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Aim of the talk

e Establish a W; estimate between two solutions of the nonlinear space
homogeneous Boltzmann equation for Hard Spheres
> follow Di Blasio argument, but on a dual problem
> improve Mouhot-Fournier PDE argument
> generalize Tanaka, Fournier, Fournier-Perthame coupling argument
> simplify Norris-Heydecker martingale argument

e Motivation: Deduce a (uniform in time) rate of propagation of chaos for the
Kac-Boltzmann Hard Spheres N-particle system
> recover the same result by Norris, Heydecker (by martingale argument)
> improve a similar result by M.-Mouhot (by semigroup argument)
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The nonlinear HS Boltzmann equation

The nonlinear HS Boltzmann equation
orf :/ [F'f — FE]B dv.do, £(0.-) =
R7 x Sd—1
gives the evolution of the velocities statistical distribution f = f(t,v) >0, t > 0,
v € RY under Hard Spheres interactions, so that
B=|v—v,
where
, v+, +|v*—v\ , vt v [V — V]|
v = VvV, = —
2 2 7 T 2 7
and we use the shorthands
f(t,v)="f, f(t,v.)=f, f(t,V)=F, f(t,v.)=f..

Observe that momentum and energy are conserved

Vidve=vaw, VRV =V v

so that
/ft(l, v,|v|?)dv =(1,0,d), Vt>0.
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Constructive W stability estimate
We introduce the notations: the weighted Lebesgue space
Ly :=A{f € L'(RY); |v|"f € ["(RT)}

and the Monge-Kantorovitch-Wasserstein (MKW) distance
Wi(f,g) = inf{ / LA v —w|n(dv,dw), m = f,m =g}
R2d
= swnf [ (F-g)oav. el <1},
JR

Theorem

There exists > 0 such that for any fy, go € L3(R?) the associated solutions
f,g € C([0,00); L3(RY)) to the nonlinear HS Boltzmann equation satisfies

m(ﬂagt) S et Wl(ﬁ)?g())a Vit >0.

o> biblio for L} : Arkeryd (1971), DiBlasio (1974), M.-Wennberg (1999), Lu (1999)
> biblio: W : Tanaka (1978/79), Fournier-Mouhot (2009), Norris (2016), Heydecker
(2019), Fournier-Perthame (arXiv)
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Constructive uniform in time W; stability estimate

We remind the exponential rate of convergence to the normalized gaussian
il o —d/2 ,—|v|?/2
equilibrium ~ := (27)~%“e

Theorem

There exists A > 0 such that for any f; € L}(RY) the associated solutions f €
C([0, 00); L3(R9)) to the nonlinear HS Boltzmann equation satisfies

Wi(fe,y) Se ™, Vi>0.

> biblio : Arkeryd (1988), Carlen-Carvalho (1994), Abrahamsson (1999), Toscani-Villani
(1999), Villani (2003), Baranger-Mouhot (2005), Mouhot (2006).

Writing N B
Wl(fﬁgt) ’S sigmin(e'{s Wl(f07g0)7 e_)\s)’
we deduce

Corollary

Wi(f,g) S Wi(fo,g)7x, Vt>0.
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Motivation: mean field limit - propagation of chaos

Kac: Foundations of kinetic theory (1956)
e Go rigorously from a microscopic description to a statistical description :

> Justify the nonlinear Boltzmann equation at the mesoscopic level

> Simplify the huge number of particles microscopic description

e Mean field limit in the sense that each particle interacts with all the other
particles with an intensity of order O(1/N)
=> statistical description = law of large numbers limit of a N-particle system

e at the formal level the identification of the limit is quite clear when one assumes
the molecular chaos for the limit model

e main difficulty : propagation of chaos
> chaos for co particles = Boltzmann's molecular chaos (stochastic independence)
> chaos for N — oo particles = Kac's chaos (asymptotic stochastic independence)
D> propagation of chaos: holds at time t = 0 implies holds for any t > 0
> propagation of chaos is necessary in order to identify the limit as N — oo
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Boltzmann-Kac N-particle system

