(F(e) = (6), (&)= [ gax
Rd
and it generates a semigroup S; = S, (t) which is positive
Sifo=f(t,) >0 if f,>0.
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Model case : stationary problem and asymptotic behaviour

Theorem 1

(1) 3! stationary state G >0, (G) =1, LG = 0. It is smooth and positive.
(2) For any fy € LP,, (fo) = 0, there holds,

£t )l < ©@)llfolliz, VE>0,

with

O(t)~t =, ifm=(x)* k=k*(E,p)= ;

O(t) e 7, ifm=e"™" s€(0,4], k> 0.

(3) As a consequence, for any fy € LP(m), there holds,
1£(t,) = () Gllr < O@)Ifo — (f0) Gz, VE=0.

We use the notations (x) := (1 + [x|?)¥/2 and ||f||;2 = |/fm]|.» for any weight
function m : RY — [1, 00)
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Outline of the talk

@ Introduction

© Weak Poincaré inequality

9 Existence of steady stade under subgeometric Lyapunov condition
@ Rate of convergence under Doeblin-Harris condition

© Weakly hypocoercivity equations
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Outline of the talk

0 Introduction
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A more general setting

We want to understand the longtime asymptotic behavior
f(t) as t— o0
of the solution to an evolution equation
of = Lf, f(0) =T,

when L is a linear operator acting on a Banach space X.
We wish establish that the semigroup Sz, defined by S, (t)fy := f(t), splits as

Se(t) = So(t) + Si(t),  Si(t) “simple”, So(t) = o(S1(t)).

The simplest situation is S;(t) = P projection on N(L) of finite dimension, and
the issue is
|Sc(t) — P|| = ©(t) — 07 ©7

For the Fokker-Planck equation, Pf = ()G, dim P = 1.
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Long history and still active domain of research

e Kinetic school: Hilbert, Weyl, Carleman, Grad, Vidav, Ukai, Arkeryd's
school, french school, Guo's school, chinese school, ...

e Semigroup school: Phillips, Dyson, Krein-Rutman, Vidav, Voigt, Engel
Nagel, Gearhart, Metz, Diekmann, Priiss, Arendt, Greiner, Blake, Webb,
Mokhtar-Kharoubi, Yao, Batty, ...

e Probability school - Markovian approach / coupling method: Doeblin,
Harris, Meyn, Tweedie, Down, Douc, Fort, Guillin, Hairer, Mattingly,
Eberle, ...

e Probability school - Functional inequalities: Toulouse school, Rockner,
Wang, Wu, Guillin, Bolley, ...

e Spectral analysis approach: Gallay-Wayne, Nier, Helffer, Hérau, Lerner
Burqg, Lebeau, ...
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The classical framework

The classical equivalent notions are coercive (in Hilbert space) / dissipative (in
Banach space) operators and semigroup of contractions:

e Lis coercive if (Lf,f)y <0, Vf;
e Sp is a contraction if ||Sz(t)||H—n < 1.

We are rather interested here by the two equivalent more accurate estimates

e Lis coercive if (Lf,f)y <alf|}, a<0, Ve N(L);
° ||S£(l’) — P||H—>H < @(t) = Ceat., C=1, a<O.

The classical proofs to get such estimates are

o L* =L <0 & compactness argument = ¥ (L) C R and discrete;

e S > 0 & compactness argument = X(£) = {\1} UY/, supReX’ < Aq;

e L=A+ B, Asmall and B known.

The three points give us the spectral description of £. We get a growth
description of S, thanks to the spectral mapping theorem

e Alternatively, we may use Doeblin-Harris argument giving convergence under
recurrence assumption.
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The FP eq. with harmonic potential and beyond

These tools give satisfactory answer for the FP ezquation with Harmonic potential.
More precisely in X = H = L?(G™!), G := e IXI"/2 we get

I ER, Si(t) =Mt P, So(t) = O(e™), a< A\ = 0.

Around 2000’s at least four new (or more insistently) problems arise:
(1) Explicit / constructive growth estimates ?

