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Evolution equation and semigroup

We consider an evolution equation

∂t f = Lf , f (0) = f0,

and the associated semigroup of operators SL(t) defined through the relation
SL(t)f0 := f (t) on a Banach space X . Our purpose is then to explain when and how we
can show that the semigroup splits as

SL(t) = S0(t) + S1(t),

where {
S1(t) ranges in a finite dimensional non trivial subspace of X
and ‖S0(t)‖ = o(‖S1(t)‖) as t →∞.

Better, we would like to identify some cases where, if possible in a
quantitative/constructive way,

lim
t→∞

‖e−s(Λ)tS(t)− P‖ = 0,

for some projector P ∈ B(X ) (with rankP = 1 if possible!) and real number (spectral
bound) s(Λ) ∈ R.
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Framework

• X Banach space, possibly
- a Hilbert space (or not),
- a Banach lattice with positive cone X+ := {f ≥ 0} (or not).

Typically X = Lp, X = C0 or X = M1 or a weighted such spaces

• S = (St) a positive semigroup on X (of linear operators):

- St ∈ B(X ), St1St2 = St1+t2 , S0 = I ,
- strongly or weakly ∗ continuous trajectories,
- ‖St‖X→X ≤ Meκ1t , M ≥ 1, κ1 ∈ R,
- the generator L splits as

L = A+ B, A ≺ B, SB(t) = O(eκBt), κB < κ1

• Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation
operator and the age structured operator

Lf = div(a∇f ) + b · ∇f + cf , (for FP: c = div b)

= −a · ∇f − Kf +

∫
kf∗dy∗

= −∂x f − Kf + δ0

∫ ∞
0

K(y)f (y) dy
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- strongly or weakly ∗ continuous trajectories,
- ‖St‖X→X ≤ Meκ1t , M ≥ 1, κ1 ∈ R,
- the generator L splits as

L = A+ B, A ≺ B, SB(t) = O(eκBt), κB < κ1

• Examples: A general elliptic/Fokker-Planck operator, the growth-fragmentation
operator and the age structured operator

Lf = div(a∇f ) + b · ∇f + cf −MχR f + MχR f

= −a · ∇f − Kf +

∫
kc
R f∗dy∗ +

∫
kR f∗dy∗

= −− ∂x f − Kf + δ0

∫ ∞
0

K(y)f (y) dy
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Spectral analysis and semigroup analysis

• describe spectrum set Σ(L), set of its eigenvalues and associated eigenspaces

• spectral mapping theorem

Σ(etL)\{0} = etΣ(L), ∀ t ≥ 0

• Extension of the spectral analysis to other spaces: enlargement/shrinkage

• Weyl’s theorem on compact perturbation and discrete spectrum or partial (but
principal) spectral mapping theorem

Σ(etL)\B(0, eat) = etΣ(L)∩∆a , ∀ t ≥ 0, ∀ a > a∗,

for some abscissa a∗ ∈ R, where ∆a := {ξ ∈ C; <eξ > a} the half-plane ∀a ∈ R
and deduce the asymptotical behaviour of trajectories

• Small perturbation theorem

• Self-adjointeness, spectral gap, related coercivity estimates and beyond:
hypocoercivity estimates

• Krein-Rutman Theorem for positive semigroup

• Doblin-Harris Theorem for Markov/stochastic semigroup
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Dissipative and hypodissipative generator

Consider a semigroup SB with generator B in a Banach space X with norm ‖ · ‖.
We say that B − a is dissipative if

∀ f ∈ D(B), ∀ f ∗ ∈ Jf , <e〈f ∗, (B − a)f 〉 ≤ 0 (1)

or equivalently
<e〈f ∗,Bf 〉 ≤ a‖f ‖2,

where Jf is the dual set

Jf := {ϕ ∈ X ′; 〈ϕ, f 〉 = ‖f ‖2
X = ‖ϕ‖2

X ′}.