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its velocity V}', ..., V,'\\,’ € R?, which undergoes random
Boltzmann jumps (collisions): defined step by step as follows:

(i) draw randomly the collision times Tj j ~ Exp(B(|Vir — Vj/|)) for any
(Vir, Vjr); then select the pre-collisional velocity (V;,V;) such that

Tij = min Trj-

(i) pick randomly o € S? according to the uniform density law and define the
post-collisional velocities (V;,V}) thanks to

Vi+V, |V = Vi Vi+V, |V =V
V¥ = J J : V¥ = s )
' > T2 ¢ J 2 2 7
Observe that momentum and energy are conserved

VIRV =V, VIR VIR = VPt WP

for each collision, so that
1 1 )
NZV,-(L‘) =cst=0, NZ|V,-(t)| =cst=d.

S.Mischler (Paris-Dauphine) W stability estimate November 12, 2019 9/35




Alternative formulations

The N-particle random system V" = (V... V) € EN, E :=RY, evolves
according to

-5 Z/Sd V) Vi = V| dNG i (do)

ij=1

where N Poisson measure, Vﬁj = V1, Vi, ., V], .., V) represents the system
after collision of the pair (V;,V;).

In particular, the law FY(t) := L(VY) satisfies the Master (Liouville or backward
Kolmogorov) equation
OFN = NVFN,

where the generator AV writes

NN N / N
(AVENY(V) - /v Z /Sle (Vf) = F¥(V)] |vi = v|do,

1<i<j<N

for any V = (v1,...,wy) € EV.
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On the measure of chaos

e the normalized MKW distance on P(E/) by

1 J
Wi(F,G):= inf / (fZ|X,-—xj|/\1)7r(dX,dY).
Eix Ei

w€eN(F,G) J =

and a sequence (F") is f-Kac's chaotic if

Wi(FN, foNY 50, as N — oco.

e a sequence (FV) is f-entropy chaotic if furthermore
H(FN YY) — H(fly), as N — oo,

where
N

1 dF f
HF’VN::—/ FNlog—, H(f ::/fl —
(FTh %)= e g (1) e~
with N = uniform probability measure on the Boltzmann sphere SV
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Uniform in time propagation of chaos for the hard spheres Boltzmann-Kac model

and time relaxation to the equilibrium uniformly in the number of particles

With W, the MKW distance on EV, 4N the uniform probability measure on the
Kac-Boltzmann sphere and v the normalized gaussian

Theorem (M., Mouhot, Norris, a possible answer to Kac's problems)

For any fy € P(E) + conditions, there exists a sequence VN(0) of initial
conditions for the Boltzmann-Kac process for hard spheres such that
C

sup Wi (FN(t), F(£)®N) < —
t>0 N

H(FN(t)y™) = H(f(t)l)

sup WA(FY(1),7M) < <.
N>1 te

> biblio: Kac (1956), McKean (1967), Griinbaum (1971), Sznitman (1984), Fontbona-
Guérin-Méléard (2009), Fournier (2009), M.-Mouhot (2013), Carrapatoso (2016),
Fournier-Hauray (2016), Fournier-M. (2016), Norris (2016), Fournier-Guillin (2017),
Cortez-Fontbona (2018), Heydecker (2019), M.-Mouhot-Norris (xxxx)
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Open questions

@ Same W, estimate between two solutions to the nonlinear Boltzmann
equation associated to true (without Grad's angular cut-off) hard potential ?

@ Similar W estimate between two solutions to the Boltzmann-Kac N-particle
system?
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Previous W; stability results for MM and HS

Theorem (Tanaka, Rousset, Fournier-Perthame)

For two solutions to the Boltzmann equation associated to Maxwell molecules
Wa(fi, g:) < Wa(fo,g), Vt=0,
Wi(f,g) < e Wi(fh,g), Yt>0.

