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Evolution equation and semigroup

We consider an evolution equation
of = LFf, f(0) =,

and the associated semigroup of operators Sz (t) defined through the relation
Sc(t)fo := f(t) on a Banach space X. Our purpose is then to explain when and how we
can show that the semigroup splits as

Sc(t) = So(t) + Si(t),

where
{ S1(t) ranges in a finite dimensional non trivial subspace of X

and [[So(8)[| = o([|S1(2)[]) as ¢ — oo.

Better, we would like to identify some cases where, if possible in a
quantitative/constructive way,

lim |le~*™tS(t) — P|| = 0,
t—oo

for some projector P € B(X) (with rank P = 1 if possible!) and real number (spectral
bound) s(A) € R.
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Framework

e X Banach space, possibly

- a Hilbert space (or not),

- a Banach lattice with positive cone X; := {f > 0} (or not).
Typically X = LP, X = Gy or X = M* or a weighted such spaces

e S = (S;) a positive semigroup on X (of linear operators):
- St S B(X)y Stlstz = St1+t2| SO =1,

- strongly or weakly * continuous trajectories,
- 1Sellx—x < Me™t, M > 1, k1 € R,
- the generator L splits as

L=A+DB, A<B, Sg(t)= O(eKBt), kB < K1

e Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation
operator and the age structured operator

Lf = div(aVf)+b-VFf+cf, (for FP: c =divb)
= —a-Vf—Kf—&—/kf*dy*

_ —6Xf—Kf+6o/ K(y)f(y) dy
0
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Framework

e X Banach space, possibly

- a Hilbert space (or not),

- a Banach lattice with positive cone X;. := {f > 0} (or not).
Typically X = LP, X = Gy or X = M or a weighted such spaces

e S = (5;) a positive semigroup on X (of linear operators):

-5 € B(X), 56,56, = Sty+1,, So =1,

- strongly or weakly * continuous trajectories,
- ISt x=x < Me"1t, M >1, k1 € R,

- the generator L splits as

L=A+DB, A<DB, Sg(t):O(eNBt), kB < K1

e Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation
operator and the age structured operator

Lf = div(aVf)+ b-VFf+cf — Mxgf + Mxgrf

= fa-foKf+/k,§f*dy*+/ka*dy*

= ffﬁxffo—F(so/ K(y)f(y)dy
0
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Spectral analysis and semigroup analysis
e describe spectrum set (L), set of its eigenvalues and associated eigenspaces

e spectral mapping theorem

T(e“)N\{0} = ™5 vi>0

e Extension of the spectral analysis to other spaces: enlargement/shrinkage

o Weyl's theorem on compact perturbation and discrete spectrum or partial (but
principal) spectral mapping theorem

z(etﬁ)\B(o7 eat) _ etz([,)ﬁAa7 vt Z 07 Va S 2*7

for some abscissa a* € R, where A, := {¢ € C; Ref > a} the half-plane Va € R
and deduce the asymptotical behaviour of trajectories

e Small perturbation theorem

e Self-adjointeness, spectral gap, related coercivity estimates and beyond:
hypocoercivity estimates

e Krein-Rutman Theorem for positive semigroup

e Doblin-Harris Theorem for Markov/stochastic semigroup
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Dissipative and hypodissipative generator

Consider a semigroup Sp with generator B in a Banach space X with norm || - ||.

We say that B — a is dissipative if
VfeD(B), Vi eldr, Relf*,(B—a)f)<0

or equivalently

Re(r*,Bf) < a|\f||2,
where J¢ is the dual set
Jr={p e X (o, f) = |fl% = el }-

By Hahn-Banach separation theorem Jr # {0.
When X is an Hilbert space then Jr = {f}, we say that B — a is coercive.
When X = [P, 1 < p < oo, then Jr := {cf|f|P72}.

We say that B — a is hypodissipative if (1) holds for any f* € Jg .y, with

e = {e € X5 Lo, ) = lIfII? = llellx 3,
where ||| - || stands for an equivalent norm in X.
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Hypodissipative and growth/decay estimate : Hille-Yosida, Lumer-Phillips

Consider a dissipative semigroup S, with generator £ in a Banach space X. For

a€eR, M > 1, there is equivalence between
(a) £ — ais hypodissipative, and the norm of dissipativity satisfies

vieX Ifl < IIfll < MIIfI;
(b) the semigroup S, satisfies the growth estimate
[Sc()llBxy < Me®f, Vit>0.

We define w(S) :=inf{a € R; (3) holds} the growth bound.

