Semigroup methods for evolution PDE

S. Mischler

(Paris Dauphine-PSL)

in collaboration with Gualdani, Mouhot, Scher, Kavian, Ndao, Cañizo, Fonte & Gabriel

ANR ChaMaNe June 23, 2022

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- 3 Weyl + spectral maping theorem
- 4 Krein-Rutman theorem
- 5 Doblin-Harris theorem
- 6 An application to neurosciences

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- 3 Weyl + spectral maping theorem
- 4 Krein-Rutman theorem
- 5 Doblin-Harris theorem
- 6 An application to neurosciences

Evolution equation and semigroup

We consider an evolution equation

$$\partial_t f = \mathcal{L}f, \quad f(0) = f_0,$$

and the associated semigroup of operators $S_{\mathcal{L}}(t)$ defined through the relation $S_{\mathcal{L}}(t)f_0 := f(t)$ on a Banach space X. Our purpose is then to explain when and how we can show that the semigroup splits as

$$S_{\mathcal{L}}(t) = S_0(t) + S_1(t),$$

where

 $\left\{ \begin{array}{l} S_1(t) \text{ ranges in a finite dimensional non trivial subspace of } X \\ \text{ and } \|S_0(t)\| = o(\|S_1(t)\|) \text{ as } t \to \infty. \end{array} \right.$

Better, we would like to identify some cases where, if possible in a quantitative/constructive way,

$$\lim_{t\to\infty} \|e^{-s(\Lambda)t}S(t)-P\|=0,$$

for some projector $P \in \mathcal{B}(X)$ (with rank P = 1 if possible!) and real number (spectral bound) $s(\Lambda) \in \mathbb{R}$.

Framework

- X Banach space, possibly
 - a Hilbert space (or not),

- a Banach lattice with positive cone $X_+ := \{f \ge 0\}$ (or not). Typically $X = L^p$, $X = C_0$ or $X = M^1$ or a weighted such spaces

• $S = (S_t)$ a positive semigroup on X (of linear operators):

-
$$S_t \in \mathcal{B}(X)$$
, $S_{t_1}S_{t_2}=S_{t_1+t_2}$, $S_0=I$

- strongly or weakly * continuous trajectories,

-
$$\|S_t\|_{X o X} \leq M e^{\kappa_1 t}$$
, $M \geq 1$, $\kappa_1 \in \mathbb{R}$,

- the generator $\mathcal L$ splits as

$$\mathcal{L} = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t) = O(e^{\kappa_{\mathcal{B}} t}), \ \kappa_{\mathcal{B}} < \kappa_1$$

• Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation operator and the age structured operator

$$\mathcal{L}f = \operatorname{div}(a\nabla f) + b \cdot \nabla f + cf, \quad (\text{for FP: } c = \operatorname{div} b)$$
$$= -a \cdot \nabla f - Kf + \int kf_* dy_*$$
$$= -\partial_x f - Kf + \delta_0 \int_0^\infty K(y)f(y) dy$$

Framework

- X Banach space, possibly
 - a Hilbert space (or not),

- a Banach lattice with positive cone $X_+ := \{f \ge 0\}$ (or not). Typically $X = L^p$, $X = C_0$ or $X = M^1$ or a weighted such spaces

• $S = (S_t)$ a positive semigroup on X (of linear operators):

-
$$S_t \in \mathcal{B}(X)$$
, $S_{t_1}S_{t_2} = S_{t_1+t_2}$, $S_0 = I$,

- strongly or weakly * continuous trajectories,

-
$$\|S_t\|_{X \to X} \leq M e^{\kappa_1 t}$$
, $M \geq 1$, $\kappa_1 \in \mathbb{R}$,

- the generator $\mathcal L$ splits as

$$\mathcal{L} = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t) = O(e^{\kappa_{\mathcal{B}}t}), \ \kappa_{\mathcal{B}} < \kappa_1$$

• Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation operator and the age structured operator

$$\mathcal{L}f = \operatorname{div}(a\nabla f) + b \cdot \nabla f + cf - M\chi_R f + M\chi_R f$$
$$= -a \cdot \nabla f - Kf + \int k_R^c f_* dy_* + \int k_R f_* dy_*$$
$$= -\partial_x f - Kf + \delta_0 \int_0^\infty K(y) f(y) dy$$

Spectral analysis and semigroup analysis

- describe spectrum set $\Sigma(\mathcal{L})$, set of its eigenvalues and associated eigenspaces
- spectral mapping theorem

$$\Sigma(e^{t\mathcal{L}}) \setminus \{0\} = e^{t\Sigma(\mathcal{L})}, \qquad \forall t \ge 0$$

- Extension of the spectral analysis to other spaces: enlargement/shrinkage
- Weyl's theorem on compact perturbation and discrete spectrum or partial (but principal) spectral mapping theorem

$$\Sigma(e^{t\mathcal{L}}) \setminus B(0, e^{at}) = e^{t\Sigma(\mathcal{L}) \cap \Delta_a}, \qquad \forall t \ge 0, \ \forall a > a^*,$$

for some abscissa $a^* \in \mathbb{R}$, where $\Delta_a := \{\xi \in \mathbb{C}; \Re e\xi > a\}$ the half-plane $\forall a \in \mathbb{R}$ and deduce the asymptotical behaviour of trajectories

- Small perturbation theorem
- Self-adjointeness, spectral gap, related coercivity estimates and beyond: hypocoercivity estimates
- Krein-Rutman Theorem for positive semigroup
- Doblin-Harris Theorem for Markov/stochastic semigroup

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
 - 3 Weyl + spectral maping theorem
 - 4 Krein-Rutman theorem
 - 5 Doblin-Harris theorem
 - 6 An application to neurosciences

Dissipative and hypodissipative generator

Consider a semigroup $S_{\mathcal{B}}$ with generator \mathcal{B} in a Banach space X with norm $\|\cdot\|$. We say that $\mathcal{B} - a$ is dissipative if

$$\forall f \in D(\mathcal{B}), \ \forall f^* \in J_f, \quad \Re e \langle f^*, (\mathcal{B} - a)f \rangle \leq 0 \tag{1}$$

or equivalently

$$\Re e\langle f^*, \mathcal{B}f
angle \leq a \|f\|^2$$

where J_f is the dual set

$$J_{f} := \{ \varphi \in X'; \ \langle \varphi, f \rangle = \|f\|_{X}^{2} = \|\varphi\|_{X'}^{2} \}.$$

By Hahn-Banach separation theorem $J_f \neq \emptyset$. When X is an Hilbert space then $J_f = \{f\}$, we say that $\mathcal{B} - a$ is coercive. When $X = L^p$, $1 \le p < \infty$, then $J_f := \{cf | f | p^{-2}\}$.

We say that $\mathcal{B} - a$ is hypodissipative if (1) holds for any $f^* \in J_{f, ||\cdot|||}$, with

$$J_{f,\parallel\mid\mid\mid\mid} := \{ \varphi \in X'; \ \langle \varphi, f \rangle = \parallel\mid f \parallel\mid\mid^2 = \parallel\mid \varphi \parallel\mid^2_{X'} \},$$

where $\|\cdot\|$ stands for an equivalent norm in X.

Hypodissipative and growth/decay estimate : Hille-Yosida, Lumer-Phillips Consider a dissipative semigroup $S_{\mathcal{L}}$ with generator \mathcal{L} in a Banach space X. For $a \in \mathbb{R}, M \ge 1$, there is equivalence between (a) $\mathcal{L} - a$ is hypodissipative, and the norm of dissipativity satisfies

$$\forall f \in X \qquad ||f|| \le ||f||| \le M ||f||;$$
 (2)

(b) the semigroup $S_{\mathcal{L}}$ satisfies the growth estimate

$$|S_{\mathcal{L}}(t)||_{\mathcal{B}(X)} \le M e^{at}, \quad \forall t \ge 0.$$
(3)

We define $\omega(S) := \inf\{a \in \mathbb{R}; (3) \text{ holds}\}\$ the growth bound.

Proof of (a) \Rightarrow (b) for a equivalent regular norm such that the square norm function $\Phi(f) := |||f|||^2/2$ satisfies

 $\Phi: X \to \mathbb{R}_+ \text{ G-differentiable and } \quad J_{f, \|\cdot\|} = \{\Phi'(f)\}, \quad \forall \, f \in X.$

We compute

$$\frac{d}{dt} \|\|f\|\|^2 = \Re e \langle \Phi'(f), \mathcal{L}f \rangle \leq a \|\|f\|\|^2,$$

and we use the Gronwall lemma.