Corollary (Fournier-Mouhot)

There exists 8 > 0 such that for two solutions to the Boltzmann equation associated to
Hard Spheres

—0t

Wl(ftvgt) S Wl(f07g0)e 9 vt Z 07 Vfb7g0 € Lixp'

The idea is to use the splitting

d
p @Dt://...|v—v*|/\R+//...(\v—v*\—R)+,

to roughly estimate the first term as in the Maxwell molecules case and to use
exponential weight L! estimate for the second case

d

Wi S RWA + e R < Wi(1 + | logWil).
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Previous L} stability results for HS

Theorem (Di Blasio, Wennberg, M.-Wennberg, Lu)

For two solutions to the Boltzmann equation for HS

||f;f_gt||L%Se’{t”fo_gOHL%) Vt207 Vfbagoel—%log'

Idea of the proof. We define D :=f — g, S =f + g, and we write
%/D(p = // DS.[¢ + ¢ — . — o] |v — vi|dodv.dv,
with ¢ :=sign(D) (v)?2, (v)2 := 1+ |v|2. We obtain
%/|D‘<V>2 //|D\5 [(V)2 4 (V)2 + (v.)? — (V)?]|v — vi|dodv,.dv
= // |D|S«[1+ <v*> ]|v — vi|dodv.dv

< /5*<V*>3dv*/\D|<v)2dv

and we conclude thanks to the Gronwall lemma.
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A word about Povzner convexity trick

For an initial datum fy € L, we have

d
G raeipy = [[[renvp 1P =~ vy - vl dodv.dv

//ff* [[vil?|v| = [va’]|v = vi| dvidv

/fo(1+|v\2)dv/f(1+\v\3)dvf/f0dv/f(1+|v|4)dv

A

AN

so that

sup /ff(1+\VI3)dV§/fo(1+\VI3)dV-

>0

1

For an initial datum fy € L3,

we may prove

/ ' [ A W) dude < (1 T) [ (0 + v (log V) .
0
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Proof of W stability for HS - 1st step : weighted duality formulation

We write again

d
9 Dipdv = /Dt[ﬁst@]dv

Lsp = / Seal@l + @' — u — ¢ |v = vi|dodv,.
Introducing the solution ¢ to the backward linear evolution equation

Otps = Ls,_ s, Pls=t = ¥,

/th dv = /gptDo dv,

d d
dis/(Ptsts = _/(‘CSSQPtfs)Ds'i‘/(Ptfsdist =0.

As a consequence, this duality trick implies

we have

because

y . ee(v)
/@Dr(dV) < Wi(fo, &) 5
. 1+ ‘V‘ W10
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Proof of W stability for HS - 2nd step : L°° estimate on the dual problem

We rather consider the evolution equation
Dep = / / |6l + ¢/ = bow, — 6] s dodv..,
w
after performing the change of unknown ¢ := ¢/w and using the shorthands
u:=v—V,, S;:= Sr_;, for fixed final time T > 0.
At the formal level, we may compute (dual from DiBlasio)

d Jul &
JE— 0o < o /! !/ w* —wl = .
1ol < loulis [ [ 4o+ — o] 43 doas
Ul ~
Sl [ [1+w] g an

-
< kellellie, ke ::/st*(1+ Iv. ) dv.

Gronwall lemma implies

ot
(1) lods < loolleme, Keim [ kods < a(e+1),
0
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Rigorous proof of L> estimate (G. Toscani has already used a similar trick)
We rather consider truncated evolution equation

00 = [ [ [t + 6’ = 6. — 6] 225, o
with B, := |u| A n, n € N fixed. For any v € R9, we have

Orde(v) kellpell e + i\nt(‘/) [l[pellee — de(v)]
kellell e + Ane [[|@ell e — de(v)],