Proof of (a) = (b) for a equivalent regular norm such that the square norm
function ®(f) := ||f]|?/2 satisfies

®: X — Ry G-differentiable and ~ Jg . = {®'(F)}, VfeX.

We compute
d
S lIFIIP = Re(@'(£), LF) < all I,

and we use the Gronwall lemma.
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The reverse implication (b) = (a)
By assumption

1S(6) 150 < Me*", Re(F*.£F) < b][F]> ¥F € D(L),

with M >1, a* <a <a< becR, and where J; || = {f*}. We define the new

norm -
I = n 1> + /O IS(r) e~ £[* dr.

With f, := S(t)f, we compute
1d
2 dt
by choosing 1 > 0 small enough, and
1d
2.dt

£ < allflI?,

Il = Re ((£)**, L£f)
with -
g* =ng* —|—/ Sc(m)*(Scz(r)g) dre X', VgeX.
0

Hypocoercivity ~ twisted norm
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Duhamel formulas

Consider S, a semigroup with generator £ enjoying the splitting structure
L=A+B, B generator of Sg, A< B.
Typically A € B(X). The following Duhamel formulas
S =58+ SAx5;, =55+ S+ ASi

hold, as well as the iterated Duhamel formulas (or “stopped” Dyson-Phillips series: the
Dyson-Phillips series corresponds to the choice N = o)

S, = SBJF...JF(SBA)*(’\FI) *55+(58A)*N*5£
= Sg+---+Spx (ASB)*(Nfl) + 5S¢ (.ASB)*N.
Here we define V x U by

t (Vs U)(t) = /0t V(t—s)U(s)ds € Li(Ry; B(Xi; X)),

for U € Li,o(Ry; B(X1; X2)) and V € L (Ry; B(X2; X3)).

loc
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Enlargement and shrinkage of the functional space for semigroup growth
Th 1. Assume
L=A+B, L=A+B, A=A, B=B, ECE
For any a > a*
(i) (B — a) is hypodissipative on E, (B — a) is hypodissipative on &;
(i) Ae B(E), AcB(E);
(iii) there is n > 1 and C; > 0 such that

(S5 (@], + [[(ASE) (D] < Cae™
Then there is equivalence between

V>0, HSL(t)H < C.e’t
E—E

and
vt >0, HSL(t)HE—)E < Cae’t.

> Bobylev (Boltzmann), Gallay-Wayne (harmonic Fokker-Planck), Gualdani-M.-Mouhot

(abstract and applications)
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Proof of the change of functional space : as an immediate consequence of the

iterated Duhamel formula

S = O(e) implies S; = O(e™):

Sc = S+ +Spx(ASs) MV S x(ASE)™N.
N ———
E—E E—ECE £E

Se = O(e™) implies S, = O(e™):

Sc = S+ +(SpA) VY« S+ (SsA) M« S
—_——
E—E E—SE ECE—E

because e, * e, = te, < e for any &’ > a > a*, with e,(t) :=
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Example 1 : the Fokker-Planck equation
We consider the Fokker-Planck equation
Of = Lf = Af + div(Ef)

on f = f(t,x), t >0, x € R?, with force confinement

,
E= v% =x(x)77?, ~4>0.

Th 1. For any k > 0 and p € [1,00], there exists a constant M > 1 such that

supllfilliy < MIIfl.s
>0

with
k 2 2
Fllee := FO) e, ()7 := 1+ [x]%.
> Toscani-Villani, Rockner-Wang, Kavian-M.-Ndao

d
E/de—O,
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Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation
Of = Lf = Af + div(Ef)

onf=f(t,x), t>0, x¢€ RY, with force confinement
Yy
E= V% =x(x)77% ~y>0.
Th 1. For any k > 0 and p € [1, 0], there exists a constant M > 1 such that

sup [|fell2 < M|foll.e
t>0

Elements of proof
Similarly

d
— fldx<
dt/' |dx<0,

S, J R Ll7 uniformly bounded.

so that

The idea is to use the shrinkage result taking advantage of the splitting structure
Oif = LF = Ouf + 8 (x77'F) — Mxrf + Mxgrf
N——

—:Bf = Af
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Li estimate for S; when v > 2

L satisfies the (strong for v > 2, weak for v < 2) Lyapunov condition
L*<X>k 5 _<X>k+'y—2 + ]-BR,

because
K —14 _k kty—2
O X — X110 X" ~ —hx* T2,

When v > 2, we may proceed in a very simple way :
& s = [rete [ 1

—/f(x)k-i-/fb,

and thanks to the Gronwall lemma we conclude directly

A

Sei Ly — Li uniformly bounded.
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L} estimate for Sy (general case)