The reverse implication (b) \Rightarrow (a) By assumption

$$\|S(t)\|_{\mathcal{B}(X)} \leq M e^{\alpha t}, \quad \Re e \langle f^*, \mathcal{L}f \rangle \leq b \|f\|^2 \quad \forall f \in D(\mathcal{L}),$$

with $M \ge 1$, $a^* \le \alpha < a < b \in \mathbb{R}$, and where $J_{f,\|\cdot\|} = \{f^*\}$. We define the new norm

$$|||f|||^2 := \eta ||f||^2 + \int_0^\infty ||S(\tau) e^{-a\tau} f||^2 d\tau.$$

With $f_t := S(t)f$, we compute

$$\frac{1}{2}\frac{d}{dt}|||f_t|||^2 \le a|||f_t|||^2,$$

by choosing $\eta > 0$ small enough, and

$$\frac{1}{2}\frac{d}{dt}|||f_t|||^2 = \Re e \langle (f_t)^{**}, \mathcal{L}f_t \rangle$$

with

$$g^{**} := \eta \, g^* + \int_0^\infty S_{\mathcal L}(au)^* (S_{\mathcal L}(au)g)^* \, d au \in X', \quad \forall \, g \in X.$$

 $Hypocoercivity \simeq twisted \ norm$

Duhamel formulas

Consider $S_{\mathcal{L}}$ a semigroup with generator \mathcal{L} enjoying the splitting structure

$$\mathcal{L} = \mathcal{A} + \mathcal{B}, \quad \mathcal{B} \text{ generator of } S_{\mathcal{B}}, \ \mathcal{A} \prec \mathcal{B}.$$

Typically $A \in B(X)$. The following Duhamel formulas

$$S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{B}}\mathcal{A} * S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{L}} * \mathcal{A}S_{\mathcal{B}}$$

hold, as well as the iterated Duhamel formulas (or "stopped" Dyson-Phillips series: the Dyson-Phillips series corresponds to the choice $N = \infty$)

$$\begin{split} S_{\mathcal{L}} &= S_{\mathcal{B}} + \dots + (S_{\mathcal{B}}\mathcal{A})^{*(N-1)} * S_{\mathcal{B}} + (S_{\mathcal{B}}\mathcal{A})^{*N} * S_{\mathcal{L}} \\ &= S_{\mathcal{B}} + \dots + S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{*(N-1)} + S_{\mathcal{L}} * (\mathcal{A}S_{\mathcal{B}})^{*N}. \end{split}$$

Here we define V * U by

$$t\mapsto (V*U)(t):=\int_0^t V(t-s)U(s)ds \in L^1_{loc}(\mathbb{R}_+;\mathcal{B}(X_1;X_3)),$$

for $U \in L^1_{loc}(\mathbb{R}_+; \mathcal{B}(X_1; X_2))$ and $V \in L^1_{loc}(\mathbb{R}_+; \mathcal{B}(X_2; X_3))$.

Enlargement and shrinkage of the functional space for semigroup growth

Th 1. Assume

$$\mathcal{L}=\mathcal{A}+\mathcal{B},\ L=A+B,\ A=\mathcal{A}_{|E},\ B=\mathcal{B}_{|E},\ E\subset\mathcal{E}$$

For any $a > a^*$

- (i) (B-a) is hypodissipative on E, (B-a) is hypodissipative on \mathcal{E} ;
- (ii) $A \in \mathcal{B}(E), \ A \in \mathcal{B}(\mathcal{E});$
- (iii) there is $n \ge 1$ and $C_a > 0$ such that

$$\left\|\left(\mathcal{S}_{\mathcal{B}}\mathcal{A}\right)^{(*n)}(t)\right\|_{\mathcal{E}\to \mathcal{E}}+\left\|\left(\mathcal{A}\mathcal{S}_{\mathcal{B}}\right)^{(*n)}(t)\right\|_{\mathcal{E}\to \mathcal{E}}\leq C_{a}\,e^{at}.$$

Then there is equivalence between

$$\forall t \geq 0, \quad \left\| S_{\mathcal{L}}(t) \right\|_{\mathcal{E} \to \mathcal{E}} \leq C_{\mathcal{L},a} e^{a t}$$

and

$$\forall t \geq 0, \quad \left\|S_L(t)\right\|_{E\to E} \leq C_{L,a} e^{at}.$$

▷ Bobylev (Boltzmann), Gallay-Wayne (harmonic Fokker-Planck), Gualdani-M.-Mouhot (abstract and applications) Proof of the change of functional space : as an immediate consequence of the iterated Duhamel formula

 $S_L = \mathcal{O}(e^{at})$ implies $S_{\mathcal{L}} = \mathcal{O}(e^{at})$:

$$S_{\mathcal{L}} = \underbrace{S_{\mathcal{B}} + \dots + S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{*(N-1)}}_{\mathcal{E} \to \mathcal{E}} + \underbrace{S_{L}}_{\mathcal{E} \to \mathcal{E} \subset \mathcal{E}} * \underbrace{(\mathcal{A}S_{\mathcal{B}})^{*N}}_{\mathcal{E} \to \mathcal{E}}.$$

 $S_{\mathcal{L}} = \mathcal{O}(e^{at})$ implies $S_L = \mathcal{O}(e^{at})$:

$$S_{\mathcal{L}} = \underbrace{S_{\mathcal{B}} + \dots + (S_{\mathcal{B}}\mathcal{A})^{*(N-1)} * S_{\mathcal{B}}}_{E \to E} + \underbrace{(S_{\mathcal{B}}\mathcal{A})^{*N}}_{\mathcal{E} \to E} * \underbrace{S_{\mathcal{L}}}_{E \subset \mathcal{E} \to \mathcal{E}}$$

because $e_a * e_a = te_a \leq e_{a'}$ for any $a' > a > a^*$, with $e_a(t) := e^{at}$

Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation

$$\partial_t f = \mathcal{L}f = \Delta f + \operatorname{div}(Ef)$$

on f = f(t, x), $t \ge 0$, $x \in \mathbb{R}^d$, with force confinement

$$E =
abla rac{\langle x
angle^{\gamma}}{\gamma} = x \langle x
angle^{\gamma-2}, \quad \gamma > 0.$$

Th 1'. For any $k\geq 0$ and $p\in [1,\infty]$, there exists a constant $M\geq 1$ such that

$$\sup_{t\geq 0} \|f_t\|_{L^p_k} \leq M \|f_0\|_{L^p_k}$$

with

$$\|f\|_{L^p_k}:=\|f{\langle x
angle}^k\|_{L^p}, \quad {\langle x
angle}^2:=1+|x|^2.$$

Doscani-Villani, Röckner-Wang, Kavian-M.-Ndao

Elements of proof

We observe that

$$\frac{d}{dt}\int fdx=0,$$

so that mass is conserved !

Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation

$$\partial_t f = \mathcal{L}f = \Delta f + \operatorname{div}(Ef)$$

on f = f(t, x), $t \ge 0$, $x \in \mathbb{R}^d$, with force confinement

$$E = \nabla \frac{\langle x \rangle^{\gamma}}{\gamma} = x \langle x \rangle^{\gamma-2}, \quad \gamma > 0.$$

Th 1'. For any $k \ge 0$ and $p \in [1, \infty]$, there exists a constant $M \ge 1$ such that $\sup_{t \ge 0} \|f_t\|_{L^p_k} \le M \|f_0\|_{L^p_k}$

Elements of proof Similarly

$$\frac{d}{dt}\int |f|dx \leq 0,$$

so that

 $S_{\mathcal{L}}: L^1 \to L^1$, uniformly bounded.

The idea is to use the shrinkage result taking advantage of the splitting structure

$$\partial_t f = \mathcal{L}f = \underbrace{\partial_{xx}f + \partial_x(x^{\gamma-1}f) - M\chi_R f}_{=:\mathcal{B}f} + \underbrace{M\chi_R f}_{=:\mathcal{A}f}$$

L_k^1 estimate for $S_{\mathcal{L}}$ when $\gamma \geq 2$

 ${\cal L}$ satisfies the (strong for $\gamma \geq$ 2, weak for $\gamma <$ 2) Lyapunov condition

$$\mathcal{L}^* \langle x
angle^k \lesssim - \langle x
angle^{k+\gamma-2} + \mathbf{1}_{\mathcal{B}_{\mathcal{R}}}$$

because

$$\partial_{xx}x^k - x^{\gamma-1}\partial_x x^k \sim -kx^{k+\gamma-2}.$$

When $\gamma \geq$ 2, we may proceed in a very simple way :

$$\begin{split} \frac{d}{dt} \int f \langle x \rangle^k &\lesssim & -\int f \langle x \rangle^k + \int f \\ &\lesssim & -\int f \langle x \rangle^k + \int f_0, \end{split}$$

and thanks to the Gronwall lemma we conclude directly

 $S_{\mathcal{L}}: L^1_k \to L^1_k$ uniformly bounded.