IAIA

where we define

t
Ane(V) ::/Bn .§t*dodv*, Mot o= | Anellioe,  Ane ::/ s ds.
0

Using one time the Gronwall lemma implies

t _
v < g+ / (ks + Ns)us ds, g 1= | bell e e
0

Using a second time the Gronwall lemma implies

up < g et

which is nothing but (1) which holds independently of the truncation parameter
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Proof of W stability for HS - 2nd step : Lip estimate on dual problem

We introduce ; := V¢; and consider its evolution equation
8tw = // [w;w; + Ww/ - w*OJ* - 'l/)wj| |u)i|~§t* dO'dV*
+ [ [ o+ o€ 6.6~ o] Su dod,

where

€(w) = Vo)

We compute
£=0, &=w(; +2"), £’=(V’+(V’-ﬁ)0)%| W' (= +2||)

and similarly £, so that the 4 terms are bounded by C(v.). Formally, we thus
obtain

Oell¥lleee S kellthlle + (|9l oe-
All together, we have established

[ellwree < € llgollwroe.
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Chaos according to Boltzmann and to Kac

e for an infinite system of indistinguishable particles: Boltzmann's
(molecular) chaos means

LV,V)=faf
That is the stochastic independence (for a sequence of exchangeable

random variables)

e for a system of N indistinguishable particles with N — oo: Kac's chaos
means
VYV fef as N—oo

That is an asymptotically stochastic independence (of the coordinates of a
sequence of random vectors with exchangeable coordinates)
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Difficulty

e For N fixed particles the states Z1(t), ..., Zn(t) are never independent for
positive time t > 0 even if the initial states Z1(0), ..., Zy(0) are assumed to be
independent : that is an inherent consequence of the fact that particles do
interact!

e Equations are written in spaces with increasing dimension N — oo.
To overcome that difficulty we will work in fixed spaces using:
empirical probability measure

N
1
XeEN sl = NZ5Xf € P(E)
i=1

and/or marginal densities
F" € Pym(EN) — FY ;:/ FNdz;,1...dzy € Pym(EY)
EN=J
e The nonlinear PDE can be obtained as a “law of large numbers” for a not
independent array of exchangeable random variables in the mean-field limit.

e That is more demanding that the usual LLN. We need to propagate some
asymptotic independence = Kac's stochastic chaos.
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Kac's contribution and Kac's program

e Kac (1956) defined the notion of chaos for sequences of random vectors. He
proved the propagation of chaos for the “Kac’s caricature” of Boltzmann model.
He showed that the stochastic dynamic leaves invariant the Kac's sphere

KSY = {V € RY; P+t vl = N,
and, for any fixed N > 2, convergence to the equilibrium (stationary measure)

FN =), .. V) t:)o'y'v = uniform measure on KSV.

Kac's Program:
(Pbl) Establish propagation of chaos for more realistic (singular) models

(Pb2) Establish the convergence to the equilibrium as t — oo with a uniform
chaos rate with respect to the number N of particles

(Pb2’) Establish quantitative chaos estimate (rate) for Kac's chaos

(Pb3) Establish Boltzmann's H-theorem from a microscopic description (seems to
be Kac's motivation)
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Definition of chaos

Chaos is the asymptotic independence as N — oo for a sequence (ZV) of

exchangeable random variables with values in EV
zZN—(zVN, ...z e EN — FN.=r(2V) e Ry, (EN)
! I

_ %Z bav €P(E) —  FV = L(uly) € P(P(E))

For a random variable ) taking values in E with law £(Y) = f € P(E) we say

that (Z") is Y-Kac's chaotic if
o L(2],...,2)) — f% weakly in P(E) as N — oo;
o 1Yy = finlaw as N — oo,

meaning L(p¥y) — & in P(P(E)) as N — oo;

E(JXN — YN|) — 0 as N — oo for a sequence YV of i.i.d.r.v with law f

Exchangeable means:L(Z)Y,y, ..., Z)y)) = L(2]', ..., Z) for any permutation o

of the coordinates
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Definition of chaos = not about random variables but their laws !