We write
fe = SB(t')fo + (SBA * 55)(t‘)f0

and we next compute

Iy < IS0l + [ 1Sa(t - 91ASe($)hly o
< il + [ Ot - 9)lASe(s)l, o
S llly + [ 0= 9)Se(s)hl o
< il + [ Ot 9l os
< @+l

We have to prove

Ss(t) : Ly — L uniformly bounded
Si(t) : LL, — Ly with rate t — O(t) € L' for m > k (large enough)
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Li estimate for Sp

B satisfies the (weak) dissipativity condition
B* <X>k < _<X>k+’y—2 < 0.

~

A solution f to the evolution equation 0:f = Bf satisfies

& [ rwr<- [re <o

so that first

Sg: Ly — L}, LY — LL, uniformly bounded VvV m > k.

Observing that
() SATITT AT, VA,
we compute

and next
%(etA7_2/f<X>k) SetA’Y_ZAk—m+’Y—2/ﬁ)<X>m‘
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Li estimate for Sp
B satisfies the (weak) dissipativity condition

B (x) < —(x)f % <.
So that first
Sp:ly— L}, LY — LY. uniformly bounded ¥ m > k.

A solution f to the evolution equation 0,f = Bf satisfies
i(etA’772 / f<X>k) < etAwszk—m-F"/—Z / fb(X)m
dt

Integrating in time (using the Gronwall lemma), we deduce

[ret < e [aet A [hgm vaso,
inf (e—“‘”” n Ak_’") /fo<x)’"

A>0

= o) [ "

IN

We find —m
O(t) <t 2+ (t/Int?) >~

1

by making the choice A := (t/Int?)77. We have © € L' when m > k +2 — 7.
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L? estimate for Sp (and next S;) in the case v > 2 and p =2
We use Nash trick and Nash inequality

1+2/d 2/d
115329 < CallFIF IV F] L2

for a solution f to the evolution equation J:f = Bf. Taking advantage of the available

L' estimate (for M, R large enough)

”f;-””L1 S e_t7
we may compute
d 2 < 2 2
g Ifle = = IVFlie = 2)fl:
[Edl
< M 7 o2
~ ”f‘i? H HLza

with a :=2/d > 0, so that

(1)

d 2 2t
— (||f]|;2€
dt (” HL2 ) ||fo| i?

A

S.Mischler (CEREMADE) Semigroup methods June 23, 2022

18/55



Nonlinear ODE

We recall that the solution to the ODE

U/ < _Kul-%—a7

satisfies 1
t) < ————.
u(t) < GreTe
The proof is elementary. We write equivalently

du
ylte S —Kdt

and after integration in time, we get

uT(t) > aKt+ug > aKt.

Using that result with the choice « =2/d and K = C|\fo||L_14/d, we deduce

2 2 Il
IFIEe™ < ok
and finally
—t
e
1l S Sz ol
S.Mischler (CEREMADE)
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Nonlinear ODE

We recall that the solution to the ODE

1
v < —Kutte,

satisfies
1

t) < ———.
u(t) < GreyTe
Using that result with the choice & =2/d and K = CHfoHZf/d, we deduce

Y L
Ifllize ‘< tdf/é
and finally
e—t

Il < a7 liflls

We have established

—t

Ss(t) : L' — L with rate © := Z7 € L', if d <3,
In general, we have
—t
Su(t) : L' — LP with rate © := %,

and whatever is p € [1,00], d > 1, k > 0, we may prove
(ASs)™M(t) : L' — L} with rate © € L', for N >1 large enough.
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Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov
Dissipativity 3a € R
(F",Bf) <a|If|* & [ISs(t)f]| < e™|f]|

Hypo-dissipativity 3a € R
(F,Bfy < a||f|* & [ISs(t)f|| < Me™|f]|

e 3 — a dissipative implies £ — (a + ||.A||) dissipative and we may sometime show £ — x
hypodissipative with k € [a,a + ||A]|).