(2) How to deal with operators L=S8+7T,8* =S, T*=-T*7?
— hypocoercivity

(3) How to deal with the case without spectral gap 7 — weak dissipativity

(4) How to change the functional space in which the spectral analysis / growth
estimate is obtained in order to fit with the nonlinear theory ?
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Some comments

(1) Exclude compactness argument but rather use robust constructive functional
inequalities or tractable dynamic (semigroup) arguments. Goes back to Bakry-Emery I
theory ?

(2) Hypocoercivity : change (by twisting) the norm in order that L is
coercive/dissipative or equivalently accept (in the spectral gap case)

O(t) = Ce™, C>1.
New name (and new techniques) but quite old idea !

(3) Weak dissipativity : Use two (in fact at least three) norms and © does not decay
exponentially fast. Motivated by

- Landau equation for Coulomb interaction (Guo-Strain, Carrapatoso-M., ...)

- Damped wave equation (Lebeau, Burq, Lerner, Léautaud, Anantharaman, ...)

- Free transport equation with Maxwellian reflexion (Aoki-Golse, ...)

(4) Explicit (basis decomposition) for Boltzmann (Bobylev) and harmonic FP
(Gallay-Wayne). Abstract version (Mouhot, Gualdani-M.-Mouhot) based on a splitting
L = A+ B, the (iterated) Duhamel formula

Sc =S5+ Sc % (AS) = S5 + ... + Sc * (ASs)""”,

providing that (ASz)*" has some smoothing property.
S.Mischler (CEREMADE) weakly dissipative semigroups June 27, 2018 10 /36



Outline of the talk

e Constructive rate of convergence through weak Poincaré inequality (L2

approach)

e Existence of steady state under subgeometric Lyapunov condition
[ergodic theorem of Birkhoff-Von Neuman]

e Constructive rate of convergence under Doeblin-Harris condition (L!
approach)

e Perspective: weakly hypodissipativity equations
> Natural PDE formulations / simple deterministic proofs
> All these results use a splitting structure:
L=A+B, A <B, B weakly dissipative,
and in particular, the subgeometric Foster-Lyapunov condition
L'w < =&+ blpy, £<<w

(geometric Lyapunov condition corresponds to £ ~ w)
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Vocabulary / notations

e Positive semigroup ~ weak maximum principle ~ Kato's inequality
e steady state = invariance measure

e spectral gap = geometric Lyapunov condition
no spectral gap ~ subgeometric Lyapunov condition

e strong positivity /& strong maximum principle &~ Doeblin-Harris recurrent
condition

e A possible definition of weakly coercivity is
(Lf,f)y < a|fl3, a<0, H¢H,

but | do not know any kind of equivalent characterization in terms of semigroup
decay.

e We define the convolution
t
(U V)(t) = / U(t — s)V(s)ds.
0
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Outline of the talk

© Weak Poincaré inequality
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Weak Poincaré inequality for the FP equation with weak confinement

Theorem 1 is true.
(Toscani-Villani 00, Rochner-Wang 01, Bakry-Cattiaux-Guillin 08, Kavian-M.)
The proof is based on 4 ideas.

Idea 1. We can prove the estimate for one value of p € [1,00] and m. Here
p=2and m= G 17°. In the next part, we will choose p = 1.

Idea 2. Subgeometric Lyapunov condition. When p = 1, it is nothing but
L'm < —v|x[*T"2m+ blg,,

with m = (x)* (s = 0) and m = exp(x(x)*). Here b, R,v > 0 are constants.

Idea 3. Dissipation by local Poincaré inequality. In the next part, dissipation is
given by the Doeblin-Harris recurrente condition.

Idea 4. A system of differential inequalities + interpolation (in contrast with the
only one differential inequality in the spectral gap case).
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Elements of proof of (2) - potential case - Step 1

We assume E=VV, G=e""Y, V = |x|7/y. We fix f € L>(G™1), (f) = 0.
/(z:f)fc—1 = —/|V(f/G)|QG

—/|V(f/G1/2)|2+/f2G’lz/) (Idea 2)

with ¢ < —|VV[? + 1g,. Be careful with [VV/[* ~ [x]?0~D — 0 as x — oo.
Both together, with h = f/G, we get

/h2|VV\2G§/\Vh|2G+/ R G
JBg

We use Poincaré-Wirtinger inequality (Idea 3) in order to bound the red color term