For a given sequence (FV) in Py,,(EN) we define
e the marginals FJ-N € Pym(E’) by

Fl= / FNdzj,1...dzn
EN—J
e the projection FV e P(P(E)) by

(FN, o) :/EN O(uX) FN(dX) Vo € Go(P(E))

e the normalized MKW distance on P(Ej) by

Wi(F,G):= _inf - 1) 7(dX, dY).

e the MKW distance Wy on P(P(E)) by

Wi(e, B) == inf / Wi(p, ) w(dp, dn).
meN(a,8) Jp(E)x B(E)
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Quantitative comparison of the several Definitions of chaos
For a given sequence (FV) in Py,,(EN) we define

— the marginals FjN € Pym(EY),

— the projection FN e P(P(E)),

— the normalized MKW distance W; on P(E/),

— the MKW distance W, on P(P(E)),

and for f € P(E) we say that (F") is f-Kac's chaotic if (equivalently)
¢ DJ(FN; f) = Wl(FjNa f®J) = E('(XlNa '“a‘)(jN) - (X1N7 7‘)(/\/)‘) —0
o Do (FN; £) := Wi(FN, 6¢) = E(Wa(ul¥n, F) — 0

More precisely, for E = R

Lemma (Hauray, M.)

For given M and k > 1 there exist some constants «;, C > 0 such that
VFeP(E), VFN € Py, (EN) with Mc(FN), Mk (f) < M

VL€ L., N,oo}, L1 Dy(FYif) < C(De(FY: £ + ).
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Stronger chaos: entropy and Fisher's chaos

For FN € Pym(EM), E = R?, we define the normalized functionals

vy 1 N N vy 1 [VF"?
H(F).fN/ENF log F", I(F)'*N/EN o

Definition

Consider a sequence FV € Py,m(EY) and f € P(E)

(FM) is f-entropy chaotic if FY — f weakly in P(E) and H(F") — H(f)
(FM) is f-Fisher's chaotic if F{' — f weakly in P(E) and I(F") — I(f)

Theorem (Hauray, M.)

In the list below, each assertion implies the one which follows
(i) (FN) is Fisher's chaotic;

(ii) (FN) is Kac's chaotic and I(F") is bounded;

(iii) (F") is entropy chaotic;

(iv) (F}') converges in L* for any j > 1;

(v) (FV) is Kac’s chaotic.
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Comments

Extensions by Carrapatoso, Fournier, Guillin, Hauray, M.

e Kac's chaos, entropic chaos and Fisher's chaos on Kac's spheres and on
Boltzmann's spheres

e For a mixture of probability measures = without chaos hypothesis
e Optimal rate of convergence of Do (FEN, £) ~ N/ for f € P,(R9), d > 2

Based on many previous works from Funct Analysis, Proba, Stat, Geo, ...

e Mixture: de Finetti (1937), Hewitt-Savage (1955), Robinson-Ruelle (1967)

e Functional and quantified LLN (Glivenko-Cantelli ... Rachev-Riischendorf ...
Barthe-Bordenave)

e local central limit theorem of Berry-Esseen

e HWI inequality of Otto and Villani

e Entropy inequalities: Carlen-Lieb-Loss (2004), Arstein-Ball-Barthe-Naor (2004)
e previous comparison, quantitative and qualitative results on chaos

Kac: Foundations of kinetic theory. (1956)

Sznitman: Topics in propagation of chaos. Saint-Flour -1989 (1991)
Carlen, Carvalho, Le Roux, Loss, Villani: Entropy and chaos ... (2010)
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Theorem (Quantified chaos estimate via semigroup method)
For any fy € P(E) + conditions,

1 1
N _ f®ky <= N —
tes[lgf)T] ”Fk f ||W 200 3 N1 +DOO(FO 7fb) N1/d
1 1
FN — £O|| 2,00 - ~
f;gll K lw—2 S 7= +P (', fo)° e