L_k^1 estimate for $S_{\mathcal{L}}$ (general case)

We write

$$f_t = S_{\mathcal{B}}(t)f_0 + (S_{\mathcal{B}}\mathcal{A}*S_{\mathcal{L}})(t)f_0$$

and we next compute

$$\begin{split} \|f_t\|_{L^1_k} &\leq \|S_{\mathcal{B}}(t)f_0\|_{L^1_k} + \int_0^t \|S_{\mathcal{B}}(t-s)\mathcal{A}S_{\mathcal{L}}(s)f_0\|_{L^1_k} \, ds \\ &\leq \|f_0\|_{L^1_k} + \int_0^t \Theta(t-s)\|\mathcal{A}S_{\mathcal{L}}(s)f_0\|_{L^1_m} \, ds \\ &\lesssim \|f_0\|_{L^1_k} + \int_0^t \Theta(t-s)\|S_{\mathcal{L}}(s)f_0\|_{L^1} \, ds \\ &\leq \|f_0\|_{L^1_k} + \int_0^t \Theta(t-s)\|f_0\|_{L^1} \, ds \\ &\leq (1+\|\Theta\|_{L^1})\|f_0\|_{L^1_k}. \end{split}$$

We have to prove

$$S_{\mathcal{B}}(t): L_k^1 o L_k^1$$
 uniformly bounded
 $S_{\mathcal{B}}(t): L_m^1 o L_k^1$ with rate $t \mapsto \Theta(t) \in L^1$ for $m > k$ (large enough)

L_k^1 estimate for $S_{\mathcal{B}}$

 ${\mathcal B}$ satisfies the (weak) dissipativity condition

$$\mathcal{B}^*\langle x \rangle^k \lesssim -\langle x \rangle^{k+\gamma-2} \leq 0.$$

A solution f to the evolution equation $\partial_t f = \mathcal{B}f$ satisfies

$$\frac{d}{dt}\int f\langle x\rangle^k\leq -\int f\langle x\rangle^{k+\gamma-2}\leq 0,$$

so that first

$$S_{\mathcal{B}}: L^1_k \to L^1_k, \ L^1_m \to L^1_m,$$
 uniformly bounded $\forall m \ge k$.

Observing that

$$\langle x \rangle^k \leq A^{2-\gamma} \langle x \rangle^{k+\gamma-2} + A^{k-m} \langle x \rangle^m, \quad \forall A > 0,$$

we compute

$$\frac{d}{dt}\int f\langle x\rangle^k + A^{\gamma-2}\int f\langle x\rangle^k \leq A^{k-m+\gamma-2}\int f\langle x\rangle^m,$$

and next

$$\frac{d}{dt}\left(e^{tA^{\gamma-2}}\int f\langle x\rangle^{k}\right)\leq e^{tA^{\gamma-2}}A^{k-m+\gamma-2}\int f_{0}\langle x\rangle^{m}.$$

L_k^1 estimate for S_B

 ${\cal B}$ satisfies the (weak) dissipativity condition

$$\mathcal{B}^*\langle x
angle^k \lesssim -\langle x
angle^{k+\gamma-2} \leq 0.$$

So that first

$$S_{\mathcal{B}}: L^1_k o L^1_k, \ L^1_m o L^1_m,$$
 uniformly bounded $\forall m \ge k.$

A solution f to the evolution equation $\partial_t f = \mathcal{B}f$ satisfies

$$\frac{d}{dt}\left(e^{tA^{\gamma-2}}\int f\langle x\rangle^k\right)\leq e^{tA^{\gamma-2}}A^{k-m+\gamma-2}\int f_0\langle x\rangle^m.$$

Integrating in time (using the Gronwall lemma), we deduce

$$\begin{split} \int f \langle x \rangle^k &\leq e^{-tA^{\gamma-2}} \int f_0 \langle x \rangle^k + A^{k-m} \int f_0 \langle x \rangle^m, \quad \forall A > 0, \\ &\leq \inf_{A > 0} \left(e^{-tA^{\gamma-2}} + A^{k-m} \right) \int f_0 \langle x \rangle^m \\ &=: \Theta(t) \int f_0 \langle x \rangle^m \end{split}$$

We find

$$\Theta(t) \leq t^{-2} + (t/\ln t^2)^{\frac{k-m}{2-\gamma}}$$

by making the choice $A := (t/\ln t^2)^{\frac{1}{2-\gamma}}$. We have $\Theta \in L^1$ when $m > k + 2 - \gamma$.

 L_k^p estimate for $S_{\mathcal{B}}$ (and next $S_{\mathcal{L}}$) in the case $\gamma \geq 2$ and p = 2

We use Nash trick and Nash inequality

$$\|f\|_{L^2}^{1+2/d} \le C_d \,\|f\|_{L^1}^{2/d} \,\|\nabla f\|_{L^2}$$

for a solution f to the evolution equation $\partial_t f = \mathcal{B}f$. Taking advantage of the available L^1 estimate (for M, R large enough)

$$\|f_t\|_{L^1} \lesssim e^{-t},$$

we may compute

$$egin{array}{lll} rac{d}{dt} \,\, \|f\|^2_{L^2} &\lesssim & - \, \|
abla f\|^2_{L^2} - 2\|f\|^2_{L^2} \ &\lesssim & - \, rac{\|f\|^{2(1+lpha)}_{L^2}}{\|f\|^{2lpha}_{L^1}} - 2\|f\|^2_{L^2}, \end{array}$$

with $\alpha := 2/d > 0$, so that

$$rac{d}{dt} \left(\|f\|_{L^2}^2 e^{2t}
ight) \quad \lesssim \quad - \; rac{\left(\|f\|_{L^2}^2 e^{2t}
ight)^{1+lpha}}{\|f_0\|_{L^1}^{2lpha}}.$$

Nonlinear ODE

We recall that the solution to the ODE

$$u' \leq -K \, u^{1+\alpha},$$

satisfies

$$u(t) \leq \frac{1}{(lpha K t)^{1/lpha}}.$$

The proof is elementary. We write equivalently

$$rac{du}{u^{1+lpha}} \leq -Kdt$$

and after integration in time, we get

$$u^{-\alpha}(t) \geq \alpha K t + u_0^{\alpha} \geq \alpha K t.$$

Using that result with the choice $\alpha = 2/d$ and $K = C ||f_0||_{l^1}^{-4/d}$, we deduce

$$\|f\|_{L^2}^2 e^{2t} \lesssim \frac{\|f_0\|_{L^1}^2}{t^{d/2}}$$

and finally

$$\|f\|_{L^2} \lesssim rac{{
m e}^{-t}}{t^{d/4}} \|f_0\|_{L^1}$$

Nonlinear ODE

We recall that the solution to the ODE

$$u'\leq -K\,u^{1+\alpha},$$

satisfies

$$u(t) \leq \frac{1}{(lpha K t)^{1/lpha}}.$$

Using that result with the choice $\alpha = 2/d$ and $K = C \|f_0\|_{L^1}^{-4/d}$, we deduce

$$\|f\|_{L^2}^2 e^{2t} \lesssim \frac{\|f_0\|_{L^1}^2}{t^{d/2}}$$

and finally

$$\|f\|_{L^2} \lesssim rac{e^{-t}}{t^{d/4}} \|f_0\|_{L^1}$$

We have established

$$S_{\mathcal{B}}(t):L^1
ightarrow L^2$$
 with rate $\Theta:=rac{e^{-t}}{t^{d/4}}\in L^1, \;\; ext{if} \;\; d\leq 3.$

In general, we have

$$S_{\mathcal{B}}(t): L^1 o L^p$$
 with rate $\Theta := rac{e^{-t}}{t^{d/2}},$

and whatever is $p \in [1,\infty]$, $d \ge 1$, $k \ge 0$, we may prove

 $(\mathcal{AS}_{\mathcal{B}})^{*N}(t): L^1 \to L^p_k$ with rate $\Theta \in L^1$, for $N \ge 1$ large enough.

Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov Dissipativity $\exists a \in \mathbb{R}$

$$\langle f^*, \mathcal{B}f \rangle \leq a \|f\|^2 \iff \|S_{\mathcal{B}}(t)f\| \leq e^{at}\|f\|$$

Hypo-dissipativity $\exists a \in \mathbb{R}$

$$\langle f^*, \mathcal{B}f \rangle \leq a |||f|||^2 \iff ||S_{\mathcal{B}}(t)f|| \leq Me^{at}||f||$$

• $\mathcal{B} - a$ dissipative implies $\mathcal{L} - (a + ||\mathcal{A}||)$ dissipative and we may sometime show $\mathcal{L} - \kappa$ hypodissipative with $\kappa \in [a, a + ||\mathcal{A}||)$.