Lyapunov condition 3a € R (or R_), 3¢ > 1, Fpe < ¢ (supptbe compact)
L < ah + e

o For positive semigroup in L' we have Kato's inequality: (signf)Lf < L|f]. Lyapunov
condition then implies B — a is dissipative with B := £ — ..
When v = 1, we may compute

(F*,Bf) = (f*,LF) — (", cf)
< (L LI = (L el )
= (L'1—¢c, |f])
< a(L[f]) = allfl.
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Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov
Dissipativity 3a € R
(F*,Bf) <allf|* < |ISs(t)f]| < e™|If]]

Hypo-dissipativity 3a € R
(f*,Bf) <allflI* & [ISs(t)f]] < Me™ ||
Lyapunov condition 3a € R (or R_), 3¢ > 1, Fpe < ¢ (supptbe compact)
Lo < ap + e
Weakly dissipativity a =0, X1 C Xp
(f*",Bf)x; < —||fllx, & not clear

but
<f*,Bf>X1 S—”f“xo, <f*7Bf>x2 <0, X CXiCXo

imply
1S5(t)fllx < Ifllx, i=1,2, [[Ss(t)fllx, < O(£)[Illx,-

Weak Lyapunov with a =0, 3, ¥e S o S 91
E*wl S _wo + 1/)6

e weak Lyapunov condition for £ = weak dissipative property for B
S.Mischler (CEREMADE) Semigroup methods June 23, 2022
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Weyl's theorem - characterization

Th 2.
(0) £ = A+ B, where A is B¢ -bounded with 0 < ¢/ < 1,

(1) |IS5 * (AS5)*)||xx < Cre™, Va>a*, VI >0,

(2) 57 I1(ASB) " Ix . psey € dt < 00, Va > a*, with ¢ > ¢,

3) [~ [(AS5)™||x—y e"* dt < 0o, Va > a*, with ¥ C X compact,
is equivalent to

() there exist &1, ..., &5 € A,, there exist My, ..., M, some finite rank projectors, there
exists T; € B(RM;j) such that £LN; = M;£ = T;N;, X(T;) = {&}, in particular

Y(L)NA, ={&,....&} C Ty(X)

and there exists a constant C, such that
J
I1Sc(t) = > e TMjjxx < Ge™, Va>a'
j=1

> Weyl (1910), Ribari¢-Vidav (1969), Vidav (1974), Voigt (1980), M.-Scher (2016)

e |t can be seen as a condition under which a “spectral mapping theorem for the
principal part of the spectrum holds”

e Issue : constants are not constructive !!
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Resolvent and semigroup
We define
Re(N) = (A —L)71,
when A — £ : D(L£) — X is one-to-one.
In that case, we write A € p(L£) C C the resolvent set.
We have p(L£) D Ays,) # 0, Az :={z € C; Rez > a} and

Re()) = / Se(t)eMdt, VA€ Dy, (4)
0
The counterpart of the Duhamel formulas are
Re=Re+RAR. =R+ RcAR.
and some counterpart of the iterated Duhamel formulas is e.g.
Re=Rs+ -+ (ReA) V" Rs + (ReA) "R

Inversing the Laplace transform (4), we get

i /Ta e Rc(2)dz

St + (5™ w55 L [ e (Ru(2)A) Re(2)dz

a

Sg(t)
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Resolvent and spectrum

e We define the spectrum set (L) := C\p(L).

e We define the point spectrum set (the set of eigenvalues)
Yp(L) :={NeC; If € X\{0} Lf =Af}.

e We say that A € £ (L) is isolated if 3r > 0, (L) N B(\, r) = {\}.
e For A € p(L), we define My := limy_,00 N(XA — £)" the almost algebraic eigenspace
and m,, == dim M(L — X) € {1..., 00} the “almost algebraic multiplicity”.
o If it exists, the algebraic eigenspace £y associated to A € Xp(L) satisfies
- there exists a projection 1 which commutes with £ and satisfies [1X = &y,
- ﬁ‘gA (S B(f/’)\), Zp(ﬁ‘gx) = Z(ﬁ‘gx) = {)\} and A\ ¢ ZP([:\XO) with Xp := (I — |-|)X.
e We define the discrete spectrum set X4(L) as the set of A € Xp(L) which is isolated
and which algebraic multiplicity dim&j is finite.
We have
)Zd([,) C ZP(E) C Z(C), My Cé&, if Ae ZP(E)
and .
= Re(z)dz if A€ Ty(L).
2m |z—X|=r/2
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Sketch of the proof of Weyl + spectral mapping theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)
Se=NS,+nN*+s.nt,

with M+ :=/ — N, Z(LM*) N A = 0 and write the (iterated) Duhamel formula

N—-1

Sc = Sp#(ASE)" + Sc x (ASE) N

£=0

Using the inverse Laplace formula for b > w(L) > s(£) = sup ReX (L) and the fact that
N+Re(z) is analytic in Ay, we get

