Semigroup methods for evolution PDE

S. Mischler

(Paris Dauphine-PSL)
in collaboration with Gualdani, Mouhot, Scher, Kavian, Ndao, Cañizo, Fonte \& Gabriel

ANR ChaMaNe
June 23, 2022

Outline of the talk

(1) Introduction
(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
4) Krein-Rutman theorem
(5) Doblin-Harris theorem
6) An application to neurosciences

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
© Krein-Rutman theorem
(5) Doblin-Harris theorem
(6) An application to neurosciences

Evolution equation and semigroup

We consider an evolution equation

$$
\partial_{t} f=\mathcal{L} f, \quad f(0)=f_{0}
$$

and the associated semigroup of operators $S_{\mathcal{L}}(t)$ defined through the relation $S_{\mathcal{L}}(t) f_{0}:=f(t)$ on a Banach space X. Our purpose is then to explain when and how we can show that the semigroup splits as

$$
S_{\mathcal{L}}(t)=S_{0}(t)+S_{1}(t)
$$

where

$$
\left\{\begin{array}{l}
S_{1}(t) \text { ranges in a finite dimensional non trivial subspace of } X \\
\text { and }\left\|S_{0}(t)\right\|=o\left(\left\|S_{1}(t)\right\|\right) \text { as } t \rightarrow \infty
\end{array}\right.
$$

Better, we would like to identify some cases where, if possible in a quantitative/constructive way,

$$
\lim _{t \rightarrow \infty}\left\|e^{-s(\Lambda) t} S(t)-P\right\|=0
$$

for some projector $P \in \mathcal{B}(X)$ (with rank $P=1$ if possible!) and real number (spectral bound) $s(\Lambda) \in \mathbb{R}$.

Framework

- X Banach space, possibly
- a Hilbert space (or not),
- a Banach lattice with positive cone $X_{+}:=\{f \geq 0\}$ (or not).

Typically $X=L^{p}, X=C_{0}$ or $X=M^{1}$ or a weighted such spaces

- $S=\left(S_{t}\right)$ a positive semigroup on X (of linear operators):
- $S_{t} \in \mathcal{B}(X), S_{t_{1}} S_{t_{2}}=S_{t_{1}+t_{2}}, S_{0}=I$,
- strongly or weakly $*$ continuous trajectories,
- $\left\|S_{t}\right\|_{x \rightarrow x} \leq M e^{\kappa_{1} t}, M \geq 1, \kappa_{1} \in \mathbb{R}$,
- the generator \mathcal{L} splits as

$$
\mathcal{L}=\mathcal{A}+\mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t)=O\left(e^{\kappa_{\mathcal{B}} t}\right), \kappa_{\mathcal{B}}<\kappa_{1}
$$

- Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation operator and the age structured operator

$$
\begin{aligned}
\mathcal{L} f & =\operatorname{div}(a \nabla f)+b \cdot \nabla f+c f, \quad(\text { for FP: } c=\operatorname{div} b) \\
& =-a \cdot \nabla f-K f+\int k f_{*} d y_{*} \\
& =-\partial_{x} f-K f+\delta_{0} \int_{0}^{\infty} K(y) f(y) d y
\end{aligned}
$$

Framework

- X Banach space, possibly
- a Hilbert space (or not),
- a Banach lattice with positive cone $X_{+}:=\{f \geq 0\}$ (or not).

Typically $X=L^{p}, X=C_{0}$ or $X=M^{1}$ or a weighted such spaces

- $S=\left(S_{t}\right)$ a positive semigroup on X (of linear operators):
- $S_{t} \in \mathcal{B}(X), S_{t_{1}} S_{t_{2}}=S_{t_{1}+t_{2}}, S_{0}=I$,
- strongly or weakly $*$ continuous trajectories,
- $\left\|S_{t}\right\|_{X \rightarrow X} \leq M e^{\kappa_{1} t}, M \geq 1, \kappa_{1} \in \mathbb{R}$,
- the generator \mathcal{L} splits as

$$
\mathcal{L}=\mathcal{A}+\mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t)=O\left(e^{\kappa_{\mathcal{B}} t}\right), \kappa_{\mathcal{B}}<\kappa_{1}
$$

- Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation operator and the age structured operator

$$
\begin{aligned}
\mathcal{L} f & =\operatorname{div}(a \nabla f)+b \cdot \nabla f+c f-M \chi_{R} f+M \chi_{R} f \\
& =-a \cdot \nabla f-K f+\int k_{R}^{c} f_{*} d y_{*}+\int k_{R} f_{*} d y_{*} \\
& =--\partial_{x} f-K f+\delta_{0} \int_{0}^{\infty} K(y) f(y) d y
\end{aligned}
$$

Spectral analysis and semigroup analysis

- describe spectrum set $\Sigma(\mathcal{L})$, set of its eigenvalues and associated eigenspaces
- spectral mapping theorem

$$
\Sigma\left(e^{t \mathcal{L}}\right) \backslash\{0\}=e^{t \Sigma(\mathcal{L})}, \quad \forall t \geq 0
$$

- Extension of the spectral analysis to other spaces: enlargement/shrinkage
- Weyl's theorem on compact perturbation and discrete spectrum or partial (but principal) spectral mapping theorem

$$
\Sigma\left(e^{t \mathcal{L}}\right) \backslash B\left(0, e^{a t}\right)=e^{t \Sigma(\mathcal{L}) \cap \Delta_{a}}, \quad \forall t \geq 0, \forall a>a^{*},
$$

for some abscissa $a^{*} \in \mathbb{R}$, where $\Delta_{\mathrm{a}}:=\{\xi \in \mathbb{C} ; \Re e \xi>a\}$ the half-plane $\forall a \in \mathbb{R}$ and deduce the asymptotical behaviour of trajectories

- Small perturbation theorem
- Self-adjointeness, spectral gap, related coercivity estimates and beyond: hypocoercivity estimates
- Krein-Rutman Theorem for positive semigroup
- Doblin-Harris Theorem for Markov/stochastic semigroup

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
4) Krein-Rutman theorem
(5) Doblin-Harris theorem
(6) An application to neurosciences

Dissipative and hypodissipative generator

Consider a semigroup $S_{\mathcal{B}}$ with generator \mathcal{B} in a Banach space X with norm $\|\cdot\|$. We say that $\mathcal{B}-a$ is dissipative if

$$
\begin{equation*}
\forall f \in D(\mathcal{B}), \forall f^{*} \in J_{f}, \quad \Re e\left\langle f^{*},(\mathcal{B}-a) f\right\rangle \leq 0 \tag{1}
\end{equation*}
$$

or equivalently

$$
\Re e\left\langle f^{*}, \mathcal{B} f\right\rangle \leq a\|f\|^{2},
$$

where J_{f} is the dual set

$$
J_{f}:=\left\{\varphi \in X^{\prime} ;\langle\varphi, f\rangle=\|f\|_{X}^{2}=\|\varphi\|_{X^{\prime}}^{2}\right\} .
$$

By Hahn-Banach separation theorem $J_{f} \neq \emptyset$.
When X is an Hilbert space then $J_{f}=\{f\}$, we say that $\mathcal{B}-a$ is coercive. When $X=L^{p}, 1 \leq p<\infty$, then $J_{f}:=\left\{c f|f|^{p-2}\right\}$.
We say that $\mathcal{B}-a$ is hypodissipative if (1) holds for any $f^{*} \in J_{f,\| \| \cdot \|}$, with

$$
J_{f,\|\cdot\| \cdot \|}:=\left\{\varphi \in X^{\prime} ;\langle\varphi, f\rangle=\|f\|^{2}=\|\mid \varphi\|_{X^{\prime}}^{2}\right\}
$$

where ||| $\cdot \| \mid$ stands for an equivalent norm in X.

Hypodissipative and growth/decay estimate : Hille-Yosida, Lumer-Phillips
Consider a dissipative semigroup $S_{\mathcal{L}}$ with generator \mathcal{L} in a Banach space X. For $a \in \mathbb{R}, M \geq 1$, there is equivalence between
(a) $\mathcal{L}-a$ is hypodissipative, and the norm of dissipativity satisfies

$$
\begin{equation*}
\forall f \in X \quad\|f\| \leq\|f\| \leq \leq M f \| ; \tag{2}
\end{equation*}
$$

(b) the semigroup $S_{\mathcal{L}}$ satisfies the growth estimate

$$
\begin{equation*}
\left\|S_{\mathcal{L}}(t)\right\|_{\mathcal{B}(X)} \leq M e^{a t}, \quad \forall t \geq 0 \tag{3}
\end{equation*}
$$

We define $\omega(S):=\inf \{a \in \mathbb{R}$; (3) holds $\}$ the growth bound.
Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ for a equivalent regular norm such that the square norm function $\Phi(f):=\|\mid f\|^{2} / 2$ satisfies

$$
\Phi: X \rightarrow \mathbb{R}_{+} \text {G-differentiable and } \quad J_{f,\| \| \cdot\| \|}=\left\{\Phi^{\prime}(f)\right\}, \quad \forall f \in X
$$

We compute

$$
\frac{d}{d t}\|f\|^{2}=\Re e\left\langle\phi^{\prime}(f), \mathcal{L} f\right\rangle \leq a\|f\|^{2},
$$

and we use the Gronwall lemma.