2 2 2
/ WG < / |Vh| G+(/ hG)
Bg Bg Bg
2
- / IVHG + (/ hG)
Bg Bg
< / |Vh|2G+/ RIVVI’G [ |[VV| G —0 as R— .
Br B JBe
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Elements of proof of (2) - potential case - End of Step 1

All together and for R large enough, we get the weak Poincaré inequality
/h2|VV|2G5/|Vh|QG

/f2|VV|2G—1 S (LF, F) 26y

or equivalently

The consequence on the solution to the FP equation is the differential inequality

% /f26-1 g—/f2|VV|2G—1

e When v > 1, then |[VV|2 > 1, and we may close the equation on the above
quantity (denoted by u), namely

d
GpuSaua< 0, = u(t)<eu.

e When « € (0, 1) we need another information
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Elements of proof of (2) - potential case - Step 2

We may prove the additional bound

(A) /(ft/G)PG < /(ﬁ)/G)PG, Vp e[l take p > 2
as well as
(B) /ffm2 < C/f02m2, Ve l?.
As a consequence, we have
uy S —up, ur < up(0)
{ (C) uy < uo”%u;%" or (D) w S egtuo + nrua,

with o > 0, eg,mr = 0 as R — oc.
e In case (C), we then have

a — 0
u S—U%-H/ wm0) VY = oy < b )

e In case (D), we then have

Uy < —erur +ernrua(0) = up S O(t)we(0), O(t): igf{ e 4 r b
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Elements of proof of (2) - potential case - Step 2 (A), (B), (C), (D)

e We get (A) by writing the FP equation in gradient flow form
0:f =div(GV(f/G)),
from what we have

1d

St ] 16y /GV(f/G V(f/G)<0

e The proof of (B) is more tricky. It is similar to the Step 4 (4th idea) about the
change of functional space.

e To prove (D), we write

/f2G—1 < R [ 26TV + ||f/G||foo/ G|VV.
B;

Br

e From a rough version of (D) we deduce (C) by optimising over R € (0, c0).
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Elements of proof of (2) - general case - Step 3

We assume (in particular, that we have yet established point (1) in Theorem 1)
x-E~|x|” and 3G stationary state, G ~ e~ *I".

We observe that for any weight function® W : RY — [1, 00] we have

D[f] := /(—Lh)h waG :/\Vh|2GW— %//ﬁ (L*W)G.

For the choice W := w + A\* with w a Lyapunov function associated to L in the
sense that
L'w < —&+ b].UO,

for ¢ ~ [x|sT7=2 w, the same computation as in the potential case leads to
1 1
/th|QGW* - 5/h? (L*W)G > Z /|Vh|2G§

for some A > 0 large enough. We immediately deduce our first differential

inequality
d 1
— [ FPWGt< -2 /f2 G
i [rwe =g [re

modified norm ~ “hypodissipativity trick”
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Elements of proof of (2) - general case - Step 4

e 2 estimate from mass conservation. We split
L=A+B, A= Mx(x/R), 1pg@1) < x € D(R?),
we use iterated Duhamel formula
Se =S+ ...+ (SgA)M « S,

and we have to prove Sg : LP(my) — LP(my) with decay © € L}, m; << mj, and
(S A)*" has some smoothing property (by Nash technique), namely
(SpA) M LY (my) — L2

e [P decay from L? decay. We use the iterated Duhamel formula
S, =S+ ..+ S, % (.ASB)(*")

and (ASE)U™ : LP(my) — L2(G V) if p< 2.
We use the iterated Duhamel formula

Se =S+ ...+ (SgA)M % Sp « (ASp)
and (SgA)*M - 12(G 1) = LP if p > 2.
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Outline of the talk

e Existence of steady stade under subgeometric Lyapunov condition
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Existence of steady stade under subgeometric Lyapunov condition

We consider a Markov semigroup S; = S,(t) defined on X := ML(E),
meaning S; > 0 and $*1 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
mo, my : E =R = [1,00), my > mg, mo(x) — 0o as x — 0o, and two
real constants b, R > 0 such that

Lm < —mg + b]-BR~

Theorem 2 Douc, Fort, Guillin ? deterministic proof by Cafizo, M.