. b+ico
(M Se) % (ASE)™Y = i

e M* Re(2)(ARs(2))" dz
b—ioco

a+iM
B Mllnoo 27 a—iM

e M* Re(2)(ARs(2))" dz
These three identities together

N—1

Se = NSc+N"{> Spx(ASs)"}n+

£=0

e M* Re(2)(ARs(2))Y dz = O(e™)?
2m Ja,
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The key estimate on the last term
We clearly have

sup M Re(2)(ARs(2))V]| < € < oo (not constructive!)
z=a+iy, y€[—M,M]

and it is then enough to get the bound
IR(2)(ARs(2)"[| < C/ly’, Vz=a+iy, ly|> M, a> a.

We assume (in order to make the proof simpler) that ( = 1 in estimate (2), namely
1(ASB)" [[xox = O(e™) V>0,
with X1 := D(£) = D(B), which implies
I(ARB(2))|xox < C VYz=a+liy, a> a..
We also assume (for the same reason) that ¢’ = 0, so that
A€ B(X) and Ra(z) = %(RB(Z)B “ 1) e £(X, X)

imply
lARB(2)||x,»x < Gof|z| Vz=a+iy, a> a..
The two estimates together imply

() I(ARs(2)" M Ixox < Goflz| Yz=a+iy, a> a..
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The key estimate on the last term - 2nd step

We write

Re(I-V)=U
with

U:=> Rs(ARs)", V:=(ARs)""
For M large enough

() V@A <12 Vz=a+iy, ly|2 M,

and we may write the Neuman series

Rc(z) = Ll(z ZV z)y

bounded\_,_/
bounded

For N = 2(n+ 1), we finally get from (x) and ()

IRc(2)(ARs(2))"]| < C/(y)?, Vz=a+iy, ly| =M
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The key argument for the first term
We write again

Re(l—V)=U
with

Because

e /| —V is holomorphic on A,+,

e it is a compact perturbation of the identity

e it satisfies | — V(z) — | when Rez — oo,
one may use the theory of degenerate-meromorphic functions of Ribari¢ and Vidav
(1969), and conclude that V(z) is invertible outside of a discrete set D of A,«.

That implies that X(£) N A, = D is a discrete set of Ax.

On the other hand, thanks to the Fredholm alternative, one deduces that the eigenspace
associated to each spectral value A € D is non zero and finite dimensional, so that
A€ X4(L).

We define .
n= L/ Re(z)dz, with 1. NE(L) = 0.
2m Ja,
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Outline of the talk

© Krein-Rutman theorem
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Let's start again with a picture
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The KR theorem issue

For a positive semigroup S; = S;(t) = e** with generator £ on a Banach lattice
X with positive cone X, we ask for

e existence of a first eigenvalue triplet solution (A, f;,¢1) € R x X x X' :
fl 203 ‘Cfl:Alfh ¢1 207 £*¢1:)\1¢1

e suitable geometric properties as
(1) i > 0 unique positive eigenvector for £, N(£ — \1)* = vectf
and ¢; > 0 unique positive eigenvector for £L*, N(L* — \;)* = vecte;
(1) Z(L£) — A1 is a (discrete) subgroup of iR,
with £ (L) :={\, A€ Zp(L), Red = A1}
(2) T+(£) = {\}
e asymptotic attractivity/stability of the principal eigenfunction

e'“fy — eMtfi (¢, o) = o(e™),
with constructive rate.
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Krein-Rutmann for positive operator

Th 3. Consider a semigroup generator £ on a Banach lattice such that
(1) £ such as in Weyl's Theorem for some a* € R;

(2) 3b> a* and ¢ € D(L£*) N X{\{0} such that L*¢ > b,
(3) S is positive (and L satisfies Kato's inequalities);
(4) —L satisfies a strong maximum principle.
Defining A1 := s(£), there holds
a" <A =w(L) and X\ € X4(L),

and there exists 0 < f; € D(L£) and 0 < ¢1 € D(L) such that

LA=MFf, L'¢1=X ¢, RNz = Vect(f),
and then

ng’xlf = (f,¢1> i VfelX.

Moreover, there exist o € (a*, A1) and C > 0 such that for any f5 € X

1Sc(t)fo — M Mz hllx < Ce* |y — Moo follx YVt>0.