The reverse implication (b) \Rightarrow (a)
By assumption

$$
\left.\|S(t)\|_{\mathcal{B}(X)} \leq M e^{\alpha t}, \quad \Re e\left\langle f^{*}, \mathcal{L}\right\rangle\right\rangle \leq b\|f\|^{2} \quad \forall f \in D(\mathcal{L})
$$

with $M \geq 1, a^{*} \leq \alpha<a<b \in \mathbb{R}$, and where $J_{f,\|\cdot\|}=\left\{f^{*}\right\}$. We define the new norm

$$
\|f\|^{2}:=\eta\|f\|^{2}+\int_{0}^{\infty}\left\|S(\tau) e^{-a \tau} f\right\|^{2} d \tau
$$

With $f_{t}:=S(t) f$, we compute

$$
\frac{1}{2} \frac{d}{d t}\left\|f_{t}\right\|^{2} \leq a\left\|f_{t}\right\|^{2}
$$

by choosing $\eta>0$ small enough, and

$$
\frac{1}{2} \frac{d}{d t}\left\|f_{t}\right\|^{2}=\Re e\left\langle\left(f_{t}\right)^{* *}, \mathcal{L} f_{t}\right\rangle
$$

with

$$
g^{* *}:=\eta g^{*}+\int_{0}^{\infty} S_{\mathcal{L}}(\tau)^{*}\left(S_{\mathcal{L}}(\tau) g\right)^{*} d \tau \in X^{\prime}, \quad \forall g \in X
$$

Hypocoercivity \simeq twisted norm

Duhamel formulas

Consider $S_{\mathcal{L}}$ a semigroup with generator \mathcal{L} enjoying the splitting structure

$$
\mathcal{L}=\mathcal{A}+\mathcal{B}, \quad \mathcal{B} \text { generator of } S_{\mathcal{B}}, \mathcal{A} \prec \mathcal{B}
$$

Typically $\mathcal{A} \in \mathcal{B}(X)$. The following Duhamel formulas

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{L}} * \mathcal{A} S_{\mathcal{B}}
$$

hold, as well as the iterated Duhamel formulas (or "stopped" Dyson-Phillips series: the Dyson-Phillips series corresponds to the choice $N=\infty$)

$$
\begin{aligned}
S_{\mathcal{L}} & =S_{\mathcal{B}}+\cdots+\left(S_{\mathcal{B}} \mathcal{A}\right)^{*(N-1)} * S_{\mathcal{B}}+\left(S_{\mathcal{B}} \mathcal{A}\right)^{* N} * S_{\mathcal{L}} \\
& =S_{\mathcal{B}}+\cdots+S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{*(N-1)}+S_{\mathcal{L}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{* N}
\end{aligned}
$$

Here we define $V * U$ by

$$
t \mapsto(V * U)(t):=\int_{0}^{t} V(t-s) U(s) d s \in L_{l o c}^{1}\left(\mathbb{R}_{+} ; \mathcal{B}\left(X_{1} ; X_{3}\right)\right)
$$

for $U \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+} ; \mathcal{B}\left(X_{1} ; X_{2}\right)\right)$ and $V \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+} ; \mathcal{B}\left(X_{2} ; X_{3}\right)\right)$.

Enlargement and shrinkage of the functional space for semigroup growth

Th 1. Assume

$$
\mathcal{L}=\mathcal{A}+\mathcal{B}, \quad L=A+B, \quad A=\mathcal{A}_{\mid E}, \quad B=\mathcal{B}_{\mid E}, \quad E \subset \mathcal{E}
$$

For any $a>a^{*}$
(i) $(B-a)$ is hypodissipative on $E,(\mathcal{B}-a)$ is hypodissipative on \mathcal{E};
(ii) $A \in \mathcal{B}(E), \mathcal{A} \in \mathcal{B}(\mathcal{E})$;
(iii) there is $n \geq 1$ and $C_{a}>0$ such that

$$
\left\|\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* n)}(t)\right\|_{\mathcal{E} \rightarrow E}+\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* n)}(t)\right\|_{\mathcal{E} \rightarrow E} \leq C_{\mathfrak{a}} e^{a t} .
$$

Then there is equivalence between

$$
\forall t \geq 0, \quad\left\|S_{\mathcal{L}}(t)\right\|_{\mathcal{E} \rightarrow \mathcal{E}} \leq C_{\mathcal{L}, a} e^{a t}
$$

and

$$
\forall t \geq 0, \quad\left\|S_{L}(t)\right\|_{E \rightarrow E} \leq C_{L, a} e^{a t} .
$$

\triangleright Bobylev (Boltzmann), Gallay-Wayne (harmonic Fokker-Planck), Gualdani-M.-Mouhot (abstract and applications)

Proof of the change of functional space : as an immediate consequence of the iterated Duhamel formula
$S_{L}=\mathcal{O}\left(e^{a t}\right)$ implies $S_{\mathcal{L}}=\mathcal{O}\left(e^{a t}\right)$:

$$
S_{\mathcal{L}}=\underbrace{S_{\mathcal{B}}+\cdots+S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{*(N-1)}}_{\mathcal{E} \rightarrow \mathcal{E}}+\underbrace{S_{\mathcal{L}}}_{E \rightarrow E \subset \mathcal{E}} * \underbrace{\left(\mathcal{A} S_{\mathcal{B}}\right)^{* N}}_{\mathcal{E} \rightarrow E} .
$$

$S_{\mathcal{L}}=\mathcal{O}\left(e^{a t}\right)$ implies $S_{L}=\mathcal{O}\left(e^{a t}\right)$:

$$
S_{\mathcal{L}}=\underbrace{S_{\mathcal{B}}+\cdots+\left(S_{\mathcal{B}} \mathcal{A}\right)^{*(N-1)} * S_{\mathcal{B}}}_{E \rightarrow E}+\underbrace{\left(S_{\mathcal{B}} \mathcal{A}\right)^{* N}}_{\mathcal{E} \rightarrow E} * \underbrace{S_{\mathcal{L}}}_{E \subset \mathcal{E} \rightarrow \mathcal{E}}
$$

because $e_{a} * e_{a}=t e_{a} \leq e_{a^{\prime}}$ for any $a^{\prime}>a>a^{*}$, with $e_{a}(t):=e^{a t}$

Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation

$$
\partial_{t} f=\mathcal{L} f=\Delta f+\operatorname{div}(E f)
$$

on $f=f(t, x), t \geq 0, x \in \mathbb{R}^{d}$, with force confinement

$$
E=\nabla \frac{\langle x\rangle^{\gamma}}{\gamma}=x\langle x\rangle^{\gamma-2}, \quad \gamma>0 .
$$

Th 1 '. For any $k \geq 0$ and $p \in[1, \infty]$, there exists a constant $M \geq 1$ such that

$$
\sup _{t \geq 0}\left\|f_{t}\right\|_{L_{k}^{p}} \leq M\left\|f_{0}\right\|_{L_{k}^{p}}
$$

with

$$
\|f\|_{L_{k}^{p}}:=\left\|f(x\rangle^{k}\right\|_{L \rho}, \quad\langle x\rangle^{2}:=1+|x|^{2} .
$$

\triangleright Toscani-Villani, Röckner-Wang, Kavian-M.-Ndao
Elements of proof
We observe that

$$
\frac{d}{d t} \int f d x=0
$$

so that mass is conserved!

Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation

$$
\partial_{t} f=\mathcal{L} f=\Delta f+\operatorname{div}(E f)
$$

on $f=f(t, x), t \geq 0, x \in \mathbb{R}^{d}$, with force confinement

$$
E=\nabla \frac{\langle x\rangle^{\gamma}}{\gamma}=x\langle x\rangle^{\gamma-2}, \quad \gamma>0
$$

Th 1'. For any $k \geq 0$ and $p \in[1, \infty]$, there exists a constant $M \geq 1$ such that

$$
\sup _{t \geq 0}\left\|f_{t}\right\|_{L_{k}^{p}} \leq M\left\|f_{0}\right\|_{L_{k}^{p}}
$$

Elements of proof
Similarly

$$
\frac{d}{d t} \int|f| d x \leq 0
$$

so that

$$
S_{\mathcal{L}}: L^{1} \rightarrow L^{1}, \quad \text { uniformly bounded. }
$$

The idea is to use the shrinkage result taking advantage of the splitting structure

$$
\partial_{t} f=\mathcal{L} f=\underbrace{\partial_{x x} f+\partial_{x}\left(x^{\gamma-1} f\right)-M \chi_{R} f}_{=: \mathcal{B} f}+\underbrace{M \chi_{R} f}_{=: \mathcal{A} f}
$$

L_{k}^{1} estimate for $S_{\mathcal{L}}$ when $\gamma \geq 2$
\mathcal{L} satisfies the (strong for $\gamma \geq 2$, weak for $\gamma<2$) Lyapunov condition

$$
\mathcal{L}^{*}\langle x\rangle^{k} \lesssim-\langle x\rangle^{k+\gamma-2}+\mathbf{1}_{B_{R}},
$$

because

$$
\partial_{x x} x^{k}-x^{\gamma-1} \partial_{x} x^{k} \sim-k x^{k+\gamma-2} .
$$

When $\gamma \geq 2$, we may proceed in a very simple way :

$$
\begin{aligned}
\frac{d}{d t} \int f\langle x\rangle^{k} & \lesssim-\int f\langle x\rangle^{k}+\int f \\
& \lesssim-\int f\langle x\rangle^{k}+\int f_{0}
\end{aligned}
$$

and thanks to the Gronwall lemma we conclude directly

$$
S_{\mathcal{L}}: L_{k}^{1} \rightarrow L_{k}^{1} \quad \text { uniformly bounded. }
$$

L_{k}^{1} estimate for $S_{\mathcal{L}}$ (general case)
We write

$$
f_{t}=S_{\mathcal{B}}(t) f_{0}+\left(S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}\right)(t) f_{0}
$$

and we next compute

$$
\begin{aligned}
\left\|f_{t}\right\|_{L_{k}^{1}} & \leq\left\|S_{\mathcal{B}}(t) f_{0}\right\|_{L_{k}^{1}}+\int_{0}^{t}\left\|S_{\mathcal{B}}(t-s) \mathcal{A} S_{\mathcal{L}}(s) f_{0}\right\|_{L_{k}^{1}} d s \\
& \leq\left\|f_{0}\right\|_{L_{k}^{1}}+\int_{0}^{t} \Theta(t-s)\left\|\mathcal{A} S_{\mathcal{L}}(s) f_{0}\right\|_{L_{m}^{1}} d s \\
& \leq\left\|f_{0}\right\|_{L_{k}^{1}}+\int_{0}^{t} \Theta(t-s)\left\|S_{\mathcal{L}}(s) f_{0}\right\|_{L^{1}} d s \\
& \leq\left\|f_{0}\right\|_{L_{k}^{1}}+\int_{0}^{t} \Theta(t-s)\left\|f_{0}\right\|_{L^{1}} d s \\
& \leq\left(1+\|\Theta\|_{L^{1}}\right)\left\|f_{0}\right\|_{L_{k}^{1}} .
\end{aligned}
$$