By Hahn-Banach separation theorem Jf 6= ∅.
When X is an Hilbert space then Jf = {f }, we say that B − a is coercive.
When X = Lp, 1 ≤ p <∞, then Jf := {cf |f |p−2}.
We say that B − a is hypodissipative if (1) holds for any f ∗ ∈ Jf ,|||·|||, with

Jf ,|||·||| := {ϕ ∈ X ′; 〈ϕ, f 〉 = |||f |||2 = |||ϕ|||2X ′},

where ||| · ||| stands for an equivalent norm in X .
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Hypodissipative and growth/decay estimate : Hille-Yosida, Lumer-Phillips

Consider a dissipative semigroup SL with generator L in a Banach space X . For
a ∈ R, M ≥ 1, there is equivalence between
(a) L − a is hypodissipative, and the norm of dissipativity satisfies

∀ f ∈ X ‖f ‖ ≤ |||f ||| ≤ M ‖f ‖; (2)

(b) the semigroup SL satisfies the growth estimate

‖SL(t)‖B(X ) ≤ M ea t , ∀ t ≥ 0. (3)

We define ω(S) := inf{a ∈ R; (3) holds} the growth bound.

Proof of (a) ⇒ (b) for a equivalent regular norm such that the square norm
function Φ(f ) := |||f |||2/2 satisfies

Φ : X → R+ G-differentiable and Jf ,|||·||| = {Φ′(f )}, ∀ f ∈ X .

We compute
d

dt
|||f |||2 = <e〈Φ′(f ),Lf 〉 ≤ a|||f |||2,

and we use the Gronwall lemma.
S.Mischler (CEREMADE) Semigroup methods June 23, 2022 9 / 55



The reverse implication (b) ⇒ (a)

By assumption

‖S(t)‖B(X ) ≤ M eα t , <e 〈f ∗,Lf 〉 ≤ b ‖f ‖2 ∀ f ∈ D(L),

with M ≥ 1, a∗ ≤ α < a < b ∈ R, and where Jf ,‖·‖ = {f ∗}. We define the new
norm

|||f |||2 := η ‖f ‖2 +

∫ ∞
0

‖S(τ) e−aτ f ‖2 dτ.

With ft := S(t)f , we compute

1

2

d

dt
|||ft |||2 ≤ a|||ft |||2,

by choosing η > 0 small enough, and

1

2

d

dt
|||ft |||2 = <e 〈(ft)∗∗,Lft〉

with

g∗∗ := η g∗ +

∫ ∞
0

SL(τ)∗(SL(τ)g)∗ dτ ∈ X ′, ∀ g ∈ X .

Hypocoercivity ' twisted norm
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Duhamel formulas

Consider SL a semigroup with generator L enjoying the splitting structure

L = A+ B, B generator of SB, A ≺ B.

Typically A ∈ B(X ). The following Duhamel formulas

SL = SB + SBA ∗ SL = SB + SL ∗ ASB

hold, as well as the iterated Duhamel formulas (or “stopped” Dyson-Phillips series: the
Dyson-Phillips series corresponds to the choice N =∞)

SL = SB + · · ·+ (SBA)∗(N−1) ∗ SB + (SBA)∗N ∗ SL
= SB + · · ·+ SB ∗ (ASB)∗(N−1) + SL ∗ (ASB)∗N .

Here we define V ∗ U by

t 7→ (V ∗ U)(t) :=

∫ t

0

V (t − s)U(s)ds ∈ L1
loc(R+;B(X1;X3)),

for U ∈ L1
loc(R+;B(X1;X2)) and V ∈ L1

loc(R+;B(X2;X3)).
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Enlargement and shrinkage of the functional space for semigroup growth

Th 1. Assume

L = A+ B, L = A + B, A = A|E , B = B|E , E ⊂ E

For any a > a∗

(i) (B − a) is hypodissipative on E , (B − a) is hypodissipative on E ;

(ii) A ∈ B(E), A ∈ B(E);

(iii) there is n ≥ 1 and Ca > 0 such that∥∥(SBA)(∗n)(t)
∥∥
E→E

+
∥∥(ASB)(∗n)(t)

∥∥
E→E

≤ Ca e
at .