Lyapunov condition $\exists a \in \mathbb{R}$ (or \mathbb{R}_{-}), $\exists \psi \geq 1$, $\exists \psi_{c} \lesssim \psi$ (supp ψ_{c} compact)

 $\mathcal{L}^*\psi \leq \mathbf{a}\psi + \psi_c$

• For positive semigroup in L^1 we have Kato's inequality: $(\text{sign} f)\mathcal{L}f \leq \mathcal{L}|f|$. Lyapunov condition then implies $\mathcal{B} - a$ is dissipative with $\mathcal{B} := \mathcal{L} - \psi_c$. When $\psi = 1$, we may compute

$$\begin{array}{lll} \langle f^*, \mathcal{B}f \rangle &=& \langle f^*, \mathcal{L}f \rangle - \langle f^*, \psi_c f \rangle \\ &\leq& \langle 1, \mathcal{L}|f| \rangle - \langle 1, \psi_c |f| \rangle \\ &=& \langle \mathcal{L}^*1 - \psi_c, |f| \rangle \\ &\leq& a \langle 1, |f| \rangle = a \|f\|_{L^1}. \end{array}$$

Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov Dissipativity $\exists a \in \mathbb{R}$

 $\langle f^*, \mathcal{B}f \rangle \leq a \|f\|^2 \iff \|S_{\mathcal{B}}(t)f\| \leq e^{at}\|f\|$

Hypo-dissipativity $\exists a \in \mathbb{R}$

 $\langle f^*, \mathcal{B}f \rangle \leq a \|\|f\|\|^2 \iff \|S_{\mathcal{B}}(t)f\| \leq Me^{at}\|f\|$

Lyapunov condition $\exists a \in \mathbb{R}$ (or \mathbb{R}_{-}), $\exists \psi \geq 1$, $\exists \psi_{c} \lesssim \psi$ (supp ψ_{c} compact)

 $\mathcal{L}^*\psi \leq \mathbf{a}\psi + \psi_{\mathbf{c}}$

Weakly dissipativity $a = 0, X_1 \subset X_0$

$$\langle f^*, \mathcal{B}f
angle_{X_1} \leq - \|f\|_{X_0} \iff ext{not clear}$$

but

$$\langle f^*, \mathcal{B}f \rangle_{X_1} \leq - \|f\|_{X_0}, \quad \langle f^*, \mathcal{B}f \rangle_{X_2} \leq 0, \quad X_2 \subset X_1 \subset X_0$$

imply

$$\|S_{\mathcal{B}}(t)f\|_{X_i} \leq \|f\|_{X_i}, \ i=1,2, \quad \|S_{\mathcal{B}}(t)f\|_{X_0} \leq \Theta(t)\|f\|_{X_2}.$$

Weak Lyapunov with a = 0, $\exists \psi_i, \psi_c \lesssim \psi_0 \lesssim \psi_1$

$$\mathcal{L}^*\psi_1 \leq -\psi_0 + \psi_c$$

 \bullet weak Lyapunov condition for $\mathcal{L} \Rightarrow$ weak dissipative property for \mathcal{B}

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- 3 Weyl + spectral maping theorem
 - 4 Krein-Rutman theorem
 - 5 Doblin-Harris theorem
 - 6 An application to neurosciences

Let's start with a picture

Weyl's theorem - characterization

Th 2.
(0)
$$\mathcal{L} = \mathcal{A} + \mathcal{B}$$
, where \mathcal{A} is $\mathcal{B}^{\zeta'}$ -bounded with $0 \leq \zeta' < 1$,
(1) $\|S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X \to X} \leq C_{\ell} e^{at}$, $\forall a > a^*$, $\forall \ell \geq 0$,
(2) $\int_0^{\infty} \|(\mathcal{A}S_{\mathcal{B}})^{(*n)}\|_{X \to D(\mathcal{B}^{\zeta})} e^{-at} dt < \infty$, $\forall a > a^*$, with $\zeta > \zeta'$,
(3) $\int_0^{\infty} \|(\mathcal{A}S_{\mathcal{B}})^{(*m)}\|_{X \to Y} e^{-at} dt < \infty$, $\forall a > a^*$, with $Y \subset X$ compact,
is equivalent to

(4) there exist $\xi_1, ..., \xi_J \in \overline{\Delta}_a$, there exist $\Pi_1, ..., \Pi_J$ some finite rank projectors, there exists $T_j \in \mathcal{B}(R\Pi_j)$ such that $\mathcal{L}\Pi_j = \Pi_j \mathcal{L} = T_j \Pi_j$, $\Sigma(T_j) = \{\xi_j\}$, in particular

$$\Sigma(\mathcal{L})\cap \bar{\Delta}_a = \{\xi_1,...,\xi_J\} \subset \Sigma_d(\Sigma)$$

and there exists a constant C_a such that

$$\|\mathcal{S}_{\mathcal{L}}(t) - \sum_{j=1}^{J} e^{tT_j} \Pi_j\|_{X o X} \leq C_a e^{at}, \quad \forall a > a^*$$

▷ Weyl (1910), Ribarič-Vidav (1969), Vidav (1974), Voigt (1980), M.-Scher (2016)

- It can be seen as a condition under which a *"spectral mapping theorem for the principal part of the spectrum holds"*
- Issue : constants are not constructive !!

Resolvent and semigroup

We define

$$\mathcal{R}_{\mathcal{L}}(\lambda) := (\lambda - \mathcal{L})^{-1},$$

when $\lambda - \mathcal{L} : D(\mathcal{L}) \to X$ is one-to-one. In that case, we write $\lambda \in \rho(\mathcal{L}) \subset \mathbb{C}$ the resolvent set. We have $\rho(\mathcal{L}) \supset \Delta_{\omega(S_{\mathcal{L}})} \neq \emptyset$, $\Delta_a := \{z \in \mathbb{C}; \Re ez > a\}$ and

$$\mathcal{R}_{\mathcal{L}}(\lambda) = \int_0^\infty S_{\mathcal{L}}(t) e^{-\lambda t} dt, \quad \forall \, \lambda \in \Delta_{\omega(\mathcal{L})}.$$
(4)

The counterpart of the Duhamel formulas are

$$\mathcal{R}_{\mathcal{L}} = \mathcal{R}_{\mathcal{B}} + \mathcal{R}_{\mathcal{B}}\mathcal{A}\mathcal{R}_{\mathcal{L}} = \mathcal{R}_{\mathcal{B}} + \mathcal{R}_{\mathcal{L}}\mathcal{A}\mathcal{R}_{\mathcal{L}}$$

and some counterpart of the iterated Duhamel formulas is e.g.

$$\mathcal{R}_{\mathcal{L}} = \mathcal{R}_{\mathcal{B}} + \cdots + (\mathcal{R}_{\mathcal{B}}\mathcal{A})^{(N-1)}\mathcal{R}_{\mathcal{B}} + (\mathcal{R}_{\mathcal{B}}\mathcal{A})^{N}\mathcal{R}_{\mathcal{L}}.$$

Inversing the Laplace transform (4), we get

$$\begin{split} S_{\mathcal{L}}(t) &= \frac{i}{2\pi} \int_{\uparrow_a} e^{zt} \mathcal{R}_{\mathcal{L}}(z) dz \\ &= S_{\mathcal{B}} + \dots + (S_{\mathcal{B}} \mathcal{A})^{*(N-1)} * S_{\mathcal{B}} + \frac{i}{2\pi} \int_{\uparrow_a} e^{zt} (\mathcal{R}_{\mathcal{B}}(z) \mathcal{A})^N \mathcal{R}_{\mathcal{L}}(z) dz \end{split}$$

Resolvent and spectrum

- We define the spectrum set $\Sigma(\mathcal{L}) := \mathbb{C} \setminus \rho(\mathcal{L})$.
- We define the point spectrum set (the set of eigenvalues)

$$\Sigma_P(\mathcal{L}) := \{\lambda \in \mathbb{C}; \exists f \in X \setminus \{0\} \ \mathcal{L}f = \lambda f\}.$$

- We say that $\lambda \in \Sigma(\mathcal{L})$ is isolated if $\exists r > 0$, $\Sigma(\mathcal{L}) \cap B(\lambda, r) = \{\lambda\}$.
- For $\lambda \in \Sigma_P(\mathcal{L})$, we define $M_{\lambda} := \lim_{n \to \infty} N(\lambda \mathcal{L})^n$ the almost algebraic eigenspace and $m_{aa} := \dim M(\mathcal{L} - \lambda) \in \{1..., \infty\}$ the "almost algebraic multiplicity".
- If it exists, the algebraic eigenspace \mathcal{E}_{λ} associated to $\lambda \in \Sigma_{P}(\mathcal{L})$ satisfies
 - there exists a projection Π which commutes with \mathcal{L} and satisfies $\Pi X = \mathcal{E}_{\lambda}$,
 - $-\mathcal{L}_{|\mathcal{E}_{\lambda}} \in \mathcal{B}(\mathcal{E}_{\lambda}), \ \Sigma_{P}(\mathcal{L}_{|\mathcal{E}_{\lambda}}) = \Sigma(\mathcal{L}_{|\mathcal{E}_{\lambda}}) = \{\lambda\} \text{ and } \lambda \notin \Sigma_{P}(\mathcal{L}_{|X_{0}}) \text{ with } X_{0} := (I \Pi)X.$
- We define the discrete spectrum set $\Sigma_d(\mathcal{L})$ as the set of $\lambda \in \Sigma_P(\mathcal{L})$ which is isolated and which algebraic multiplicity dim \mathcal{E}_{λ} is finite.