We have to prove

$$
\begin{aligned}
& S_{\mathcal{B}}(t): L_{k}^{1} \rightarrow L_{k}^{1} \quad \text { uniformly bounded } \\
& S_{\mathcal{B}}(t): L_{m}^{1} \rightarrow L_{k}^{1} \quad \text { with rate } t \mapsto \Theta(t) \in L^{1} \text { for } m>k \text { (large enough) }
\end{aligned}
$$

L_{k}^{1} estimate for $S_{\mathcal{B}}$
\mathcal{B} satisfies the (weak) dissipativity condition

$$
\mathcal{B}^{*}\langle x\rangle^{k} \lesssim-\langle x\rangle^{k+\gamma-2} \leq 0 .
$$

A solution f to the evolution equation $\partial_{t} f=\mathcal{B} f$ satisfies

$$
\frac{d}{d t} \int f\langle x\rangle^{k} \leq-\int f\langle x\rangle^{k+\gamma-2} \leq 0
$$

so that first

$$
S_{\mathcal{B}}: L_{k}^{1} \rightarrow L_{k}^{1}, L_{m}^{1} \rightarrow L_{m}^{1}, \quad \text { uniformly bounded } \forall m \geq k .
$$

Observing that

$$
\langle x\rangle^{k} \leq A^{2-\gamma}\langle x\rangle^{k+\gamma-2}+A^{k-m}\langle x\rangle^{m}, \quad \forall A>0,
$$

we compute

$$
\frac{d}{d t} \int f\langle x\rangle^{k}+A^{\gamma-2} \int f\langle x\rangle^{k} \leq A^{k-m+\gamma-2} \int f\langle x\rangle^{m},
$$

and next

$$
\frac{d}{d t}\left(e^{t A^{\gamma \gamma-2}} \int f\langle x\rangle^{k}\right) \leq e^{t A \gamma-2} A^{k-m+\gamma-2} \int f_{0}\langle x\rangle^{m} .
$$

L_{k}^{1} estimate for $S_{\mathcal{B}}$
\mathcal{B} satisfies the (weak) dissipativity condition

$$
\mathcal{B}^{*}\langle x\rangle^{k} \lesssim-\langle x\rangle^{k+\gamma-2} \leq 0 .
$$

So that first

$$
S_{\mathcal{B}}: L_{k}^{1} \rightarrow L_{k}^{1}, L_{m}^{1} \rightarrow L_{m}^{1}, \quad \text { uniformly bounded } \forall m \geq k
$$

A solution f to the evolution equation $\partial_{t} f=\mathcal{B} f$ satisfies

$$
\frac{d}{d t}\left(e^{t A^{\gamma-2}} \int f\langle x\rangle^{k}\right) \leq e^{t A^{\gamma-2}} A^{k-m+\gamma-2} \int f_{0}\langle x\rangle^{m}
$$

Integrating in time (using the Gronwall lemma), we deduce

$$
\begin{aligned}
\int f\langle x\rangle^{k} & \leq e^{-t A^{\gamma-2}} \int f_{0}\langle x\rangle^{k}+A^{k-m} \int f_{0}\langle x\rangle^{m}, \quad \forall A>0 \\
& \leq \inf _{A>0}\left(e^{-t A^{\gamma-2}}+A^{k-m}\right) \int f_{0}\langle x\rangle^{m} \\
& =\Theta(t) \int f_{0}\langle x\rangle^{m}
\end{aligned}
$$

We find

$$
\Theta(t) \leq t^{-2}+\left(t / \ln t^{2}\right)^{\frac{k-m}{2-\gamma}}
$$

by making the choice $A:=\left(t / \ln t^{2}\right)^{\frac{1}{2-\gamma}}$. We have $\Theta \in L^{1}$ when $m>k+2-\gamma$.
L_{k}^{p} estimate for $S_{\mathcal{B}}$ (and next $S_{\mathcal{L}}$) in the case $\gamma \geq 2$ and $p=2$
We use Nash trick and Nash inequality

$$
\|f\|_{L^{2}}^{1+2 / d} \leq C_{d}\|f\|_{L^{1}}^{2 / d}\|\nabla f\|_{L^{2}}
$$

for a solution f to the evolution equation $\partial_{t} f=\mathcal{B} f$. Taking advantage of the available L^{1} estimate (for M, R large enough)

$$
\left\|f_{t}\right\|_{L^{1}} \lesssim e^{-t}
$$

we may compute

$$
\begin{aligned}
\frac{d}{d t}\|f\|_{L^{2}}^{2} & \lesssim-\|\nabla f\|_{L^{2}}^{2}-2\|f\|_{L^{2}}^{2} \\
& \lesssim-\frac{\|f\|_{L^{2}}^{2(1+\alpha)}}{\|f\|_{L^{1}}^{2 \alpha}}-2\|f\|_{L^{2}}^{2},
\end{aligned}
$$

with $\alpha:=2 / d>0$, so that

$$
\frac{d}{d t}\left(\|f\|_{L^{2}}^{2} e^{2 t}\right) \lesssim-\frac{\left(\|f\|_{L^{2}}^{2} e^{2 t}\right)^{1+\alpha}}{\left\|f_{0}\right\|_{L^{1}}^{2 \alpha}} .
$$

Nonlinear ODE

We recall that the solution to the ODE

$$
u^{\prime} \leq-K u^{1+\alpha}
$$

satisfies

$$
u(t) \leq \frac{1}{(\alpha K t)^{1 / \alpha}}
$$

The proof is elementary. We write equivalently

$$
\frac{d u}{u^{1+\alpha}} \leq-K d t
$$

and after integration in time, we get

$$
u^{-\alpha}(t) \geq \alpha K t+u_{0}^{\alpha} \geq \alpha K t
$$

Using that result with the choice $\alpha=2 / d$ and $K=C\left\|f_{0}\right\|_{L^{1}}^{-4 / d}$, we deduce

$$
\|f\|_{L^{2}}^{2} e^{2 t} \lesssim \frac{\left\|f_{0}\right\|_{L^{1}}^{2}}{t^{d / 2}}
$$

and finally

$$
\|f\|_{L^{2}} \lesssim \frac{e^{-t}}{t^{d / 4}}\left\|f_{0}\right\|_{L^{1}}
$$

Nonlinear ODE

We recall that the solution to the ODE

$$
u^{\prime} \leq-K u^{1+\alpha}
$$

satisfies

$$
u(t) \leq \frac{1}{(\alpha K t)^{1 / \alpha}}
$$

Using that result with the choice $\alpha=2 / d$ and $K=C\left\|f_{0}\right\|_{L^{1}}^{-4 / d}$, we deduce

$$
\|f\|_{L^{2}}^{2} e^{2 t} \lesssim \frac{\left\|f_{0}\right\|_{L^{1}}^{2}}{t^{d / 2}}
$$

and finally

$$
\|f\|_{L^{2}} \lesssim \frac{e^{-t}}{t^{d / 4}}\left\|f_{0}\right\|_{L^{1}}
$$

We have established

$$
S_{\mathcal{B}}(t): L^{1} \rightarrow L^{2} \text { with rate } \Theta:=\frac{e^{-t}}{t^{d / 4}} \in L^{1}, \quad \text { if } \quad d \leq 3
$$

In general, we have

$$
S_{\mathcal{B}}(t): L^{1} \rightarrow L^{p} \text { with rate } \Theta:=\frac{e^{-t}}{t^{d / 2}}
$$

and whatever is $p \in[1, \infty], d \geq 1, k \geq 0$, we may prove

$$
\left(\mathcal{A} S_{\mathcal{B}}\right)^{* N}(t): L^{1} \rightarrow L_{k}^{p} \text { with rate } \Theta \in L^{1}, \text { for } N \geq 1 \text { large enough. }
$$

Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov

Dissipativity $\exists a \in \mathbb{R}$

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle \leq a\|f\|^{2} \Leftrightarrow\left\|S_{\mathcal{B}}(t) f\right\| \leq e^{a t}\|f\|
$$

Hypo-dissipativity $\exists a \in \mathbb{R}$

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle \leq a\|f\|^{2} \Leftrightarrow\left\|S_{\mathcal{B}}(t) f\right\| \leq M e^{a t}\|f\|
$$

- \mathcal{B} - a dissipative implies $\mathcal{L}-(a+\|\mathcal{A}\|)$ dissipative and we may sometime show $\mathcal{L}-\kappa$ hypodissipative with $\kappa \in[a, a+\|\mathcal{A}\|)$.
Lyapunov condition $\exists a \in \mathbb{R}$ (or \mathbb{R}_{-}), $\exists \psi \geq 1, \exists \psi_{c} \lesssim \psi$ (supp ψ_{c} compact)

$$
\mathcal{L}^{*} \psi \leq a \psi+\psi_{c}
$$

- For positive semigroup in L^{1} we have Kato's inequality: $(\operatorname{sign} f) \mathcal{L} f \leq \mathcal{L}|f|$. Lyapunov condition then implies $\mathcal{B}-a$ is dissipative with $\mathcal{B}:=\mathcal{L}-\psi_{c}$.
When $\psi=1$, we may compute

$$
\begin{aligned}
\left\langle f^{*}, \mathcal{B} f\right\rangle & =\left\langle f^{*}, \mathcal{L} f\right\rangle-\left\langle f^{*}, \psi_{c} f\right\rangle \\
& \leq\langle 1, \mathcal{L}| f| \rangle-\left\langle 1, \psi_{c}\right| f| \rangle \\
& =\left\langle\mathcal{L}^{*} 1-\psi_{c},\right| f| \rangle \\
& \leq a\langle 1,| f| \rangle=a\|f\|_{L^{1}} .
\end{aligned}
$$

Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov
Dissipativity $\exists a \in \mathbb{R}$

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle \leq a\|f\|^{2} \Leftrightarrow\left\|S_{\mathcal{B}}(t) f\right\| \leq e^{a t}\|f\|
$$

Hypo-dissipativity $\exists a \in \mathbb{R}$

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle \leq a\|f\|^{2} \Leftrightarrow\left\|S_{\mathcal{B}}(t) f\right\| \leq M e^{a t}\|f\|
$$

Lyapunov condition $\exists a \in \mathbb{R}$ (or \mathbb{R}_{-}), $\exists \psi \geq 1, \exists \psi_{c} \lesssim \psi$ (supp ψ_{c} compact)

$$
\mathcal{L}^{*} \psi \leq a \psi+\psi_{c}
$$

Weakly dissipativity $a=0, X_{1} \subset X_{0}$

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle_{X_{1}} \leq-\|f\|_{x_{0}} \Leftrightarrow \text { not clear }
$$

but

$$
\left\langle f^{*}, \mathcal{B} f\right\rangle_{X_{1}} \leq-\|f\|_{X_{0}}, \quad\left\langle f^{*}, \mathcal{B} f\right\rangle_{X_{2}} \leq 0, \quad X_{2} \subset X_{1} \subset X_{0}
$$

imply

$$
\left\|S_{\mathcal{B}}(t) f\right\|_{x_{i}} \leq\|f\|_{x_{i}}, \quad i=1,2, \quad\left\|S_{\mathcal{B}}(t) f\right\|_{x_{0}} \leq \Theta(t)\|f\|_{x_{2}}
$$

Weak Lyapunov with $a=0, \exists \psi_{i}, \psi_{c} \lesssim \psi_{0} \lesssim \psi_{1}$

$$
\mathcal{L}^{*} \psi_{1} \leq-\psi_{0}+\psi_{c}
$$

- weak Lyapunov condition for $\mathcal{L} \Rightarrow$ weak dissipative property for \mathcal{B}

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
4) Krein-Rutman theorem
(5) Doblin-Harris theorem
(6) An application to neurosciences

Let's start with a picture

Weyl's theorem - characterization

Th 2.
(0) $\mathcal{L}=\mathcal{A}+\mathcal{B}$, where \mathcal{A} is $\mathcal{B}^{\zeta^{\prime}}$-bounded with $0 \leq \zeta^{\prime}<1$,
(1) $\left\|S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* \ell)}\right\|_{x \rightarrow x} \leq C_{\ell} e^{a t}, \forall a>a^{*}, \forall \ell \geq 0$,
(2) $\int_{0}^{\infty}\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* n)}\right\|_{X \rightarrow D(\mathcal{B} \zeta)} e^{-a t} d t<\infty, \forall a>a^{*}$, with $\zeta>\zeta^{\prime}$,
(3) $\int_{0}^{\infty}\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* m)}\right\|_{X \rightarrow Y} e^{-a t} d t<\infty, \forall a>a^{*}$, with $Y \subset X$ compact,
is equivalent to
(4) there exist $\xi_{1}, \ldots, \xi_{J} \in \bar{\Delta}_{a}$, there exist Π_{1}, \ldots, Π_{J} some finite rank projectors, there exists $T_{j} \in \mathcal{B}\left(R \Pi_{j}\right)$ such that $\mathcal{L} \Pi_{j}=\Pi_{j} \mathcal{L}=T_{j} \Pi_{j}, \Sigma\left(T_{j}\right)=\left\{\xi_{j}\right\}$, in particular

$$
\Sigma(\mathcal{L}) \cap \bar{\Delta}_{a}=\left\{\xi_{1}, \ldots, \xi_{J}\right\} \subset \Sigma_{d}(\Sigma)
$$

and there exists a constant C_{a} such that

$$
\left\|S_{\mathcal{L}}(t)-\sum_{j=1}^{J} e^{t T_{j}} \Pi_{j}\right\|_{x \rightarrow x} \leq C_{a} e^{a t}, \quad \forall a>a^{*}
$$

\triangleright Weyl (1910), Ribarič-Vidav (1969), Vidav (1974), Voigt (1980), M.-Scher (2016)

- It can be seen as a condition under which a "spectral mapping theorem for the principal part of the spectrum holds"
- Issue : constants are not constructive !!

Resolvent and semigroup

We define

$$
\mathcal{R}_{\mathcal{L}}(\lambda):=(\lambda-\mathcal{L})^{-1},
$$

when $\lambda-\mathcal{L}: D(\mathcal{L}) \rightarrow X$ is one-to-one.
In that case, we write $\lambda \in \rho(\mathcal{L}) \subset \mathbb{C}$ the resolvent set.
We have $\rho(\mathcal{L}) \supset \Delta_{\omega\left(S_{\mathcal{L}}\right)} \neq \emptyset, \Delta_{\mathrm{a}}:=\{z \in \mathbb{C} ; \Re e z>a\}$ and

$$
\begin{equation*}
\mathcal{R}_{\mathcal{L}}(\lambda)=\int_{0}^{\infty} S_{\mathcal{L}}(t) e^{-\lambda t} d t, \quad \forall \lambda \in \Delta_{\omega(\mathcal{L})} . \tag{4}
\end{equation*}
$$

The counterpart of the Duhamel formulas are

$$
\mathcal{R}_{\mathcal{L}}=\mathcal{R}_{\mathcal{B}}+\mathcal{R}_{\mathcal{B}} \mathcal{A} \mathcal{R}_{\mathcal{L}}=\mathcal{R}_{\mathcal{B}}+\mathcal{R}_{\mathcal{L}} \mathcal{A R}_{\mathcal{L}}
$$

and some counterpart of the iterated Duhamel formulas is e.g.

$$
\mathcal{R}_{\mathcal{L}}=\mathcal{R}_{\mathcal{B}}+\cdots+\left(\mathcal{R}_{\mathcal{B}} \mathcal{A}\right)^{(N-1)} \mathcal{R}_{\mathcal{B}}+\left(\mathcal{R}_{\mathcal{B}} \mathcal{A}\right)^{N} \mathcal{R}_{\mathcal{L}} .
$$

Inversing the Laplace transform (4), we get

$$
\begin{aligned}
S_{\mathcal{L}}(t) & =\frac{i}{2 \pi} \int_{\uparrow_{\mathcal{a}}} e^{z t} \mathcal{R}_{\mathcal{L}}(z) d z \\
& =S_{\mathcal{B}}+\cdots+\left(S_{\mathcal{B}} \mathcal{A}\right)^{*(N-1)} * S_{\mathcal{B}}+\frac{i}{2 \pi} \int_{\uparrow_{a}} e^{z t}\left(\mathcal{R}_{\mathcal{B}}(z) \mathcal{A}\right)^{N} \mathcal{R}_{\mathcal{L}}(z) d z
\end{aligned}
$$

Resolvent and spectrum

- We define the spectrum set $\Sigma(\mathcal{L}):=\mathbb{C} \backslash \rho(\mathcal{L})$.
- We define the point spectrum set (the set of eigenvalues)

$$
\Sigma_{P}(\mathcal{L}):=\{\lambda \in \mathbb{C} ; \exists f \in X \backslash\{0\} \mathcal{L} f=\lambda f\} .
$$

- We say that $\lambda \in \Sigma(\mathcal{L})$ is isolated if $\exists r>0, \Sigma(\mathcal{L}) \cap B(\lambda, r)=\{\lambda\}$.
- For $\lambda \in \Sigma_{P}(\mathcal{L})$, we define $M_{\lambda}:=\lim _{n \rightarrow \infty} N(\lambda-\mathcal{L})^{n}$ the almost algebraic eigenspace and $m_{a a}:=\operatorname{dim} M(\mathcal{L}-\lambda) \in\{1 \ldots, \infty\}$ the "almost algebraic multiplicity".
- If it exists, the algebraic eigenspace \mathcal{E}_{λ} associated to $\lambda \in \Sigma_{P}(\mathcal{L})$ satisfies
- there exists a projection Π which commutes with \mathcal{L} and satisfies $\Pi X=\mathcal{E}_{\lambda}$,
- $\mathcal{L}_{\mid \mathcal{E}_{\lambda}} \in \mathcal{B}\left(\mathcal{E}_{\lambda}\right), \Sigma_{P}\left(\mathcal{L}_{\mid \mathcal{E}_{\lambda}}\right)=\Sigma\left(\mathcal{L}_{\mid \mathcal{E}_{\lambda}}\right)=\{\lambda\}$ and $\lambda \notin \Sigma_{P}\left(\mathcal{L}_{\mid X_{0}}\right)$ with $X_{0}:=(I-\Pi) X$.
- We define the discrete spectrum set $\Sigma_{d}(\mathcal{L})$ as the set of $\lambda \in \Sigma_{P}(\mathcal{L})$ which is isolated and which algebraic multiplicity $\operatorname{dim} \mathcal{E}_{\lambda}$ is finite.
We have

$$
\Sigma_{d}(\mathcal{L}) \subset \Sigma_{P}(\mathcal{L}) \subset \Sigma(\mathcal{L}), \quad M_{\lambda} \subset \mathcal{E}_{\lambda} \text { if } \lambda \in \Sigma_{P}(\mathcal{L})
$$

and

$$
\Pi=\frac{i}{2 \pi} \int_{|z-\lambda|=r / 2} \mathcal{R}_{\mathcal{L}}(z) d z \text { if } \lambda \in \Sigma_{d}(\mathcal{L}) .
$$