Then there is equivalence between

∀ t ≥ 0,
∥∥∥SL(t)

∥∥∥
E→E

≤ CL,a e
a t

and
∀ t ≥ 0,

∥∥∥SL(t)
∥∥∥
E→E

≤ CL,a e
a t .

B Bobylev (Boltzmann), Gallay-Wayne (harmonic Fokker-Planck), Gualdani-M.-Mouhot
(abstract and applications)
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Proof of the change of functional space : as an immediate consequence of the

iterated Duhamel formula

SL = O(eat) implies SL = O(eat):

SL = SB + · · ·+ SB ∗ (ASB)∗(N−1)︸ ︷︷ ︸
E→E

+ SL︸︷︷︸
E→E⊂E

∗ (ASB)∗N︸ ︷︷ ︸
E→E

.

SL = O(eat) implies SL = O(eat):

SL = SB + · · ·+ (SBA)∗(N−1) ∗ SB︸ ︷︷ ︸
E→E

+ (SBA)∗N︸ ︷︷ ︸
E→E

∗ SL︸︷︷︸
E⊂E→E

because ea ∗ ea = tea ≤ ea′ for any a′ > a > a∗, with ea(t) := eat

S.Mischler (CEREMADE) Semigroup methods June 23, 2022 13 / 55



Example 1 : the Fokker-Planck equation

We consider the Fokker-Planck equation

∂t f = Lf = ∆f + div(Ef )

on f = f (t, x), t ≥ 0, x ∈ Rd , with force confinement

E = ∇〈x〉
γ

γ
= x〈x〉γ−2, γ > 0.

Th 1’. For any k ≥ 0 and p ∈ [1,∞], there exists a constant M ≥ 1 such that

sup
t≥0
‖ft‖Lp

k
≤ M‖f0‖Lp

k

with
‖f ‖Lp

k
:= ‖f 〈x〉k‖Lp , 〈x〉2 := 1 + |x |2.

B Toscani-Villani, Röckner-Wang, Kavian-M.-Ndao

Elements of proof
We observe that

d

dt

∫
fdx = 0,

so that mass is conserved !
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We consider the Fokker-Planck equation

∂t f = Lf = ∆f + div(Ef )

on f = f (t, x), t ≥ 0, x ∈ Rd , with force confinement

E = ∇〈x〉
γ

γ
= x〈x〉γ−2, γ > 0.

Th 1’. For any k ≥ 0 and p ∈ [1,∞], there exists a constant M ≥ 1 such that

sup
t≥0
‖ft‖Lp

k
≤ M‖f0‖Lp

k

Elements of proof
Similarly

d

dt

∫
|f |dx≤0,

so that
SL : L1 → L1, uniformly bounded.

The idea is to use the shrinkage result taking advantage of the splitting structure

∂t f = Lf = ∂xx f + ∂x(xγ−1f )−MχR f︸ ︷︷ ︸
=:Bf

+MχR f︸ ︷︷ ︸
=:Af
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L1
k estimate for SL when γ ≥ 2

L satisfies the (strong for γ ≥ 2, weak for γ < 2) Lyapunov condition

L∗〈x〉k . −〈x〉k+γ−2 + 1BR ,

because
∂xxx

k − xγ−1∂xx
k ∼ −kxk+γ−2.

When γ ≥ 2, we may proceed in a very simple way :

d

dt

∫
f 〈x〉k . −

∫
f 〈x〉k +

∫
f

. −
∫

f 〈x〉k +

∫
f0,

and thanks to the Gronwall lemma we conclude directly

SL : L1
k → L1

k uniformly bounded.