Any Feller-Markov semigroup (S;) which fulfills the above Lyapunov condi-
tion has at least one invariant borelian measure G € M*(m).

Remark.

e mg = my : geometric Lyapunov condition = spectral gap
(the result is true, the proof is simpler)

e Feller-Markov semigroup acts on Co(E) and S; := (Sz+(t))*.

S.Mischler (CEREMADE) weakly dissipative semigroups June 27, 2018 22/36



Idea of the proof - splitting

We introduce the splitting
A= ble B:=L—- A
We observe that Sp is a submarkovian semigroup and
0< S & LE(BMAm)); [ 1Sa(O)llnim 9t < 16w
0
We write the Duhamel formula

Sy =S+ S+ AS.,

and we consider the associated Cezaro means

1 (7 17 1 (7
Ut = 7A Spdt, V5= 7/0 Spdt, Wr :?_/0 Sp x AS dt.
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Idea of the proof - Birkhoff, Von Neuman ergodic theorem

We define X := M'(mo), 0 < fy € X, () = 1, and we observe that

[Vrllxox = %H/OTSB dtHxﬁx <1

On the other hand, by Fubini and positivity

1 [T T—r

IWebllngmy = | ?/0 53(7)/0 ASe(s)fodras| |,
< %/OOOHSB(T) /OTASI;(s)dsfoHMl(mo)dr
< % H/OTASL(S) dsfoHWml) < Callfoll mr(mg)»

We deduce Ur, fy = G weakly and G satisfies LG = 0 because for any s > 0:

Ty 1 Ty
Se(s)G—G = lim Se(s)Sc(t)fodt — — Se(t)fy dt}
k— o0 k Jo Tk 0
1 Ty+s s
= lim {/ Se(r)fodT — / Se(t)h dt} =0.
k—o0 Tk Tk 0
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Coming back to Theorem 1 (1)

Let us denoted by G the steady state for the Fokker-Planck equation provided by
Theorem 2 under the general assumption x - E ~ |x|?, v € (0, 1).

e Thanks to a bootstrap argument: G is smooth, or at least a bit smoother than E, and
in any cases G € W'P(RY) for any p € [1,00).

e From Step 4 in the proof of Theorem 1 (2), we get

G < e_'“‘xlw, k1 > 0.

e Because of the strong maximum principle, we have G > 0. More accurately, using a
comparison to a subsolution technique , we have

G > e—me’ K2 > 0.
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Outline of the talk

@ Rate of convergence under Doeblin-Harris condition
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Hypothesis
We consider a Markov semigroup S; = S, (t) defined on X := L1(RY),
meaning S; > 0 and 51 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
mo, my : RY — [1,00), my > mg, mo(x) — 0o as x — 0o, and two real
constants b, R > 0 such that

L'm < —mg + blBR-
(H2) Doeblin-Harris condition. 3T >0V R >0 3v >0, # 0, such that
STgZV/ g VgeXi.
Br
(H3) There are two other weight functions mo, mz : R? — [1, 00),
m3 > my > mq such that

ﬁ*m,- < —mg + blBR

and my < m§mi~? with 0 € (1/2,1].
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Conclusion

Theorem 3 Douc, Fort, Guillin, Hairer, deterministic proof by Cafizo, M.

Consider a Markov semigroup S on X := L1(m5) which satisfies (H1), (H2),
(H3). There holds

15¢follr S @) Ifollr(my, VE=0, Vi € X, (fo) =0,
for the function © given by
t) ;= inf{ e ot
o(t) )I\r;o{ e+ 6},
where

1
my < 2—m0 +mama, YA, ex,my — 0as A — co.
5%
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Comments

e For the Fokker-Planck equation, assumption (H2) can be proved in a similar
way (maybe a bit more tricky) as for the lower bound in Theorem 1 (1).

e The assumption (H3) is not necessary: m; satsisfies a Lyaponov condition
implies that ¢(m;) satsisfies a Lyaponov condition for any ¢ : Ry — R, concave.

e The probabilistic proof use Martingale argument, renewal theory and (if
possible?) constants are not easily tractable.

e In the probabilistic result, one writes mg = £(my), £ : Ry — R concave, and
- C Y ds
O(t) ;= ——+—, H(u ::/ —.
=gy ") @
- If £(s) = s then ©(t) = e,
S 1f my = ()X, m i= (x)kT772 then &(t) = 1777 >> O(t);