Sketch of the proof of Weyl + spectral mapping theorem
We split the semigroup into invariant linear sub-manifolds (eigenspaces)

$$
S_{\mathcal{L}}=\Pi S_{\mathcal{L}}+\Pi^{\perp} S_{\mathcal{L}} \Pi^{\perp},
$$

with $\Pi^{\perp}:=I-\Pi, \Sigma\left(\mathcal{L} \Pi^{\perp}\right) \cap \Delta_{a^{*}}=\emptyset$ and write the (iterated) Duhamel formula

$$
S_{\mathcal{L}}=\sum_{\ell=0}^{N-1} S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* \ell)}+S_{\mathcal{L}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* N)}
$$

Using the inverse Laplace formula for $b>\omega(\mathcal{L}) \geq s(\mathcal{L})=\sup \Re e \Sigma(\mathcal{L})$ and the fact that $\Pi^{\perp} R_{\mathcal{L}}(z)$ is analytic in $\Delta_{a^{*}}$, we get

$$
\begin{aligned}
\left\{\Pi^{\perp} S_{\mathcal{L}}\right\} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* N)} & =\frac{i}{2 \pi} \int_{b-i \infty}^{b+i \infty} e^{z t} \Pi^{\perp} R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N} d z \\
& =\lim _{M \rightarrow \infty} \frac{i}{2 \pi} \int_{a-i M}^{a+i M} e^{z t} \Pi^{\perp} R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N} d z
\end{aligned}
$$

These three identities together

$$
\begin{aligned}
S_{\mathcal{L}} & =\Pi S_{\mathcal{L}}+\Pi^{\perp}\left\{\sum_{\ell=0}^{N-1} S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* \ell)}\right\} \Pi^{\perp} \\
& +\frac{i}{2 \pi} \int_{\uparrow_{\mathfrak{z}}} e^{z t} \Pi^{\perp} R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N} d z=\mathcal{O}\left(e^{a t}\right) ?
\end{aligned}
$$

The key estimate on the last term
We clearly have

$$
\sup _{z=a+i y, y \in[-M, M]}\left\|\Pi^{\perp} R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N}\right\| \leq C<\infty \quad \text { (not constructive!) }
$$

and it is then enough to get the bound

$$
\left\|R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N}\right\| \leq C /|y|^{2}, \quad \forall z=a+i y,|y| \geq M, a>a_{*}
$$

We assume (in order to make the proof simpler) that $\zeta=1$ in estimate (2), namely

$$
\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* n)}\right\|_{x \rightarrow x_{1}}=\mathcal{O}\left(e^{a t}\right) \quad \forall t \geq 0
$$

with $X_{1}:=D(\mathcal{L})=D(\mathcal{B})$, which implies

$$
\left\|\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{n}\right\|_{x \rightarrow x_{1}} \leq C_{a} \quad \forall z=a+i y, a>a_{*} .
$$

We also assume (for the same reason) that $\zeta^{\prime}=0$, so that

$$
\mathcal{A} \in \mathcal{B}(X) \text { and } R_{\mathcal{B}}(z)=\frac{1}{z}\left(R_{\mathcal{B}}(z) \mathcal{B}-I\right) \in \mathcal{L}\left(X_{1}, X\right)
$$

imply

$$
\left\|\mathcal{A} R_{\mathcal{B}}(z)\right\| x_{1} \rightarrow x \leq C_{a} /|z| \quad \forall z=a+i y, a>a_{*}
$$

The two estimates together imply

$$
(*) \quad\left\|\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{n+1}\right\| x \rightarrow x \leq C_{a} /|z| \quad \forall z=a+i y, a>a_{*}
$$

The key estimate on the last term - 2nd step
We write

$$
R_{\mathcal{L}}(I-\mathcal{V})=\mathcal{U}
$$

with

$$
\mathcal{U}:=\sum_{\ell=0}^{n} R_{\mathcal{B}}\left(\mathcal{A} R_{\mathcal{B}}\right)^{\ell}, \quad \mathcal{V}:=\left(\mathcal{A} R_{\mathcal{B}}\right)^{n+1}
$$

For M large enough

$$
(* *) \quad\|\mathcal{V}(z)\| \leq 1 / 2 \quad \forall z=a+i y,|y| \geq M,
$$

and we may write the Neuman series

$$
R_{\mathcal{L}}(z)=\underbrace{\mathcal{U}(z)}_{\text {bounded }} \underbrace{\sum_{j=0}^{\infty} \mathcal{V}(z)^{j}}_{\text {bounded }}
$$

For $N=2(n+1)$, we finally get from (*) and ($* *$)

$$
\left\|R_{\mathcal{L}}(z)\left(\mathcal{A} R_{\mathcal{B}}(z)\right)^{N}\right\| \leq C /\langle y\rangle^{2}, \quad \forall z=a+i y,|y| \geq M
$$

The key argument for the first term

We write again

$$
R_{\mathcal{L}}(I-\mathcal{V})=\mathcal{U}
$$

with

$$
\mathcal{U}:=\sum_{\ell=0}^{n} R_{\mathcal{B}}\left(\mathcal{A} R_{\mathcal{B}}\right)^{\ell}, \quad \mathcal{V}:=\left(\mathcal{A} R_{\mathcal{B}}\right)^{n+1}
$$

Because

- $I-\mathcal{V}$ is holomorphic on $\Delta_{a^{*}}$,
- it is a compact perturbation of the identity
- it satisfies $I-\mathcal{V}(z) \rightarrow I$ when $\Re e z \rightarrow \infty$,
one may use the theory of degenerate-meromorphic functions of Ribarič and Vidav (1969), and conclude that $\mathcal{V}(z)$ is invertible outside of a discrete set \mathcal{D} of $\Delta_{a^{*}}$.

That implies that $\Sigma(\mathcal{L}) \cap \Delta_{a^{*}}=\mathcal{D}$ is a discrete set of Δ_{*}.
On the other hand, thanks to the Fredholm alternative, one deduces that the eigenspace associated to each spectral value $\lambda \in \mathcal{D}$ is non zero and finite dimensional, so that $\lambda \in \Sigma_{d}(\mathcal{L})$.

We define

$$
\Pi=\frac{i}{2 \pi} \int_{\uparrow_{\mathrm{a}}} \mathcal{R}_{\mathcal{L}}(z) d z, \text { with } \uparrow_{\mathrm{a}} \cap \Sigma(\mathcal{L})=\emptyset \text {. }
$$

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
4) Krein-Rutman theorem
(5) Doblin-Harris theorem
(6) An application to neurosciences

Let's start again with a picture

The KR theorem issue

For a positive semigroup $S_{t}=S_{\mathcal{L}}(t)=e^{t \mathcal{L}}$ with generator \mathcal{L} on a Banach lattice X with positive cone X_{+}, we ask for

- existence of a first eigenvalue triplet solution $\left(\lambda, f_{1}, \phi_{1}\right) \in \mathbb{R} \times X \times X^{\prime}$:

$$
f_{1} \geq 0, \mathcal{L} f_{1}=\lambda_{1} f_{1}, \quad \phi_{1} \geq 0, \mathcal{L}^{*} \phi_{1}=\lambda_{1} \phi_{1}
$$

- suitable geometric properties as
(1) $f_{1}>0$ unique positive eigenvector for $\mathcal{L}, N\left(\mathcal{L}-\lambda_{1}\right)^{k}=\operatorname{vect} f_{1}$ and $\phi_{1}>0$ unique positive eigenvector for $\mathcal{L}^{*}, N\left(\mathcal{L}^{*}-\lambda_{1}\right)^{k}=\operatorname{vect} \phi_{1}$
$\left(1^{\prime}\right) \Sigma_{+}(\mathcal{L})-\lambda_{1}$ is a (discrete) subgroup of $i \mathbb{R}$, with $\Sigma_{+}(\mathcal{L}):=\left\{\lambda, \lambda \in \Sigma_{P}(\mathcal{L}), \Re e \lambda=\lambda_{1}\right\}$
(2) $\Sigma_{+}(\mathcal{L})=\left\{\lambda_{1}\right\}$
- asymptotic attractivity/stability of the principal eigenfunction

$$
e^{t \mathcal{L}} f_{0}-e^{\lambda_{1} t} f_{1}\left\langle\phi_{1}, f_{0}\right\rangle=o\left(e^{\lambda_{1} t}\right)
$$

with constructive rate.

Krein-Rutmann for positive operator

Th 3. Consider a semigroup generator \mathcal{L} on a Banach lattice such that
(1) \mathcal{L} such as in Weyl's Theorem for some $a^{*} \in \mathbb{R}$;
(2) $\exists b>a^{*}$ and $\psi \in D\left(\mathcal{L}^{*}\right) \cap X_{+}^{\prime} \backslash\{0\}$ such that $\mathcal{L}^{*} \psi \geq b \psi$;
(3) $S_{\mathcal{L}}$ is positive (and \mathcal{L} satisfies Kato's inequalities);
(4) $-\mathcal{L}$ satisfies a strong maximum principle.