> In M. & Scher, that is mainly a consequence of Weyl + spectral mapping theorem by
establishing furthemore that

(L) NA- ={\}, M ER.
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Existence part in the KR theorem

Th 3’ Assumptions:

(1) S is a positive semigroup

(2) Tro € R Fnpo € X{\{0} Lo > Kotho

(3) (dissipative case) splitting structure with kg < ko

(3') (weakly dissipative case) ro = 0, 3@ € L*(R) such that

ot
Il < Mnfo\|+/ o(t - s)[filds, fi:=Sif,
0

with [f] := (¢o, |f]) and X C X (weakly) compact, with [|f]|x := [f].
Conclusion: 3 a solution (X, fi, ¢1) to the first eigenvalue triplet problem
Example: (1) The Fokker-Planck operator

Lf = Af +div(Ef) +cf, E:=V|x|"/y, v>0, ce C(R?).

(2) The condition (3') is natural under a splitting structure

Se =S+ +(SpA) MV xS+ (S8 AN x Se,
with A bounded, B weakly dissipative, (Sg.A)*" : & — X.
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Existence - 1st proof ~ Collet-Martinez-Méléard-San Martin?
We assume (case N =1 and X = M) with x5 < ko
[f] > ™ 9[L], Ve >s, f =56
: Ifell < e™8||f|| + cz/te%’(f*s)[fs] ds < C =1
0

Step 1. We define

C:={f=0, [f]=1, [fl <M}, &)= [f]

For fu € C and o := kB — ko < 0, we compute for t < to,

A

t
@) < el + G [ e as
0
< (Q+at/2QM+Gt< M

to > 0 small and M > 0 large. That implies ¢ : C — C.
From the Schauder/Tykonov theorem:

& e, De(&r) =&
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Existence - 1st proof (continuation)

Step 1. We reformulate
3f €C, AN € [ro, k1], Sefs = eV,
Step 2. We reformulate again by choising t =27":

3f,€C, AN, € [ko, k1], Sefy = €M'f,, YVt € Dmm<n,

with
Dy = {t =277} =27"N = part of dyadic real numbers
By compactness, 31 € [ko, k1], 3£ € C such that

Nt
Sefy = €My An = A1, fo — fi.

We deduce
Sefi =eM'f, VteDm Vm
and then
Sifi=eM'f, V>0
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Existence - 2nd proof ~ Cafiizo-M

We assume (general dissipative case for N and X) with k5 < Ko
[f] > ™t 9[f], Vt >, f:=5.f

t
A< GesIRl + G / 5 I[f]ds, C > 1
0

Step 1. With the same notations

o C
[or(R) < Ge* M+ = <M,

- |af
for To and M > 0 large enough. That implies 7, : C — C.

From the Schauder/Tykonov theorem:
Ifr, € Xs, [fr] =1, Srfr, = e 0f7,.

We cannot make To — 0 !
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Existence - 2nd proof (continuation)
Step 2. We denote S; := S;e ™. We have built a periodic solution

§th0 = gt—kTofTO, k= [t/To], Vt>0.
For any t > 0, we deduce

[§thO] > e(m*/\ﬂ(t*kTo)[fTo] > elro=A)To . 0,
15 fro |

N

Cze(ﬂz—/\ﬂ(t—kTO)HfTO” < Cze(ﬁz—Al)To)”fTo” — R* < co.

The mean ur satisfies the same estimates:

1 (72 *
uri= 3 | SfndecGim (g e X le] > . g <R
0

By compactness, there exists i € G and (Tx) such that ur, — fi.
The von Neumann, Birkhoff mean ergodicity trick leads to

Tk Tk

c . 1 = = 1 _
Shi—h = lim {7 StsszodS T szTodS}

k—o0 k Jo k Jo

. 1 Tk+t _ 1 t _
- k'L";o{ﬁ/T szrodsfﬁ/o szrods}:o,

k

because (§sz0) is uniformly bounded. We deduce £fi = A\ f.
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Existence - third proof (dynamical approach)

We assume (including weakly dissipative case)
[f] > [f], Vt>s, ro:=0,
150 < Ml + [ (- )ields. w1
For some go € Xy such that [go] = 1, we set
C={f>0,[fl=1 [f| <R}, R:=max(2O]yu, leoll)
and we define the increasing function
A(t) == ;gg[stf].

We have the alternative
e (case 1) supA <2M
o (case 2) sup A > 2M
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Existence - third proof (case 1)
By compactness, there exists fy € C such that

sup[S:fo] < 2M.