S.Mischler (CEREMADE) Semigroup methods June 23, 2022 15 / 55



L1
k estimate for SL (general case)

We write
ft = SB(t)f0 + (SBA ∗ SL)(t)f0

and we next compute

‖ft‖L1
k
≤ ‖SB(t)f0‖L1

k
+

∫ t

0

‖SB(t − s)ASL(s)f0‖L1
k
ds

≤ ‖f0‖L1
k

+

∫ t

0

Θ(t − s)‖ASL(s)f0‖L1
m
ds

. ‖f0‖L1
k

+

∫ t

0

Θ(t − s)‖SL(s)f0‖L1 ds

≤ ‖f0‖L1
k

+

∫ t

0

Θ(t − s)‖f0‖L1 ds

≤ (1 + ‖Θ‖L1 )‖f0‖L1
k
.

We have to prove

SB(t) : L1
k → L1

k uniformly bounded

SB(t) : L1
m → L1

k with rate t 7→ Θ(t) ∈ L1 for m > k (large enough)
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L1
k estimate for SB
B satisfies the (weak) dissipativity condition

B∗〈x〉k . −〈x〉k+γ−2 ≤ 0.

A solution f to the evolution equation ∂t f = Bf satisfies

d

dt

∫
f 〈x〉k ≤ −

∫
f 〈x〉k+γ−2 ≤ 0,

so that first

SB : L1
k → L1

k , L1
m → L1

m, uniformly bounded ∀m ≥ k.

Observing that
〈x〉k ≤ A2−γ〈x〉k+γ−2 + Ak−m〈x〉m, ∀A > 0,

we compute

d

dt

∫
f 〈x〉k + Aγ−2

∫
f 〈x〉k ≤ Ak−m+γ−2

∫
f 〈x〉m,

and next

d

dt

(
etA

γ−2
∫

f 〈x〉k
)
≤ etA

γ−2

Ak−m+γ−2

∫
f0〈x〉m.
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L1
k estimate for SB
B satisfies the (weak) dissipativity condition

B∗〈x〉k . −〈x〉k+γ−2 ≤ 0.

So that first

SB : L1
k → L1

k , L1
m → L1

m, uniformly bounded ∀m ≥ k.

A solution f to the evolution equation ∂t f = Bf satisfies

d

dt

(
etA

γ−2
∫

f 〈x〉k
)
≤ etA

γ−2

Ak−m+γ−2

∫
f0〈x〉m.

Integrating in time (using the Gronwall lemma), we deduce∫
f 〈x〉k ≤ e−tAγ−2

∫
f0〈x〉k + Ak−m

∫
f0〈x〉m, ∀A > 0,

≤ inf
A>0

(
e−tAγ−2

+ Ak−m
)∫

f0〈x〉m

=: Θ(t)

∫
f0〈x〉m

We find
Θ(t) ≤ t−2 + (t/ ln t2)

k−m
2−γ

by making the choice A := (t/ ln t2)
1

2−γ . We have Θ ∈ L1 when m > k + 2− γ.
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Lpk estimate for SB (and next SL) in the case γ ≥ 2 and p = 2

We use Nash trick and Nash inequality

‖f ‖1+2/d

L2 ≤ Cd ‖f ‖2/d

L1 ‖∇f ‖L2

for a solution f to the evolution equation ∂t f = Bf . Taking advantage of the available
L1 estimate (for M, R large enough)

‖ft‖L1 . e−t ,

we may compute

d

dt
‖f ‖2

L2 . − ‖∇f ‖2
L2 − 2‖f ‖2

L2

. −
‖f ‖2(1+α)

L2

‖f ‖2α
L1

− 2‖f ‖2
L2 ,

with α := 2/d > 0, so that

d

dt

(
‖f ‖2

L2e
2t) . −

(
‖f ‖2

L2e
2t
)1+α

‖f0‖2α
L1

.
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Nonlinear ODE

We recall that the solution to the ODE

u′ ≤ −K u1+α,

satisfies

u(t) ≤ 1

(αKt)1/α
.

The proof is elementary. We write equivalently

du

u1+α
≤ −Kdt

and after integration in time, we get

u−α(t) ≥ αK t + uα0 ≥ αK t.