Defining $\lambda_{1}:=s(\mathcal{L})$, there holds

$$
a^{*}<\lambda_{1}=\omega(\mathcal{L}) \quad \text { and } \quad \lambda_{1} \in \Sigma_{d}(\mathcal{L}),
$$

and there exists $0<f_{1} \in D(\mathcal{L})$ and $0<\phi_{1} \in D\left(\mathcal{L}^{*}\right)$ such that

$$
\mathcal{L} f_{1}=\lambda_{1} f_{1}, \quad \mathcal{L}^{*} \phi_{1}=\lambda_{1} \phi_{1}, \quad R \Pi_{\mathcal{L}, \lambda_{1}}=\operatorname{Vect}\left(f_{1}\right),
$$

and then

$$
\Pi_{\mathcal{L}, \lambda_{1}} f=\left\langle f, \phi_{1}\right\rangle f_{1} \quad \forall f \in X .
$$

Moreover, there exist $\alpha \in\left(a^{*}, \lambda_{1}\right)$ and $C>0$ such that for any $f_{0} \in X$

$$
\left\|S_{\mathcal{L}}(t) f_{0}-e^{\lambda_{1} t} \Pi_{\mathcal{L}, \lambda_{1}} f_{0}\right\|_{X} \leq C e^{\alpha t}\left\|f_{0}-\Pi_{\mathcal{L}, \lambda_{1}} f_{0}\right\|_{X} \quad \forall t \geq 0 .
$$

$\triangleright \ln \mathrm{M} . \&$ Scher, that is mainly a consequence of Weyl + spectral mapping theorem by establishing furthemore that

$$
\Sigma(\mathcal{L}) \cap \Delta_{\mathrm{a}^{*}}=\left\{\lambda_{1}\right\}, \quad \lambda_{1} \in \mathbb{R}
$$

Existence part in the KR theorem

Th 3' Assumptions:
(1) S is a positive semigroup
(2) $\exists \kappa_{0} \in \mathbb{R} \exists \psi_{0} \in X_{+}^{\prime} \backslash\{0\} \mathcal{L}^{*} \psi_{0} \geq \kappa_{0} \psi_{0}$
(3) (dissipative case) splitting structure with $\kappa_{\mathcal{B}}<\kappa_{0}$
(3^{\prime}) (weakly dissipative case) $\kappa_{0}=0, \exists \Theta \in L^{1}\left(\mathbb{R}_{+}\right)$such that

$$
\left\|f_{t}\right\| \leq M\left\|f_{0}\right\|+\int_{0}^{t} \Theta(t-s)\left[f_{s}\right] d s, \quad f_{t}:=S_{t} f_{0}
$$

with $[f]:=\left\langle\psi_{0},\right| f| \rangle$ and $X \subset \mathcal{X}$ (weakly) compact, with $\|f\|_{\mathcal{X}}:=[f]$.
Conclusion: \exists a solution $\left(\lambda, f_{1}, \phi_{1}\right)$ to the first eigenvalue triplet problem
Example: (1) The Fokker-Planck operator

$$
\mathcal{L} f=\Delta f+\operatorname{div}(E f)+c f, \quad E:=\nabla|x|^{\gamma} / \gamma, \gamma>0, \quad c \in C_{c}\left(\mathbb{R}^{d}\right) .
$$

(2) The condition (3^{\prime}) is natural under a splitting structure

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+\cdots+\left(S_{\mathcal{B}} \mathcal{A}\right)^{*(N-1)} * S_{\mathcal{B}}+\left(S_{\mathcal{B}} \mathcal{A}\right)^{* N} * S_{\mathcal{L}},
$$

with \mathcal{A} bounded, \mathcal{B} weakly dissipative, $\left(S_{\mathcal{B}} \mathcal{A}\right)^{* N}: \mathcal{X} \rightarrow X$.

Existence - 1st proof \sim Collet-Martínez-Méléard-San Martín?

We assume (case $N=1$ and $X=M^{1}$) with $\kappa_{\mathcal{B}}<\kappa_{0}$

$$
\begin{aligned}
& {\left[f_{t}\right] \geq e^{\kappa_{0}(t-s)}\left[f_{s}\right], \forall t>s, \quad f_{\tau}:=S_{\tau} f_{0}} \\
& \left\|f_{t}\right\| \leq e^{\kappa_{\mathcal{B}} t}\left\|f_{0}\right\|+C_{2} \int_{0}^{t} e^{\kappa_{\mathcal{B}}(t-s)}\left[f_{s}\right] d s \Leftrightarrow C_{1}=1
\end{aligned}
$$

Step 1. We define

$$
\mathcal{C}:=\{f \geq 0,[f]=1,\|f\| \leq M\}, \quad \Phi_{t}\left(f_{0}\right):=\frac{f_{t}}{\left[f_{t}\right]}
$$

For $f_{0} \in \mathcal{C}$ and $\alpha:=\kappa_{\mathcal{B}}-\kappa_{0}<0$, we compute for $t \leq t_{0}$,

$$
\begin{aligned}
\left\|\Phi_{t}\left(f_{0}\right)\right\| & \leq e^{\alpha t}\left\|f_{0}\right\|+C_{2} \int_{0}^{t} e^{\alpha(t-s)} d s \\
& \leq(1+\alpha t / 2) M+C_{2} t \leq M
\end{aligned}
$$

$t_{0}>0$ small and $M>0$ large. That implies $\Phi_{t}: \mathcal{C} \rightarrow \mathcal{C}$.
From the Schauder/Tykonov theorem:

$$
\exists \xi_{t} \in \mathcal{C}, \quad \Phi_{t}\left(\xi_{t}\right)=\xi_{t}
$$

Existence - 1st proof (continuation)

Step 1. We reformulate

$$
\exists f_{t} \in \mathcal{C}, \exists \lambda_{t}^{\prime} \in\left[\kappa_{0}, \kappa_{1}\right], \quad S_{t} f_{t}=e^{\lambda_{t}^{\prime} t} f_{t} .
$$

Step 2. We reformulate again by choising $t=2^{-n}$:

$$
\exists f_{n} \in \mathcal{C}, \exists \lambda_{n}^{\prime} \in\left[\kappa_{0}, \kappa_{1}\right], \quad S_{t} f_{n}=e^{\lambda_{n}^{\prime} t} f_{n}, \quad \forall t \in \mathbb{D}_{m}, m \leq n,
$$

with

$$
\mathbb{D}_{m}:=\left\{t=j 2^{-m}\right\}=2^{-m} \mathbb{N}=\text { part of dyadic real numbers }
$$

By compactness, $\exists \lambda_{1} \in\left[\kappa_{0}, \kappa_{1}\right], \exists f_{1} \in \mathcal{C}$ such that

$$
S_{t} f_{n_{k}}=e^{\lambda_{n_{k}}^{\prime} t} f_{n_{k}}, \quad \lambda_{n_{k}} \rightarrow \lambda_{1}, f_{n_{k}} \rightharpoonup f_{1} .
$$

We deduce

$$
S_{t} f_{1}=e^{\lambda_{1} t} f_{1}, \quad \forall t \in \mathbb{D}_{m}, \forall m
$$

and then

$$
S_{t} f_{1}=e^{\lambda_{1} t} f_{1}, \quad \forall t \geq 0
$$

Existence - 2nd proof \sim Cañizo-M

We assume (general dissipative case for N and X) with $\kappa_{\mathcal{B}}<\kappa_{0}$

$$
\begin{aligned}
& {\left[f_{t}\right] \geq e^{\kappa_{0}(t-s)}\left[f_{s}\right], \forall t>s, \quad f_{\tau}:=S_{\tau} f_{0}} \\
& \left\|f_{t}\right\| \leq C_{1} e^{\kappa_{\mathcal{B}} t}\left\|f_{0}\right\|+C_{2} \int_{0}^{t} e^{\kappa_{\mathcal{B}}(t-s)}\left[f_{s}\right] d s, C_{1}>1
\end{aligned}
$$

Step 1. With the same notations

$$
\left\|\Phi_{T_{0}}\left(f_{0}\right)\right\| \leq C_{1} e^{\alpha T_{0}} M+\frac{C_{2}}{|\alpha|} \leq M
$$

for T_{0} and $M>0$ large enough. That implies $\Phi_{T_{0}}: \mathcal{C} \rightarrow \mathcal{C}$.
From the Schauder/Tykonov theorem:

$$
\exists f_{T_{0}} \in X_{+},\left[f_{T_{0}}\right]=1, S_{T_{0}} f_{T_{0}}=e^{\lambda_{1} T_{0}} f_{T_{0}}
$$

We cannot make $T_{0} \rightarrow 0!!$

Existence - 2nd proof (continuation)

Step 2. We denote $\bar{S}_{t}:=S_{t} e^{-\lambda_{1} t}$. We have built a periodic solution

$$
\bar{S}_{t} f_{T_{0}}=\bar{S}_{t-k T_{0}} f_{T_{0}}, \quad k:=\left[t / T_{0}\right], \quad \forall t>0
$$

For any $t \geq 0$, we deduce

$$
\begin{aligned}
{\left[\bar{S}_{t} f_{T_{0}}\right] } & \geq e^{\left(\kappa_{0}-\lambda_{1}\right)\left(t-k T_{0}\right)}\left[f_{T_{0}}\right] \geq e^{\left(\kappa_{0}-\lambda_{1}\right) T_{0}}=: r_{*}>0 \\
\left\|\bar{S}_{t} f_{T_{0}}\right\| & \leq C_{2} e^{\left(\kappa_{2}-\lambda_{1}\right)\left(t-k T_{0}\right)}\left\|f_{T_{0}}\right\| \leq C_{2} e^{\left.\left(\kappa_{2}-\lambda_{1}\right) T_{0}\right)}\left\|f_{T_{0}}\right\|=: R^{*}<\infty
\end{aligned}
$$

The mean u_{T} satisfies the same estimates:

$$
u_{T}:=\frac{1}{T} \int_{0}^{T} \bar{S}_{t} f_{T_{0}} d t \in \mathcal{G}:=\left\{g \in X_{+} ;[g] \geq r_{*},\|g\| \leq R^{*}\right\}
$$

By compactness, there exists $f_{1} \in \mathcal{G}$ and $\left(T_{k}\right)$ such that $u_{T_{k}} \rightharpoonup f_{1}$.
The von Neumann, Birkhoff mean ergodicity trick leads to

$$
\begin{aligned}
\bar{S}_{t} f_{1}-f_{1} & =\lim _{k \rightarrow \infty}\left\{\frac{1}{T_{k}} \int_{0}^{T_{k}} \bar{S}_{t} \bar{S}_{s} f_{T_{0}} d s-\frac{1}{T_{k}} \int_{0}^{T_{k}} \bar{S}_{s} f_{T_{0}} d s\right\} \\
& =\lim _{k \rightarrow \infty}\left\{\frac{1}{T_{k}} \int_{T_{k}}^{T_{k}+t} \bar{S}_{s} f_{T_{0}} d s-\frac{1}{T_{k}} \int_{0}^{t} \bar{S}_{s} f_{T_{0}} d s\right\}=0
\end{aligned}
$$

because $\left(\bar{S}_{s} f_{T_{0}}\right)$ is uniformly bounded. We deduce $\mathcal{L} f_{1}=\lambda_{1} f_{1}$.