£>0
We remind the iterated Duhamel formula
S=v+(S8A)Mxs
and the associated mean equation
Ur=Vr+Wr

with
U -—l/TSdt v -—l/Tvdt w -—l/T(s A 4 S
T-—TO tdL, T-_TO tdi, T-_TO B .
Thanks to Fubini and positivity, we have
-
WT§/ (SBA)(*N)dt‘UT
0

which implies
[Wrh|| < [[©]|2[Urfo]
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Existence - third proof (case 1 - continuation)

In a simpler way
[Vrhll < M|f].

All together, we have *

[Urhol| < Mlifoll + [|©] 2 [Urho] and 1< [Sth] <2M.

From the first inequality, we deduce that ||Urf|| is uniformly bounded on T € R..

By compactness, there exists T, — +o0 and fi € Xy such that Ur, fu — fi.
Thanks to the second inequality, we have [f] > 1.
From the same and usual mean ergodic trick, for any fixed s > 0, we have

S(s)i—f = lim {i " S(S)S(t)fodt—Ti " S(t)f dt

Tko k Jo

1 Tk+55 fod 1 55 fo d 0
t t— — t ty, =0.
T/ ()6 n/o (1) ot}

That implies that f; is a stationary solution, and thus A\; = 0.

I
'l
-
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Existence - third proof (case 2 - step 1)

Step 1 From the assumption
3To >0, Vfel, [Srf]>2M.

For f € C, we define s ¢
O fi= 210
" [Snf]
so that ®7,f > 0 and [®7,f] = 1. Because of the above assumption and the Lyapunov
like estimate, we have

1
[enfll < Il + Ol < R.

We have established ® 1, : C — C and from the Schauder/Tykonov theorem, there exists
fr, € C such that ®1,fr, = fr,. In other words : we have built a pair of “almost
eigenvalue and eigenfunction”

fTo 2 07 [fT()] = 13 STong = e)\lTofToy
with 170 =[Sz f] and thus A1 € [0, k1].

Step 2 We conclude as in the 2nd proof !
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Outline of the talk

© Doblin-Harris theorem
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Hypothesis

We consider a Markov semigroup S; = S.(t) defined on X := L*(R?), meaning S; > 0
and 571 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
mo, my : RY — [1,00), my > mo, mo(x) — 00 as x — 0o, and two real constants
b, R > 0 such that

L'm < —my + blBR.

(H2) Doeblin-Harris condition. 3T >0V R >0 3v >0, # 0, such that
Sngy/ g, VgeX;i.
Br

(H3) There are two other weight functions my, ms : RY — [1,00), m3 > ma > my such

that
L ms < —m2+ blg,
and my < m{mi~? with 6 € (1/2,1].
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Conclusion

Theorem 4

Consider a Markov semigroup S on X := L'(ms3) which satisfies (H1), (H2), (H3). There
holds

||Stﬁ)||L1 se(t)”fbHLl(m;@% Vt207 Vﬁ)EX, <f6> :07
for the function © given by
o 7 —ext
o(t) := Aw;fo{e + &}
where

1
my < e mo +namz, YA, ex,mn — 0as A — oo.
Ea
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Comments

e The assumption (H3) is not necessary: m satsisfies a Lyaponov condition implies that
¢(m1) satsisfies a Lyaponov condition for any ¢ : Ry — Ry concave.

e The probabilistic proof use Martingale argument, renewal theory and (if possible?)
constants are not easily tractable.

e In the probabilistic approach, one writes mo = £(m1), € : R — Ry concave, and

~ C Y ds
o(t) := RGO} H(u) == )

- If £(s) = s then &(t) = e,
-1 my = (X)X, mo == (x)**772 then B(t) = £y S>> o(t);

S1fF my = e mp = (x)*t772e50° then O(t) ~ e M7 ~ O(t).
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A second version of the subgeometric Doeblin-Harris theorem

Consider a Markov semigroup S; = S, (t) defined on X := L. (RP), meaning S; > 0 and
571 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There is a weight function m : RP? — [1, o0),
m 0o, an increasing concave function ¢ : [1,00) — [1,00), ¢ 7 0o, and three real
constants b, R, 0 > 0 such that

L'm < —6p(m) + blg,, Br:={yeR” V(y) <R}
(H2) Doeblin-Harris irreducibility condition. 3T >0V R >0 3v >0, # 0, such that

STgZu/ g, VgeX;i.
Br

Theorem 4’
For any fy € X, (fo) = 0, there holds

ds
e(u)’

Ve20. S S g [l H) = [

In particular,

1

— g 1 i1/ sl
m:e if o(u) = u, m /2 o(u) = .
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several proofs :