> biblio: Kac (1956), McKean (1967), Griinbaum (1971), Sznitman (1984), Fontbona-
Guérin-Méléard (2009), Fournier (2009), M.-Mouhot (2013), Carrapatoso (2016),
Fournier-Hauray (2016), Fournier-M. (2016), Norris (2016), Fournier-Guillin (2017),
Cortez-Fontbona (2018), Heydecker (2019), M.-Mouhot-Norris (xxxx)

Remark. The functional LLN

1

Doo(FY, o) ~ iz

is due to Fournier-Guillin (2015).
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Semigroup method - idea 1 : splitting

We split

<FI£\1{_ft®k;(p> _ <,_—gv_ )@®1®ka>f

(Flop@1®V K- R (u))) (= T)

+ <Fth R’@( )> <F0 , R, (StNLﬂy» (=T)
+ (R, RS 1)) = (1 9) (=Ts)

where R,, is the “polynomial function” on P(R®) defined by

Rele) = [ oolan)-ple)

and SMt is the nonlinear semigroup associated to the nonlinear mean-field limit
equation by gy — SNtgy == g
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Semigroup method - idea 2 : a combinatory trick

Tl = |(Fe@18M0v) - R ()|

\<Fm @ 150K (V) = &(W)}\

(Rt 2 Wl ) = O(3)

where we use that F" is symmetric and a probability and we introduce the
symmetrization function associated to ¢ @ 12(N=k) by

> e@ 12N,
ogeGy

IN

R 1®(N7k)(\/) ﬂG
N
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Semigroup method - idea 3 : functional LLN -+ uniform estimate

REIN ’<F(4Vv Rw(stNL:ug) - Rw(st.{w_fo)>|
< [Relcor (R, WA(SM 1y, S o))
< k||Vllie(ery €™t (Y, Wi(uh. f))
S D (R )
<
where
[Rolcor == sup  |Ry(n) — Ry(p)| = k[ V| L=

Wi(p,m)<1

because we have established / we may prove that the nonlinear flow satisfies

(A5) Wi(f,, &) S e Wi(fo, go)
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Semigroup method - idea 4 : duality + consistency + stability

T> : We write

T, = <FtN7 Rw(/‘y» - <F(§Va ch(StNLNI\\/I»
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Semigroup method - idea 4 : duality + consistency + stability

T> : We write

T2 = (F'.Ro(uy)) — (Fg's Ro(S" uV))
= (F' T{'(Rp o y) — (TR, (V)

with
@ TN = dual semigroup (acting on Cy(ENM)) of the N-particle flow F)Y — FN;

@ T7° = pushforward semigroup (acting on Cp(IP(E))) of the nonlinear
semigroup SNt defined by (T°®)(p) := &(SMp);
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Semigroup method - idea 4 : duality + consistency + stability

T, : We write
T, = <FtN7 Rw(/iy» - <F(§Va ch(StNL:uy»
= (R, TV (R ony) = (TER,)(1v))
= (R (TYnn —7nT)R,)
with

e TN = dual semigroup (acting on C,(E™M)) of the N-particle flow FY¥ — F};

@ T7° = pushforward semigroup (acting on Cp(IP(E))) of the nonlinear
semigroup SNt defined by (T°®)(p) := ®(SNp);

@ 7y = projection C(P(E)) — C(EV) defined by (my®)(V) = &(ul)).
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Semigroup method - idea 4 : duality + consistency + stability

T, = (R (TMnn—7nT°)Ry)

.
<Fé\’,/0 TV Ny — 7yA>®) T2 ds R¢>

’ N N e O 71
R W = ) (T2 R,)) s = O ()

where
@ AV is the generator associated to T}V and A is the generator associated to
T,
Now we have to make some assumptions
@ (A1) FN has enough bounded moments;
(A2) A*®(p) = (Q(p), D (p));
(AVTN®)(V) = (Q(uil), DD(ul))) + O([®]cr/N)
SNL e CY3(P(E);P(E)) “uniformly” in time t € [0, T]
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