We have

$$\Sigma_d(\mathcal{L}) \subset \Sigma_P(\mathcal{L}) \subset \Sigma(\mathcal{L}), \quad M_\lambda \subset \mathcal{E}_\lambda \ \text{ if } \ \lambda \in \Sigma_P(\mathcal{L})$$

and

$$\Pi = \frac{i}{2\pi} \int_{|z-\lambda|=r/2} \mathcal{R}_{\mathcal{L}}(z) \, dz \quad \text{if} \quad \lambda \in \Sigma_d(\mathcal{L}).$$

Sketch of the proof of Weyl + spectral mapping theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

$$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + \Pi^{\perp} S_{\mathcal{L}} \Pi^{\perp},$$

with $\Pi^{\perp} := I - \Pi$, $\Sigma(\mathcal{L}\Pi^{\perp}) \cap \Delta_{a^*} = \emptyset$ and write the (iterated) Duhamel formula

$$\mathcal{S}_{\mathcal{L}} = \sum_{\ell=0}^{N-1} \mathcal{S}_{\mathcal{B}} * (\mathcal{A}\mathcal{S}_{\mathcal{B}})^{(*\ell)} + \mathcal{S}_{\mathcal{L}} * (\mathcal{A}\mathcal{S}_{\mathcal{B}})^{(*N)}$$

Using the inverse Laplace formula for $b > \omega(\mathcal{L}) \ge s(\mathcal{L}) = \sup \Re e\Sigma(\mathcal{L})$ and the fact that $\Pi^{\perp} R_{\mathcal{L}}(z)$ is analytic in Δ_{a^*} , we get

$$\{\Pi^{\perp} S_{\mathcal{L}}\} * (\mathcal{A}S_{\mathcal{B}})^{(*N)} = \frac{i}{2\pi} \int_{b-i\infty}^{b+i\infty} e^{zt} \Pi^{\perp} R_{\mathcal{L}}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{N} dz$$
$$= \lim_{M \to \infty} \frac{i}{2\pi} \int_{a-iM}^{a+iM} e^{zt} \Pi^{\perp} R_{\mathcal{L}}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{N} dz$$

These three identities together

$$S_{\mathcal{L}} = \Pi S_{\mathcal{L}} + \Pi^{\perp} \{ \sum_{\ell=0}^{N-1} S_{\mathcal{B}} * (\mathcal{A}S_{\mathcal{B}})^{(*\ell)} \} \Pi^{\perp}$$

+ $\frac{i}{2\pi} \int_{\uparrow_{a}} e^{zt} \Pi^{\perp} R_{\mathcal{L}}(z) (\mathcal{A}R_{\mathcal{B}}(z))^{N} dz = \mathcal{O}(e^{at})?$

The key estimate on the last term

We clearly have

 $\sup_{z=a+iy, y\in [-M,M]} \|\Pi^{\perp} R_{\mathcal{L}}(z) (\mathcal{A} R_{\mathcal{B}}(z))^{N}\| \leq C < \infty \quad (\text{not constructive!})$

and it is then enough to get the bound

 $\|R_{\mathcal{L}}(z)(\mathcal{A}R_{\mathcal{B}}(z))^{N}\| \leq C/|y|^{2}, \quad \forall z = a + iy, |y| \geq M, a > a_{*}$

We assume (in order to make the proof simpler) that $\zeta = 1$ in estimate (2), namely

$$\|(\mathcal{AS}_{\mathcal{B}})^{(*n)}\|_{X\to X_1} = \mathcal{O}(e^{at}) \quad \forall t \ge 0,$$

with $X_1 := D(\mathcal{L}) = D(\mathcal{B})$, which implies

$$\|(\mathcal{A}R_{\mathcal{B}}(z))^n\|_{X\to X_1}\leq C_a \quad \forall \, z=a+iy, \,\, a>a_*.$$

We also assume (for the same reason) that $\zeta'=0$, so that

$$\mathcal{A}\in\mathcal{B}(X)$$
 and $R_{\mathcal{B}}(z)=rac{1}{z}(R_{\mathcal{B}}(z)\mathcal{B}-I)\in\mathcal{L}(X_1,X)$

imply

$$\|\mathcal{A}R_{\mathcal{B}}(z)\|_{X_1 \to X} \leq C_a/|z| \quad \forall z = a + iy, \ a > a_*.$$

The two estimates together imply

$$(*) \qquad \|(\mathcal{A}\mathcal{R}_{\mathcal{B}}(z))^{n+1}\|_{X\to X} \leq C_a/|z| \quad \forall \, z=a+iy, \, a>a_*.$$

The key estimate on the last term - 2nd step

We write

$$R_{\mathcal{L}}(I - \mathcal{V}) = \mathcal{U}$$

with

$$\mathcal{U}:=\sum_{\ell=0}^n R_\mathcal{B}(\mathcal{A}R_\mathcal{B})^\ell, \quad \mathcal{V}:=\left(\mathcal{A}R_\mathcal{B}
ight)^{n+1}$$

For M large enough

$$(**) \qquad \|\mathcal{V}(z)\| \leq 1/2 \quad \forall \, z = a + iy, \ |y| \geq M,$$

and we may write the Neuman series

$$R_{\mathcal{L}}(z) = \underbrace{\mathcal{U}(z)}_{\text{bounded}} \underbrace{\sum_{j=0}^{\infty} \mathcal{V}(z)^{j}}_{\text{bounded}}$$

For N = 2(n + 1), we finally get from (*) and (**)

$$\|R_{\mathcal{L}}(z)(\mathcal{A}R_{\mathcal{B}}(z))^{N}\| \leq C/\langle y \rangle^{2}, \quad \forall z = a + iy, \, |y| \geq M$$

The key argument for the first term

We write again

$$R_{\mathcal{L}}(I - \mathcal{V}) = \mathcal{U}$$

with

$$\mathcal{U}:=\sum_{\ell=0}^n R_\mathcal{B}(\mathcal{A}R_\mathcal{B})^\ell, \quad \mathcal{V}:=(\mathcal{A}R_\mathcal{B})^{n+1}$$

Because

- I V is holomorphic on Δ_{a^*} ,
- it is a compact perturbation of the identity
- it satisfies $I \mathcal{V}(z) \rightarrow I$ when $\Re ez \rightarrow \infty$,

one may use the theory of *degenerate-meromorphic functions* of Ribarič and Vidav (1969), and conclude that $\mathcal{V}(z)$ is invertible outside of a discrete set \mathcal{D} of Δ_{a^*} .

That implies that $\Sigma(\mathcal{L}) \cap \Delta_{a^*} = \mathcal{D}$ is a discrete set of Δ_* .

On the other hand, thanks to the Fredholm alternative, one deduces that the eigenspace associated to each spectral value $\lambda \in D$ is non zero and finite dimensional, so that $\lambda \in \Sigma_d(\mathcal{L})$.

We define

$$\Pi = \frac{i}{2\pi} \int_{\uparrow_a} \mathcal{R}_{\mathcal{L}}(z) \, dz, \quad \text{with} \quad \uparrow_a \cap \Sigma(\mathcal{L}) = \emptyset.$$

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- 3 Weyl + spectral maping theorem
- 4 Krein-Rutman theorem
 - 5 Doblin-Harris theorem
 - 6 An application to neurosciences

Let's start again with a picture

The KR theorem issue

For a positive semigroup $S_t = S_{\mathcal{L}}(t) = e^{t\mathcal{L}}$ with generator \mathcal{L} on a Banach lattice X with positive cone X_+ , we ask for

• existence of a first eigenvalue triplet solution $(\lambda, f_1, \phi_1) \in \mathbb{R} \times X \times X'$:

$$f_1 \geq 0, \ \mathcal{L}f_1 = \lambda_1 f_1, \quad \phi_1 \geq 0, \ \mathcal{L}^* \phi_1 = \lambda_1 \phi_1$$

• suitable geometric properties as

(1) f₁ > 0 unique positive eigenvector for L, N(L - λ₁)^k = vectf₁ and φ₁ > 0 unique positive eigenvector for L*, N(L* - λ₁)^k = vectφ₁
(1') Σ₊(L) - λ₁ is a (discrete) subgroup of iℝ, with Σ₊(L) := {λ, λ ∈ Σ_P(L), ℜeλ = λ₁}
(2) Σ₊(L) = {λ₁}

• asymptotic attractivity/stability of the principal eigenfunction

$$e^{t\mathcal{L}}f_0 - e^{\lambda_1 t}f_1\langle \phi_1, f_0 \rangle = o(e^{\lambda_1 t}),$$

with constructive rate.

Krein-Rutmann for positive operator

Th 3. Consider a semigroup generator \mathcal{L} on a Banach lattice such that

- (1) \mathcal{L} such as in Weyl's Theorem for some $a^* \in \mathbb{R}$;
- (2) $\exists b > a^*$ and $\psi \in D(\mathcal{L}^*) \cap X'_+ \setminus \{0\}$ such that $\mathcal{L}^* \psi \ge b \psi$;
- (3) $S_{\mathcal{L}}$ is positive (and \mathcal{L} satisfies Kato's inequalities);

(4) $-\mathcal{L}$ satisfies a strong maximum principle.