I my = " mg = (x)*T772e59)° then O(t) ~ e M¥T ~ Q).
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Contraction and strict contraction

Rk 1. Assuming just that (S;) is a Markov semigroup, we have
|Stf‘ = |5tf+ - Stf ‘ < |5tf+| Jr |5tf_| == St‘f|

Integrating, we deduce that (S;) is a L' contraction

uﬂ&ﬂ</&m /vm1_/m

Rk 2. We assume furthermore the strong Doeblin-Harris condition:

(H2") 37,3y, Srgzu/dg, Vg e X;.

For f € L', (f) = 0, we have

%&zu/ @:5/ |f| =
R4 2 R4

We may adapt the proof in Rk 1 in the following way
IStf| = |Stfe —n—(Srf- —n)|
< |Sth =l + (S — | = Srlf| — 2n.

Integrating, we deduce that (St) is a strict contraction
ISTflle < Il =2l = (1 = @) ([l
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Step 1. Variant under Doeblin-Harris condition (H2)

Rk 3. Assuming (H2), we have similarly

[isri<o [ir1 it [ifim < ™8 [,

0:=1—(v)/2 €(0,1).

with

Indeed, we mainly observe that

Sty > V/ fi—l// fr

> /|f|—u/ f

> -7

> 5 [ =i [
>

L T A T
2/WH 4/WH
14
= 4/ in,
Rd

and we then follow the same proof as when we have assumed (H2').
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Step 2. St is bounded in L1(my)

We fix fy € L}(m3), we denote f5; := Sp(t)f.
From (H1) and (H3), we have

d
o7 Wstllmy < = fsellm <0
d
7 Wstllm, < =[I fsellm <~ faell 2|l foll by < 0
s0 that ¢ - [|fie [[m, S (£) 7| flmy € LX(Ry).
Using the splitting
Sy =S5+ S *x AS,
and the L! contraction, we deduce
1S (t)follm, < Mo [|fo]|m,-
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Step 3. An alternative

We set thy1 >t + T, A:= mo(R)/4 > 2b and we have the following alternative:

e Or Jt € tata+ T), /\ftlmoéA/lfr\

and assuming t := t, (to make the discussion simpler) we get from the variant of
Doeblin-Harris contraction argument (using (H2) assumption)

/WMSG/MJ

e Or VteE [thtat+ T), /|ﬂ|mozA/\ﬂ|,

and we simply compute (thanks to assumption (H2) and (H3))

d
p /|f|m1 < b/|f|—/|f|mo

1
—§/|f|mo§ —6)\/|f‘m1—|—6>\7])\C/|f0‘m2.
We deduce

/mgm<efT/mmm+ufa“UmC/mmz
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Step 4. Conclusion

We define
Il = [Iflle + BlIfll5,, B8>0.

In both cases and for 8 > 0 small enough*, we have

ol < € =TIl + (1= 2Ty mac [ Iflme

After iteration, we deduce

Ifells < e 2"

mm+uff“wmc/mmz

< e 4] Callfollr(my)-

*

modified norm ~ “hypodissipativity trick”
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Outline of the talk

© Weakly hypocoercivity equations
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Extension to weakly hypocoercivity equations

e Fractional Fokker-Planck equation with weak confinement.
L. Lafleche (phD U. Paris-Dauphine & Ecole polytechnique) by
(generalized) weakly Poincaré inequality.

e Kinetic Fokker-Planck equation with weak confinement.
C. Cao (phD U. Paris-Dauphine) by twisting H! norm technique (Villani)
and micro-macro decomposition (Hérau, Dolbeault-Mouhot-Schmeiser).

e Age structured equation: Caiizo,Yoldas by using Theorem 3 above.

e Relaxation equation with weak confinement.
Canizo, Cao, ... by using Theorem 3 above.

e Free transport equation with Maxwellian reflexion (in general domain)
A. Bernou (phD U. Paris-Dauphine & Sorbonne U.) using coupling
method (I have not spoken about in this talk)

e What about the inelastic Boltzmann equation with very weak
confinement force with possible application to the stability of Saturn's
rings 77
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