Theorem 4 (geometric case)
@ Doeblin
Harris, Proceedings 1956
Meyn, Tweedie, AAP 1992, 1993, 1994
Hairer, Mattingly, Proceedings 2011

Cafiizo-M. (semigroup approach)

Theorem 4 (subgeometric case)
@ Douc, Fort, Guillin, SPA 2009
@ Hairer, unpublished lecture notes, 2016

@ Cafiizo-M. (semigroup approach)
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Doeblin-Harris irreducibility /strong positivity condition implies coupling
weak generator Lyapunov implies weak semigroup Lyapunov

Lemma 5

The Harris condition (H2) implies the coupling condition:
(H2') 3yu € (0,1), A> 0,

[Ifllm < Allfll, (f) =0 = [ISTfI| < yu[If]].

proof : splitting R? = Cr UCS

Lemma 6

The generator Lyapunov condition (H1) implies the semigroup Lyapunov condition:
(H1) vVt >0, 3K: > 0,

[1Stfollm + tllSthollomy < 1follm + Kelloll,

proof : integration in time
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About Lemma 5 : contraction and strict contraction
Rk 1. Assuming just that (S;) is a Markov semigroup, we have

|Stf| = |5tf+ - Sff_‘ S |5tf+| —|— |Stf_| - St‘f'|

Integrating, we deduce that (S;) is a L' contraction

/|stf| s/st|f|:/\f|5t*1:/|f|-

Rk 2. We assume furthermore the strong Doeblin-Harris condition:
(strong H2) 3T,3v, Srg> z// g, VgeX:.
RD

For f € L', (f) = 0, we have

STfiZV/ fi=5/ || = 1.
RD 2 Jpo

We may adapt the proof in Rk 1 in the following way
|Stfl = |Srf —n—(Srf- —n)|
< |Stfy —n|+|S7f- —n| = S7|f| — 2n.

Integrating, we deduce that (St) is a strict contraction
ISTfll < [Flle =2l = (1= @) Il
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Proof of Lemma 5: the Harris condition (H2) implies the coupling condition (H2’)
Rk 3. Assuming (H2), we have similarly

[isri<an [161 5 [im< ™8 [1n,

v :=1—{(v)/2 €(0,1).

with

Indeed, we mainly observe that

Srfy

Vv

AN
—
o

™

|

AN
%
R

™

vV
N R
_—
o

=

|

<
7

=

%

2 v
L AT LA
2/RD| | m(R)/RD| |m

and we then follow the same proof as when we have assumed (strong H2).
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Strict contraction for time discrete semigroup S := St
S satisfies a Lyapunov operator condition (H1”) if 34, € (0,1), K > 0
1Fllm + 121 Loty < 1Fllm + KIIFL ¥ F
S satisfies a coupling operator condition (H2") if 3y4 € (0,1), A > 0,
[fllm < Allfll, (£) =0 = [ISFI| < yu [I£].
Lemma 7
If A> K/~. there exists & > 0 and an equivalent norm || - |[|m to || - ||m such that

I5Flllm + I SFllom < Mfllm, ¥ F, (f) =0.

Proof: a hypocoercivity trick and an alternative.
We introduce the equivalent norm for convenient choice of 3,y > 0

WENm = 1+ BllFlloim + 7 [[llm”

If || fllo(m < Allf|l, we use the coupling condition (H2")
If || Fllo(m > Al|f|l, we use the Lyapunov condition (H1")

* modified norm ~ "hypodissipativity trick”
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Subgeometric convergence for time discrete semigroup S := St
We assume that S satisfies (H1”) and (H2") for two pairs mj, ¢;, Ki,yii and A;, Ki, i

with A; > Ki/yui, m < ma, p1(m1) < p2(m2), as well as the interpolation condition

(H3) Am < (,ol(ml) +§()\)m2,V)\ >0,

with £ : Ry — Ry, £(A)/X — 0 as A — 0. That means ¢1(m1) << my << my.

Lemma 8

Under the above conditions, for any f, (f) =0,

IS"FII S O Fllmy, ¥ n,

with (n/2) L
= O(n/2 1 ds
O(n)=——"=, O(t):=F (t), F(\):= —
(=222 o(0):=F0, FO= [ a5 |
Proof:
IS llm; 4 ll SFll i (mpy < Il
implies
WSEllmy + @ASEmy < Fllmy + €A llmy, VA >0,
and next
1S™ Fllmy < (1= OA)NS" Fllmg + En) 1 Fllme
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Outline of the talk

@ An application to neurosciences
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Example 2 : the age structured equation
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