Existence - third proof (dynamical approach)

We assume (including weakly dissipative case)

$$
\begin{aligned}
& {\left[f_{t}\right] \geq\left[f_{s}\right], \forall t>s, \quad \kappa_{0}:=0} \\
& \left\|f_{t}\right\| \leq M\left\|f_{0}\right\|+\int_{0}^{t} \Theta(t-s)\left[f_{s}\right] d s, M \geq 1
\end{aligned}
$$

For some $g_{0} \in X_{+}$such that $\left[g_{0}\right]=1$, we set

$$
\mathcal{C}:=\{f \geq 0,[f]=1,\|f\| \leq R\}, \quad R:=\max \left(2\|\Theta\|_{L^{1}},\left\|g_{0}\right\|\right)
$$

and we define the increasing function

$$
\lambda(t):=\inf _{f \in \mathcal{C}}\left[S_{t} f\right] .
$$

We have the alternative

- (case 1) $\sup \lambda \leq 2 M$
- (case 2) $\sup \lambda>2 M$

Existence - third proof (case 1)
By compactness, there exists $f_{0} \in \mathcal{C}$ such that

$$
\sup _{t \geq 0}\left[S_{t} f_{0}\right] \leq 2 M
$$

We remind the iterated Duhamel formula

$$
S=v+\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* N)} * S
$$

and the associated mean equation

$$
U_{T}=V_{T}+W_{T}
$$

with

$$
U_{T}:=\frac{1}{T} \int_{0}^{T} S_{t} d t, v_{T}:=\frac{1}{T} \int_{0}^{T} v_{t} d t, W_{T}:=\frac{1}{T} \int_{0}^{T}\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* N)} * S d t
$$

Thanks to Fubini and positivity, we have

$$
W_{T} \leq \int_{0}^{T}\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* N)} d t U_{T}
$$

which implies

$$
\left\|W_{T} f_{0}\right\| \leq\|\Theta\|_{L^{1}}\left[U_{T} f_{0}\right]
$$

Existence - third proof (case 1 - continuation)

In a simpler way

$$
\left\|V_{T} f_{0}\right\| \leq M\left\|f_{0}\right\|
$$

All together, we have '

$$
\left\|U_{T} f_{0}\right\| \leq M\left\|f_{0}\right\|+\|\Theta\|_{L^{1}}\left[U_{T} f_{0}\right] \quad \text { and } \quad 1 \leq\left[S_{T} f_{0}\right] \leq 2 M
$$

From the first inequality, we deduce that $\left\|U_{T} f_{0}\right\|$ is uniformly bounded on $T \in \mathbb{R}_{+}$. By compactness, there exists $T_{k} \rightarrow+\infty$ and $f_{1} \in X_{+}$such that $U_{T_{k}} f_{0} \rightharpoonup f_{1}$.
Thanks to the second inequality, we have $\left[f_{1}\right] \geq 1$.
From the same and usual mean ergodic trick, for any fixed $s>0$, we have

$$
\begin{aligned}
S(s) f_{1}-f_{1} & =\lim _{k \rightarrow \infty}\left\{\frac{1}{T_{k}} \int_{0}^{T_{k}} S(s) S(t) f_{0} d t-\frac{1}{T_{k}} \int_{0}^{T_{k}} S(t) f_{0} d t\right\} \\
& =\lim _{k \rightarrow \infty}\left\{\frac{1}{T_{k}} \int_{T_{k}}^{T_{k}+s} S(t) f_{0} d t-\frac{1}{T_{k}} \int_{0}^{s} S(t) f_{0} d t\right\}=0
\end{aligned}
$$

That implies that f_{1} is a stationary solution, and thus $\lambda_{1}=0$.

Existence - third proof (case 2 - step 1)

Step 1 From the assumption

$$
\exists T_{0}>0, \quad \forall f \in \mathcal{C}, \quad\left[S_{T_{0}} f\right] \geq 2 M
$$

For $f \in \mathcal{C}$, we define

$$
\Phi_{T_{0}} f:=\frac{S_{T_{0}} f}{\left[S_{T_{0}} f\right]},
$$

so that $\Phi_{T_{0}} f \geq 0$ and $\left[\Phi_{T_{0}} f\right]=1$. Because of the above assumption and the Lyapunov like estimate, we have

$$
\left\|\Phi_{T_{0}} f\right\| \leq \frac{1}{2}\|f\|+\|\Theta\|_{L^{1}} \leq R
$$

We have established $\Phi_{T_{0}}: \mathcal{C} \rightarrow \mathcal{C}$ and from the Schauder/Tykonov theorem, there exists $f_{T_{0}} \in \mathcal{C}$ such that $\Phi_{T_{0}} f_{T_{0}}=f_{T_{0}}$. In other words : we have built a pair of "almost eigenvalue and eigenfunction"

$$
f_{T_{0}} \geq 0, \quad\left[f_{T_{0}}\right]=1, \quad S_{T_{0}} f_{T_{0}}=e^{\lambda_{1} T_{0}} f_{T_{0}}
$$

with $e^{\lambda_{1} T_{0}}=\left[S_{T_{0}} f\right]$ and thus $\lambda_{1} \in\left[0, \kappa_{1}\right]$.
Step 2 We conclude as in the 2 nd proof!

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem
4) Krein-Rutman theorem
(5) Doblin-Harris theorem

Hypothesis

We consider a Markov semigroup $S_{t}=S_{\mathcal{L}}(t)$ defined on $X:=L^{1}\left(\mathbb{R}^{d}\right)$, meaning $S_{t} \geq 0$ and $S_{t}^{*} 1=1$. We furthermore assume
(H1) Subgeometric Lyapunov condition. There are two weight functions $m_{0}, m_{1}: \mathbb{R}^{d} \rightarrow[1, \infty), m_{1} \geq m_{0}, m_{0}(x) \rightarrow \infty$ as $x \rightarrow \infty$, and two real constants $b, R>0$ such that

$$
\mathcal{L}^{*} m_{1} \leq-m_{0}+b \mathbf{1}_{B_{R}} .
$$

(H2) Doeblin-Harris condition. $\exists T>0 \forall R>0 \exists \nu \geq 0$, $\not \equiv 0$, such that

$$
S_{T} g \geq \nu \int_{B_{R}} g, \quad \forall g \in X_{+}
$$

(H3) There are two other weight functions $m_{2}, m_{3}: \mathbb{R}^{d} \rightarrow[1, \infty), m_{3} \geq m_{2} \geq m_{1}$ such that

$$
\mathcal{L}^{*} m_{3} \leq-m_{2}+b \mathbf{1}_{B_{R}}
$$

and $m_{2} \leq m_{0}^{\theta} m_{3}^{1-\theta}$ with $\theta \in(1 / 2,1]$.

Conclusion

Theorem 4

Consider a Markov semigroup S on $X:=L^{1}\left(m_{3}\right)$ which satisfies (H1), (H2), (H3). There holds

$$
\left\|S_{t} f_{0}\right\|_{L^{1}} \lesssim \Theta(t)\left\|f_{0}\right\|_{L^{1}\left(m_{3}\right)}, \quad \forall t \geq 0, \quad \forall f_{0} \in X,\left\langle f_{0}\right\rangle=0,
$$

for the function Θ given by

$$
\Theta(t):=\inf _{\lambda>0}\left\{e^{-\varepsilon_{\lambda} t}+\xi_{\lambda}\right\},
$$

where

$$
m_{1} \leq \frac{1}{2 \varepsilon_{\lambda}} m_{0}+\eta_{\lambda} m_{3}, \forall \lambda, \quad \varepsilon_{\lambda}, \eta_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty
$$

Comments

- The assumption (H3) is not necessary: m_{1} satsisfies a Lyaponov condition implies that $\phi\left(m_{1}\right)$ satsisfies a Lyaponov condition for any $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$concave.
- The probabilistic proof use Martingale argument, renewal theory and (if possible?) constants are not easily tractable.
- In the probabilistic approach, one writes $m_{0}=\xi\left(m_{1}\right), \xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$concave, and

$$
\tilde{\Theta}(t):=\frac{C}{\xi\left(H^{-1}(t)\right)}, \quad H(u):=\int_{1}^{u} \frac{d s}{\xi(s)}
$$

- If $\xi(s)=s$ then $\tilde{\Theta}(t)=e^{-\lambda t}$;
- If $m_{1}=\langle x\rangle^{k}, m_{0}:=\langle x\rangle^{k+\gamma-2}$ then $\tilde{\Theta}(t)=t^{1-\frac{k}{2-\gamma}} \gg \Theta(t)$;
- If $m_{1}=e^{\kappa\langle x\rangle^{s}}, m_{0}:=\langle x\rangle^{s+\gamma-2} e^{\kappa\langle x\rangle^{s}}$ then $\tilde{\Theta}(t) \simeq e^{-\lambda t^{\frac{s}{2-\gamma}}} \simeq \Theta(t)$.