Defining $\lambda_1 := s(\mathcal{L})$, there holds

 $a^* < \lambda_1 = \omega(\mathcal{L}) \quad \text{and} \quad \lambda_1 \in \Sigma_d(\mathcal{L}),$

and there exists $0 < f_1 \in D(\mathcal{L})$ and $0 < \phi_1 \in D(\mathcal{L}^*)$ such that

$$\mathcal{L}f_1 = \lambda_1 f_1, \quad \mathcal{L}^* \phi_1 = \lambda_1 \phi_1, \quad R\Pi_{\mathcal{L},\lambda_1} = \mathsf{Vect}(f_1),$$

and then

$$\Pi_{\mathcal{L},\lambda_1} f = \langle f, \phi_1 \rangle f_1 \quad \forall f \in X.$$

Moreover, there exist $\alpha \in (a^*, \lambda_1)$ and C > 0 such that for any $f_0 \in X$

$$\|S_{\mathcal{L}}(t)f_0-e^{\lambda_1 t}\,\Pi_{\mathcal{L},\lambda_1}f_0\|_X\leq C\,e^{\alpha t}\,\|f_0-\Pi_{\mathcal{L},\lambda_1}f_0\|_X\qquad\forall\,t\geq 0.$$

 \rhd In M. & Scher, that is mainly a consequence of Weyl + spectral mapping theorem by establishing furthemore that

$$\Sigma(\mathcal{L}) \cap \Delta_{a^*} = \{\lambda_1\}, \quad \lambda_1 \in \mathbb{R}.$$

Existence part in the KR theorem

Th 3' Assumptions:

- (1) S is a positive semigroup
- (2) $\exists \kappa_0 \in \mathbb{R} \ \exists \psi_0 \in X'_+ \setminus \{0\} \ \mathcal{L}^* \psi_0 \geq \kappa_0 \psi_0$
- (3) (dissipative case) splitting structure with $\kappa_{\mathcal{B}} < \kappa_0$

(3') (weakly dissipative case) $\kappa_0=$ 0, $\exists \Theta \in L^1(\mathbb{R}_+)$ such that

$$\|f_t\| \leq M\|f_0\| + \int_0^t \Theta(t-s)[f_s] \, ds, \quad f_t := S_t f_0,$$

with $[f] := \langle \psi_0, |f| \rangle$ and $X \subset \mathcal{X}$ (weakly) compact, with $\|f\|_{\mathcal{X}} := [f]$.

Conclusion: \exists a solution (λ, f_1, ϕ_1) to the first eigenvalue triplet problem Example: (1) The Fokker-Planck operator

$$\mathcal{L}f = \Delta f + \operatorname{div}(Ef) + cf, \quad E :=
abla |x|^{\gamma}/\gamma, \ \gamma > 0, \quad c \in C_c(\mathbb{R}^d).$$

(2) The condition (3') is natural under a splitting structure

$$S_{\mathcal{L}} = S_{\mathcal{B}} + \cdots + (S_{\mathcal{B}}\mathcal{A})^{*(N-1)} * S_{\mathcal{B}} + (S_{\mathcal{B}}\mathcal{A})^{*N} * S_{\mathcal{L}},$$

with \mathcal{A} bounded, \mathcal{B} weakly dissipative, $(S_{\mathcal{B}}\mathcal{A})^{*N}: \mathcal{X} \to X$.

Existence - 1st proof \sim Collet-Martínez-Méléard-San Martín?

We assume (case N = 1 and $X = M^1$) with $\kappa_B < \kappa_0$

$$\begin{split} [f_t] &\geq e^{\kappa_0(t-s)}[f_s], \ \forall t > s, \quad f_\tau := S_\tau f_0 \\ , \qquad \|f_t\| &\leq e^{\kappa_B t} \|f_0\| + C_2 \int_0^t e^{\kappa_B(t-s)}[f_s] \, ds \ \Leftrightarrow \ C_1 = 1 \end{split}$$

Step 1. We define

$$\mathcal{C} := \{ f \ge 0, \ [f] = 1, \ \|f\| \le M \}, \quad \Phi_t(f_0) := \frac{f_t}{[f_t]}.$$

For $f_0 \in C$ and $\alpha := \kappa_{\mathcal{B}} - \kappa_0 < 0$, we compute for $t \leq t_0$,

$$\begin{split} \|\Phi_t(f_0)\| &\leq e^{\alpha t} \|f_0\| + C_2 \int_0^t e^{\alpha (t-s)} \, ds \\ &\leq (1+\alpha t/2)M + C_2 t \leq M \end{split}$$

 $t_0 > 0$ small and M > 0 large. That implies $\Phi_t : C \to C$. From the Schauder/Tykonov theorem:

$$\exists \xi_t \in \mathcal{C}, \quad \Phi_t(\xi_t) = \xi_t.$$

Existence - 1st proof (continuation)

Step 1. We reformulate

$$\exists f_t \in \mathcal{C}, \ \exists \lambda'_t \in [\kappa_0, \kappa_1], \quad S_t f_t = e^{\lambda'_t t} f_t.$$

Step 2. We reformulate again by choising $t = 2^{-n}$:

$$\exists f_n \in \mathcal{C}, \ \exists \lambda'_n \in [\kappa_0, \kappa_1], \quad S_t f_n = e^{\lambda'_n t} f_n, \quad \forall t \in \mathbb{D}_m, m \leq n,$$

with

 $\mathbb{D}_m := \{t = j2^{-m}\} = 2^{-m}\mathbb{N} = \text{ part of dyadic real numbers}$ By compactness, $\exists \lambda_1 \in [\kappa_0, \kappa_1], \exists f_1 \in \mathcal{C} \text{ such that}$

$$S_t f_{n_k} = e^{\lambda'_{n_k} t} f_{n_k}, \quad \lambda_{n_k} \to \lambda_1, \ f_{n_k} \rightharpoonup f_1.$$

We deduce

$$S_t f_1 = e^{\lambda_1 t} f_1, \quad \forall t \in \mathbb{D}_m, \ \forall m$$

and then

$$S_t f_1 = e^{\lambda_1 t} f_1, \quad \forall t \ge 0.$$

Existence - 2nd proof \sim Cañizo-M

We assume (general dissipative case for N and X) with $\kappa_{\mathcal{B}} < \kappa_0$

$$\begin{split} & [f_t] \ge e^{\kappa_0(t-s)}[f_s], \ \forall t > s, \quad f_\tau := S_\tau f_0 \\ &, \qquad \|f_t\| \le C_1 e^{\kappa_{\mathcal{B}} t} \|f_0\| + C_2 \int_0^t e^{\kappa_{\mathcal{B}}(t-s)}[f_s] \, ds, \ C_1 > 1 \end{split}$$

Step 1. With the same notations

$$\|\Phi_{T_0}(f_0)\| \leq C_1 e^{\alpha T_0} M + \frac{C_2}{|\alpha|} \leq M,$$

for T_0 and M > 0 large enough. That implies $\Phi_{T_0} : \mathcal{C} \to \mathcal{C}$. From the Schauder/Tykonov theorem:

$$\exists f_{T_0} \in X_+, \ [f_{T_0}] = 1, \ S_{T_0}f_{T_0} = e^{\lambda_1 T_0}f_{T_0}.$$

We cannot make $T_0 \rightarrow 0$!!

Existence - 2nd proof (continuation)

Step 2. We denote $\bar{S}_t := S_t e^{-\lambda_1 t}$. We have built a periodic solution

$$\bar{S}_t f_{T_0} = \bar{S}_{t-kT_0} f_{T_0}, \quad k := [t/T_0], \quad \forall t > 0.$$

For any $t \ge 0$, we deduce

$$\begin{split} & [\bar{S}_t f_{\tau_0}] \geq e^{(\kappa_0 - \lambda_1)(t - kT_0)} [f_{\tau_0}] \geq e^{(\kappa_0 - \lambda_1)T_0} =: r_* > 0, \\ & \|\bar{S}_t f_{\tau_0}\| \leq C_2 e^{(\kappa_2 - \lambda_1)(t - kT_0)} \|f_{\tau_0}\| \leq C_2 e^{(\kappa_2 - \lambda_1)T_0)} \|f_{\tau_0}\| =: R^* < \infty. \end{split}$$

The mean u_T satisfies the same estimates:

$$u_T := rac{1}{T} \int_0^T ar{S}_t f_{T_0} dt \in \mathcal{G} := \{g \in X_+; \ [g] \ge r_*, \ \|g\| \le R^*\}.$$

By compactness, there exists $f_1 \in \mathcal{G}$ and (T_k) such that $u_{T_k} \rightharpoonup f_1$. The von Neumann, Birkhoff mean ergodicity trick leads to

$$\begin{split} \bar{S}_t f_1 - f_1 &= \lim_{k \to \infty} \Big\{ \frac{1}{T_k} \int_0^{T_k} \bar{S}_t \bar{S}_s f_{T_0} ds - \frac{1}{T_k} \int_0^{T_k} \bar{S}_s f_{T_0} ds \Big\} \\ &= \lim_{k \to \infty} \Big\{ \frac{1}{T_k} \int_{T_k}^{T_k + t} \bar{S}_s f_{T_0} ds - \frac{1}{T_k} \int_0^t \bar{S}_s f_{T_0} ds \Big\} = 0, \end{split}$$

because $(\bar{S}_s f_{T_0})$ is uniformly bounded. We deduce $\mathcal{L}f_1 = \lambda_1 f_1$.