A second version of the subgeometric Doeblin-Harris theorem
Consider a Markov semigroup $S_{t}=S_{\mathcal{L}}(t)$ defined on $X:=L_{m}^{1}\left(\mathbb{R}^{D}\right)$, meaning $S_{t} \geq 0$ and $S_{t}^{*} 1=1$. We furthermore assume
(H1) Subgeometric Lyapunov condition. There is a weight function $m: \mathbb{R}^{D} \rightarrow[1, \infty)$, $m \nearrow \infty$, an increasing concave function $\varphi:[1, \infty) \rightarrow[1, \infty), \varphi \nearrow \infty$, and three real constants $b, R, \delta>0$ such that

$$
\mathcal{L}^{*} m \leq-\delta \varphi(m)+b \mathbf{1}_{B_{R}}, \quad B_{R}:=\left\{y \in \mathbb{R}^{D} ; V(y) \leq R\right\} .
$$

(H2) Doeblin-Harris irreducibility condition. $\exists T>0 \forall R>0 \exists \nu \geq 0, \not \equiv 0$, such that

$$
S_{T} g \geq \nu \int_{B_{R}} g, \quad \forall g \in X_{+}
$$

Theorem 4'

For any $f_{0} \in X,\left\langle f_{0}\right\rangle=0$, there holds

$$
\forall t \geq 0, \quad\left\|S_{t} f_{0}\right\| \lesssim \frac{1}{H^{-1}(t)}\left\|f_{0}\right\|_{m}, \quad H(u):=\int_{1}^{u} \frac{d s}{\varphi(u)} .
$$

In particular,

$$
\frac{1}{H^{-1}(t)}=e^{-t} \text { if } \varphi(u)=u, \quad \frac{1}{H^{-1}(t)}=t^{-1 / a} \text { if } \varphi(u)=u^{1-a} .
$$

Theorem 4 (geometric case)

- Doeblin
- Harris, Proceedings 1956
- Meyn, Tweedie, AAP 1992, 1993, 1994
- Hairer, Mattingly, Proceedings 2011
- Cañizo-M. (semigroup approach)

Theorem 4 (subgeometric case)

- Douc, Fort, Guillin, SPA 2009
- Hairer, unpublished lecture notes, 2016
- Cañizo-M. (semigroup approach)

Doeblin-Harris irreducibility/strong positivity condition implies coupling weak generator Lyapunov implies weak semigroup Lyapunov

Lemma 5

The Harris condition (H 2) implies the coupling condition: $\left(\mathrm{H}^{\prime}\right) \exists \gamma_{н} \in(0,1), A>0$,

$$
\|f\|_{m} \leq A\|f\|,\langle f\rangle=0 \Longrightarrow\left\|S_{T} f\right\| \leq \gamma_{H}\|f\| .
$$

proof: splitting $\mathbb{R}^{D}=\mathcal{C}_{R} \cup \mathcal{C}_{R}^{\mathcal{C}}$

Lemma 6

The generator Lyapunov condition (H1) implies the semigroup Lyapunov condition: $\left(H 1^{\prime}\right) \forall t>0, \exists K_{t} \geq 0$,

$$
\left\|S_{t} f_{0}\right\|_{m}+t\left\|S_{t} f_{0}\right\|_{\varphi(m)} \leq\left\|f_{0}\right\|_{m}+K_{t}\left\|f_{0}\right\|,
$$

proof : integration in time

About Lemma 5 : contraction and strict contraction

Rk 1. Assuming just that $\left(S_{t}\right)$ is a Markov semigroup, we have

$$
\left|S_{t} f\right|=\left|S_{t} f_{+}-S_{t} f_{-}\right| \leq\left|S_{t} f_{+}\right|+\left|S_{t} f_{-}\right|=S_{t}|f| .
$$

Integrating, we deduce that $\left(S_{t}\right)$ is a L^{1} contraction

$$
\int\left|S_{t} f\right| \leq \int S_{t}|f|=\int|f| S_{t}^{*} 1=\int|f| .
$$

Rk 2. We assume furthermore the strong Doeblin-Harris condition:

$$
\text { (strong H2) } \quad \exists T, \exists \nu, \quad S_{T} g \geq \nu \int_{\mathbb{R}^{D}} g, \quad \forall g \in X_{+} .
$$

For $f \in L^{1},\langle f\rangle=0$, we have

$$
S_{T} f_{ \pm} \geq \nu \int_{\mathbb{R}^{D}} f_{ \pm}=\frac{\nu}{2} \int_{\mathbb{R}^{D}}|f|=: \eta .
$$

We may adapt the proof in Rk 1 in the following way

$$
\begin{aligned}
\left|S_{T} f\right| & =\left|S_{T} f_{+}-\eta-\left(S_{T} f_{-}-\eta\right)\right| \\
& \leq\left|S_{T} f_{+}-\eta\right|+\left|S_{T} f_{-}-\eta\right|=S_{T}|f|-2 \eta .
\end{aligned}
$$

Integrating, we deduce that $\left(S_{T}\right)$ is a strict contraction

$$
\left\|S_{T} f\right\|_{L^{1}} \leq\|f\|_{L^{1}}-2\|\eta\|_{L^{1}}=(1-\langle\nu\rangle)\|f\|_{L^{1}}
$$

Proof of Lemma 5: the Harris condition (H2) implies the coupling condition (H2') Rk 3. Assuming (H2), we have similarly

$$
\int\left|S_{T} f\right| \leq \gamma_{H} \int|f| \quad \text { if } \quad \int|f| m \leq \frac{m(R)}{4} \int|f|
$$

with

$$
\gamma_{H}:=1-\langle\nu\rangle / 2 \in(0,1) .
$$

Indeed, we mainly observe that

$$
\begin{aligned}
S_{T} f_{ \pm} & \geq \nu \int_{\mathbb{R}^{D}} f_{ \pm}-\nu \int_{B_{R}^{c}} f_{ \pm} \\
& \geq \frac{\nu}{2} \int_{\mathbb{R}^{D}}|f|-\nu \int_{B_{R}^{c}}|f| \\
& \geq \frac{\nu}{2} \int_{\mathbb{R}^{D}}|f|-\frac{\nu}{m(R)} \int_{\mathbb{R}^{D}}|f| m \\
& \geq \frac{\nu}{2} \int_{\mathbb{R}^{D}}|f|-\frac{\nu}{4} \int_{\mathbb{R}^{D}}|f| \\
& =\frac{\nu}{4} \int_{\mathbb{R}^{D}}|f|
\end{aligned}
$$

and we then follow the same proof as when we have assumed (strong H 2).

Strict contraction for time discrete semigroup $S:=S_{T}$
S satisfies a Lyapunov operator condition ($\mathrm{H} 1^{\prime \prime}$) if $\exists \gamma_{L} \in(0,1), K \geq 0$

$$
\|S f\|_{m}+\gamma_{L}\|S f\|_{\varphi(m)} \leq\|f\|_{m}+K\|f\|, \quad \forall f
$$

S satisfies a coupling operator condition $\left(\mathrm{H}_{2}{ }^{\prime \prime}\right)$ if $\exists \gamma_{H} \in(0,1), A>0$,

$$
\|f\|_{m} \leq A\|f\|,\langle f\rangle=0 \Longrightarrow\|S f\| \leq \gamma_{H}\|f\| .
$$

Lemma 7

If $A>K / \gamma_{L}$ there exists $\alpha>0$ and an equivalent norm $\|\|\cdot\|\|_{m}$ to $\|\cdot\|_{m}$ such that

$$
\|S f\|_{m}+\alpha\|S f\|_{\varphi(m)} \leq\|f\|_{m}, \quad \forall f,\langle f\rangle=0 .
$$

Proof: a hypocoercivity trick and an alternative.
We introduce the equivalent norm for convenient choice of $\beta, \gamma>0$

$$
\|f\|_{m}:=\|f\|+\beta\|f\|_{\varphi(m)}+\gamma\|f\|_{m}{ }^{*}
$$

If $\|f\|_{\varphi(m)} \leq A\|f\|$, we use the coupling condition ($\mathrm{H} 2^{\prime \prime}$)
If $\|f\|_{\varphi(m)} \geq A\|f\|$, we use the Lyapunov condition ($\mathrm{H} 1^{\prime \prime}$)

* modified norm \simeq "hypodissipativity trick"

Subgeometric convergence for time discrete semigroup $S:=S_{T}$
We assume that S satisfies $\left(\mathrm{H}_{1}^{\prime \prime}\right)$ and $\left(\mathrm{H}^{\prime \prime}\right)$ for two pairs $m_{i}, \varphi_{i}, K_{i}, \gamma_{L i}$ and $A_{i}, K_{i}, \gamma_{H i}$ with $A_{i}>K_{i} / \gamma_{H i}, m_{1} \leq m_{2}, \varphi_{1}\left(m_{1}\right) \leq \varphi_{2}\left(m_{2}\right)$, as well as the interpolation condition
(H3) $\quad \lambda m_{1} \leq \varphi_{1}\left(m_{1}\right)+\xi(\lambda) m_{2}, \forall \lambda>0$,
with $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \xi(\lambda) / \lambda \rightarrow 0$ as $\lambda \rightarrow 0$. That means $\varphi_{1}\left(m_{1}\right) \ll m_{1} \ll m_{2}$.

Lemma 8

Under the above conditions, for any $f,\langle f\rangle=0$,

$$
\left\|S^{n} f\right\| \lesssim \tilde{\Theta}(n)\|f\|_{m_{2}}, \quad \forall n,
$$

with

$$
\tilde{\Theta}(n)=\frac{\Theta(n / 2)}{n}, \quad \Theta(t):=F^{-1}(t), \quad F(\lambda):=\int_{\lambda}^{1} \frac{d s}{\xi^{*}(\theta s)}
$$

Proof:

$$
\|S f\|_{m_{i}}+\alpha\|S f\|_{\varphi_{i}\left(m_{i}\right)} \leq\|f\|_{m_{i}}
$$

implies

$$
\|S f\|_{m_{1}}+\alpha \lambda\|S f\|_{m_{1}} \leq\|f\|_{m_{1}}+\alpha \xi(\lambda)\|f\|_{m_{2}}, \quad \forall \lambda>0,
$$

and next

$$
\left\|S^{n+1} f\right\|_{m_{1}} \leq\left(1-\theta \lambda_{n}\right)\left\|S^{n} f\right\|_{m_{1}}+\alpha \xi\left(\lambda_{n}\right)\|f\|_{m_{2}}
$$

Outline of the talk

(1) Introduction

(2) Shrinkage and enlargement
(3) Weyl + spectral maping theorem

4 Krein-Rutman theorem
(5) Doblin-Harris theorem
(6) An application to neurosciences

Example 2 : the age structured equation