Existence - third proof (dynamical approach)

We assume (including weakly dissipative case)

$$\begin{split} & [f_t] \ge [f_s], \ \forall t > s, \quad \kappa_0 := 0, \\ & \|f_t\| \le M \|f_0\| + \int_0^t \Theta(t-s)[f_s] \, ds, \ M \ge 1 \end{split}$$

For some $g_0 \in X_+$ such that $[g_0] = 1$, we set

$$\mathcal{C} := \{f \ge 0, \ [f] = 1, \ \|f\| \le R\}, \quad R := \max(2\|\Theta\|_{L^1}, \|g_0\|)$$

and we define the increasing function

$$\lambda(t) := \inf_{f \in \mathcal{C}} [S_t f].$$

We have the alternative

- (case 1) sup $\lambda \leq 2M$
- (case 2) sup $\lambda > 2M$

Existence - third proof (case 1)

By compactness, there exists $f_0 \in \mathcal{C}$ such that

$$\sup_{t\geq 0}[S_tf_0]\leq 2M.$$

We remind the iterated Duhamel formula

$$S = v + (S_{\mathcal{B}}\mathcal{A})^{(*N)} * S$$

and the associated mean equation

$$U_T = V_T + W_T$$

with

$$U_{\mathcal{T}} := \frac{1}{T} \int_0^T S_t dt, \ v_{\mathcal{T}} := \frac{1}{T} \int_0^T v_t dt, \ W_{\mathcal{T}} := \frac{1}{T} \int_0^T (S_{\mathcal{B}} \mathcal{A})^{(*N)} * S dt.$$

Thanks to Fubini and positivity, we have

$$W_{\mathcal{T}} \leq \int_0^{\mathcal{T}} (S_{\mathcal{B}}\mathcal{A})^{(*N)} dt U_{\mathcal{T}}$$

which implies

 $\|W_T f_0\| \le \|\Theta\|_{L^1}[U_T f_0]$

Existence - third proof (case 1 - continuation)

In a simpler way

$$\|V_T f_0\| \leq M \|f_0\|.$$

All together, we have '

$$\|U_T f_0\| \le M \|f_0\| + \|\Theta\|_{L^1} [U_T f_0]$$
 and $1 \le [S_T f_0] \le 2M$.

From the first inequality, we deduce that $||U_T f_0||$ is uniformly bounded on $T \in \mathbb{R}_+$. By compactness, there exists $T_k \to +\infty$ and $f_1 \in X_+$ such that $U_{T_k} f_0 \to f_1$. Thanks to the second inequality, we have $[f_1] \ge 1$. From the same and usual mean ergodic trick, for any fixed s > 0, we have

$$S(s)f_{1} - f_{1} = \lim_{k \to \infty} \left\{ \frac{1}{T_{k}} \int_{0}^{T_{k}} S(s)S(t)f_{0}dt - \frac{1}{T_{k}} \int_{0}^{T_{k}} S(t)f_{0}dt \right\}$$

=
$$\lim_{k \to \infty} \left\{ \frac{1}{T_{k}} \int_{T_{k}}^{T_{k}+s} S(t)f_{0}dt - \frac{1}{T_{k}} \int_{0}^{s} S(t)f_{0}dt \right\} = 0.$$

That implies that f_1 is a stationary solution, and thus $\lambda_1 = 0$.

Existence - third proof (case 2 - step 1)

Step 1 From the assumption

$$\exists T_0 > 0, \quad \forall f \in \mathcal{C}, \quad [S_{T_0}f] \ge 2M.$$

For $f \in C$, we define

$$\Phi_{T_0}f:=\frac{S_{T_0}f}{[S_{T_0}f]},$$

so that $\Phi_{T_0}f \ge 0$ and $[\Phi_{T_0}f] = 1$. Because of the above assumption and the Lyapunov like estimate, we have

$$\|\Phi_{T_0}f\| \leq \frac{1}{2}\|f\| + \|\Theta\|_{L^1} \leq R.$$

We have established $\Phi_{T_0} : \mathcal{C} \to \mathcal{C}$ and from the Schauder/Tykonov theorem, there exists $f_{T_0} \in \mathcal{C}$ such that $\Phi_{T_0} f_{T_0} = f_{T_0}$. In other words : we have built a pair of "almost eigenvalue and eigenfunction"

$$f_{T_0} \geq 0, \quad [f_{T_0}] = 1, \quad S_{T_0} f_{T_0} = e^{\lambda_1 T_0} f_{T_0},$$

with $e^{\lambda_1 T_0} = [S_{T_0} f]$ and thus $\lambda_1 \in [0, \kappa_1]$.

Step 2 We conclude as in the 2nd proof !

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- 3 Weyl + spectral maping theorem
- 4 Krein-Rutman theorem
- 5 Doblin-Harris theorem
- 6 An application to neurosciences

Hypothesis

We consider a Markov semigroup $S_t = S_{\mathcal{L}}(t)$ defined on $X := L^1(\mathbb{R}^d)$, meaning $S_t \ge 0$ and $S_t^* = 1$. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions $m_0, m_1 : \mathbb{R}^d \to [1, \infty), m_1 \ge m_0, m_0(x) \to \infty$ as $x \to \infty$, and two real constants b, R > 0 such that

$$\mathcal{L}^* m_1 \leq -m_0 + b \, \mathbf{1}_{B_R}.$$

(H2) Doeblin-Harris condition. $\exists T > 0 \forall R > 0 \exists \nu \ge 0, \neq 0$, such that

$$S_{T}g \geq
u \int_{B_{R}} g, \quad \forall \, g \in X_{+}.$$

(H3) There are two other weight functions $m_2, m_3: \mathbb{R}^d \to [1,\infty), \ m_3 \geq m_2 \geq m_1$ such that

$$\mathcal{L}^* m_3 \leq -m_2 + b \mathbf{1}_{B_R}$$

and $m_2 \leq m_0^{\theta} m_3^{1-\theta}$ with $\theta \in (1/2, 1]$.

Conclusion

Theorem 4

Consider a Markov semigroup S on $X := L^1(m_3)$ which satisfies (H1), (H2), (H3). There holds

 $\|S_t f_0\|_{L^1} \lesssim \Theta(t) \|f_0\|_{L^1(m_3)}, \quad \forall t \ge 0, \ \forall f_0 \in X, \ \langle f_0 \rangle = 0,$

for the function Θ given by

$$\Theta(t) := \inf_{\lambda>0} \{ e^{-\varepsilon_{\lambda}t} + \xi_{\lambda} \},$$

where

$$m_1 \leq rac{1}{2arepsilon_\lambda}m_0 + \eta_\lambda m_3, \; orall \lambda, \quad arepsilon_\lambda, \eta_\lambda o 0 \; ext{as} \; \lambda o \infty.$$

Comments

- The assumption (H3) is not necessary: m_1 satsisfies a Lyaponov condition implies that $\phi(m_1)$ satsisfies a Lyaponov condition for any $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ concave.
- The probabilistic proof use Martingale argument, renewal theory and (if possible?) constants are not easily tractable.
- In the probabilistic approach, one writes $m_0=\xi(m_1),\,\xi:\mathbb{R}_+ o\mathbb{R}_+$ concave, and

$$ilde{\Theta}(t):=rac{\mathcal{C}}{\xi(H^{-1}(t))},\quad H(u):=\int_1^u rac{ds}{\xi(s)}.$$

- If
$$\xi(s) = s$$
 then $\tilde{\Theta}(t) = e^{-\lambda t}$;
- If $m_1 = \langle x \rangle^k$, $m_0 := \langle x \rangle^{k+\gamma-2}$ then $\tilde{\Theta}(t) = t^{1-\frac{k}{2-\gamma}} >> \Theta(t)$;
- If $m_1 = e^{\kappa \langle x \rangle^s}$, $m_0 := \langle x \rangle^{s+\gamma-2} e^{\kappa \langle x \rangle^s}$ then $\tilde{\Theta}(t) \simeq e^{-\lambda t^{\frac{s}{2-\gamma}}} \simeq \Theta(t)$.

A second version of the subgeometric Doeblin-Harris theorem

Consider a Markov semigroup $S_t = S_{\mathcal{L}}(t)$ defined on $X := L_m^1(\mathbb{R}^D)$, meaning $S_t \ge 0$ and $S_t^* = 1$. We furthermore assume

(H1) Subgeometric Lyapunov condition. There is a weight function $m : \mathbb{R}^{D} \to [1, \infty)$, $m \nearrow \infty$, an increasing concave function $\varphi : [1, \infty) \to [1, \infty)$, $\varphi \nearrow \infty$, and three real constants $b, R, \delta > 0$ such that

$$\mathcal{L}^* m \leq -\delta \varphi(m) + b \mathbf{1}_{B_R}, \quad B_R := \{ y \in \mathbb{R}^D; \ V(y) \leq R \}$$

(H2) Doeblin-Harris irreducibility condition. $\exists T > 0 \forall R > 0 \exists \nu \ge 0, \neq 0$, such that

$$S_T g \geq
u \int_{B_R} g, \quad \forall g \in X_+.$$

Theorem 4'

For any $f_0 \in X$, $\langle f_0 \rangle = 0$, there holds

$$\forall t \geq 0, \quad \|S_t f_0\| \lesssim \frac{1}{H^{-1}(t)} \|f_0\|_m, \quad H(u) := \int_1^u \frac{ds}{\varphi(u)}$$

In particular,

$$\frac{1}{H^{-1}(t)} = e^{-t} \text{ if } \varphi(u) = u, \quad \frac{1}{H^{-1}(t)} = t^{-1/a} \text{ if } \varphi(u) = u^{1-a}.$$

several proofs :

Theorem 4 (geometric case)

- Doeblin
- Harris, Proceedings 1956
- Meyn, Tweedie, AAP 1992, 1993, 1994
- Hairer, Mattingly, Proceedings 2011
- Cañizo-M. (semigroup approach)

Theorem 4 (subgeometric case)

- Douc, Fort, Guillin, SPA 2009
- Hairer, unpublished lecture notes, 2016
- Cañizo-M. (semigroup approach)

Doeblin-Harris irreducibility/strong positivity condition implies coupling weak generator Lyapunov implies weak semigroup Lyapunov

Lemma 5

The Harris condition (H2) implies the coupling condition: (H2') $\exists \gamma_H \in (0, 1), A > 0$,

$$|f||_m \leq A ||f||, \ \langle f \rangle = 0 \implies ||S_T f|| \leq \gamma_H ||f||.$$

proof : splitting $\mathbb{R}^D = \mathcal{C}_R \cup \mathcal{C}_R^c$

Lemma 6

The generator Lyapunov condition (H1) implies the semigroup Lyapunov condition: (H1') $\forall t > 0, \exists K_t \ge 0$,

$$\|S_t f_0\|_m + t \|S_t f_0\|_{\varphi(m)} \le \|f_0\|_m + K_t \|f_0\|,$$

proof : integration in time

About Lemma 5 : contraction and strict contraction

Rk 1. Assuming just that (S_t) is a Markov semigroup, we have

$$|S_t f| = |S_t f_+ - S_t f_-| \le |S_t f_+| + |S_t f_-| = S_t |f|.$$

Integrating, we deduce that (S_t) is a L^1 contraction

$$\int |S_t f| \leq \int S_t |f| = \int |f| S_t^* 1 = \int |f|.$$

Rk 2. We assume furthermore the strong Doeblin-Harris condition:

$$(\text{strong H2}) \qquad \exists \ T, \exists \ \nu, \quad S_T g \geq \nu \int_{\mathbb{R}^D} g, \quad \forall \ g \in X_+.$$

For $f \in L^1$, $\langle f \rangle = 0$, we have

$$S_T f_{\pm} \geq \nu \int_{\mathbb{R}^D} f_{\pm} = \frac{\nu}{2} \int_{\mathbb{R}^D} |f| =: \eta.$$

We may adapt the proof in Rk 1 in the following way

$$\begin{aligned} |S_{T}f| &= |S_{T}f_{+} - \eta - (S_{T}f_{-} - \eta)| \\ &\leq |S_{T}f_{+} - \eta| + |S_{T}f_{-} - \eta| = S_{T}|f| - 2\eta. \end{aligned}$$

Integrating, we deduce that (S_T) is a strict contraction

$$\|S_{\tau}f\|_{L^{1}} \leq \|f\|_{L^{1}} - 2\|\eta\|_{L^{1}} = (1 - \langle \nu \rangle) \|f\|_{L^{1}}$$

Proof of Lemma 5: the Harris condition (H2) implies the coupling condition (H2') Rk 3. Assuming (H2), we have similarly

$$\int |S_{T}f| \leq \gamma_{H} \int |f| \quad \text{if} \quad \int |f| m \leq \frac{m(R)}{4} \int |f|,$$

with

$$\gamma_{H} := 1 - \langle \nu \rangle / 2 \in (0, 1).$$

Indeed, we mainly observe that

$$\begin{split} \mathcal{S}_{T}f_{\pm} &\geq \nu \int_{\mathbb{R}^{D}} f_{\pm} - \nu \int_{\mathcal{B}_{R}^{c}} f_{\pm} \\ &\geq \frac{\nu}{2} \int_{\mathbb{R}^{D}} |f| - \nu \int_{\mathcal{B}_{R}^{c}} |f| \\ &\geq \frac{\nu}{2} \int_{\mathbb{R}^{D}} |f| - \frac{\nu}{m(R)} \int_{\mathbb{R}^{D}} |f| m \\ &\geq \frac{\nu}{2} \int_{\mathbb{R}^{D}} |f| - \frac{\nu}{4} \int_{\mathbb{R}^{D}} |f| \\ &= \frac{\nu}{4} \int_{\mathbb{R}^{D}} |f|, \end{split}$$

and we then follow the same proof as when we have assumed (strong H2).

Strict contraction for time discrete semigroup $S := S_T$

S satisfies a Lyapunov operator condition (H1'') if $\exists \gamma_L \in (0,1), \ K \geq 0$

$$\|Sf\|_m + \gamma_L \|Sf\|_{\varphi(m)} \le \|f\|_m + K \|f\|, \quad \forall f$$

S satisfies a coupling operator condition (H2") if $\exists \gamma_H \in (0,1), A > 0$,

$$\|f\|_m \leq A\|f\|, \ \langle f \rangle = 0 \implies \|Sf\| \leq \gamma_H \|f\|.$$

Lemma 7

If $A > K/\gamma_L$ there exists $\alpha > 0$ and an equivalent norm $\|\cdot\|_m$ to $\|\cdot\|_m$ such that

$$|||Sf|||_m + \alpha ||Sf||_{\varphi(m)} \le |||f|||_m, \quad \forall f, \ \langle f \rangle = 0.$$

Proof: a hypocoercivity trick and an alternative.

We introduce the equivalent norm for convenient choice of $\beta, \gamma > 0$

$$|||f|||_{m} := ||f|| + \beta ||f||_{\varphi(m)} + \gamma ||f||_{m}^{*}$$

If $||f||_{\varphi(m)} \leq A||f||$, we use the coupling condition (H2") If $||f||_{\varphi(m)} \geq A||f||$, we use the Lyapunov condition (H1")

 * modified norm \simeq "hypodissipativity trick"

Subgeometric convergence for time discrete semigroup $S := S_T$

We assume that S satisfies (H1") and (H2") for two pairs $m_i, \varphi_i, K_i, \gamma_{Li}$ and A_i, K_i, γ_{Hi} with $A_i > K_i / \gamma_{Hi}$, $m_1 \le m_2$, $\varphi_1(m_1) \le \varphi_2(m_2)$, as well as the interpolation condition

(H3)
$$\lambda m_1 \leq \varphi_1(m_1) + \xi(\lambda)m_2, \forall \lambda > 0,$$

with $\xi : \mathbb{R}_+ \to \mathbb{R}_+$, $\xi(\lambda)/\lambda \to 0$ as $\lambda \to 0$. That means $\varphi_1(m_1) << m_1 << m_2$.

Lemma 8

Under the above conditions, for any f, $\langle f \rangle = 0$,

$$\|S^n f\| \lesssim \tilde{\Theta}(n) \|f\|_{m_2}, \quad \forall n,$$

with

$$ilde{\Theta}(n) = rac{\Theta(n/2)}{n}, \quad \Theta(t) := F^{-1}(t), \quad F(\lambda) := \int_{\lambda}^{1} rac{ds}{\xi^*(heta s)}$$

Proof:

$$|||Sf|||_{m_i} + \alpha ||Sf||_{\varphi_i(m_i)} \le |||f|||_{m_i}$$

implies

$$|||Sf|||_{m_1} + \alpha \lambda ||Sf||_{m_1} \le |||f|||_{m_1} + \alpha \xi(\lambda) |||f|||_{m_2}, \quad \forall \lambda > 0,$$

and next

$$|||S^{n+1}f|||_{m_1} \le (1 - \theta \lambda_n) |||S^n f|||_{m_1} + \alpha \xi(\lambda_n) |||f|||_{m_2}$$

Outline of the talk

Introduction

- 2 Shrinkage and enlargement
- Weyl + spectral maping theorem
- 4 Krein-Rutman theorem
- 5 Doblin-Harris theorem
- 6 An application to neurosciences

Example 2 : the age structured equation