Using that result with the choice α = 2/d and K = C‖f0‖−4/d

L1 , we deduce

‖f ‖2
L2e

2t .
‖f0‖2

L1

td/2

and finally

‖f ‖L2 .
e−t

td/4
‖f0‖L1
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We recall that the solution to the ODE

u′ ≤ −K u1+α,

satisfies

u(t) ≤ 1

(αKt)1/α
.

Using that result with the choice α = 2/d and K = C‖f0‖−4/d

L1 , we deduce

‖f ‖2
L2e

2t .
‖f0‖2

L1

td/2

and finally

‖f ‖L2 .
e−t

td/4
‖f0‖L1

We have established

SB(t) : L1 → L2 with rate Θ :=
e−t

td/4
∈ L1, if d ≤ 3.

In general, we have

SB(t) : L1 → Lp with rate Θ :=
e−t

td/2
,

and whatever is p ∈ [1,∞], d ≥ 1, k ≥ 0, we may prove

(ASB)∗N(t) : L1 → Lp
k with rate Θ ∈ L1, for N ≥ 1 large enough.
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Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov

Dissipativity ∃ a ∈ R

〈f ∗,Bf 〉 ≤ a‖f ‖2 ⇔ ‖SB(t)f ‖ ≤ eat‖f ‖

Hypo-dissipativity ∃ a ∈ R

〈f ∗,Bf 〉 ≤ a|||f |||2 ⇔ ‖SB(t)f ‖ ≤ Meat‖f ‖

• B − a dissipative implies L − (a + ‖A‖) dissipative and we may sometime show L − κ
hypodissipative with κ ∈ [a, a + ‖A‖).

Lyapunov condition ∃ a ∈ R (or R−), ∃ψ ≥ 1, ∃ψc . ψ (suppψc compact)

L∗ψ ≤ aψ + ψc

• For positive semigroup in L1 we have Kato’s inequality: (signf )Lf ≤ L|f |. Lyapunov
condition then implies B − a is dissipative with B := L − ψc .
When ψ = 1, we may compute

〈f ∗,Bf 〉 = 〈f ∗,Lf 〉 − 〈f ∗, ψc f 〉
≤ 〈1,L|f |〉 − 〈1, ψc |f |〉
= 〈L∗1− ψc , |f |〉
≤ a〈1, |f |〉 = a‖f ‖L1 .
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Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov

Dissipativity ∃ a ∈ R

〈f ∗,Bf 〉 ≤ a‖f ‖2 ⇔ ‖SB(t)f ‖ ≤ eat‖f ‖

Hypo-dissipativity ∃ a ∈ R

〈f ∗,Bf 〉 ≤ a|||f |||2 ⇔ ‖SB(t)f ‖ ≤ Meat‖f ‖

Lyapunov condition ∃ a ∈ R (or R−), ∃ψ ≥ 1, ∃ψc . ψ (suppψc compact)

L∗ψ ≤ aψ + ψc

Weakly dissipativity a = 0, X1 ⊂ X0

〈f ∗,Bf 〉X1 ≤ −‖f ‖X0 ⇔ not clear

but
〈f ∗,Bf 〉X1 ≤ −‖f ‖X0 , 〈f ∗,Bf 〉X2 ≤ 0, X2 ⊂ X1 ⊂ X0

imply
‖SB(t)f ‖Xi ≤ ‖f ‖Xi , i = 1, 2, ‖SB(t)f ‖X0 ≤ Θ(t)‖f ‖X2 .

Weak Lyapunov with a = 0, ∃ψi , ψc . ψ0 . ψ1

L∗ψ1 ≤ −ψ0 + ψc

• weak Lyapunov condition for L ⇒ weak dissipative property for B
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Let’s start with a picture
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Weyl’s theorem - characterization

Th 2.
(0) L = A+ B, where A is Bζ

′
-bounded with 0 ≤ ζ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0,

(2)
∫∞

0
‖(ASB)(∗n)‖X→D(Bζ ) e

−at dt <∞, ∀ a > a∗, with ζ > ζ′,

(3)
∫∞

0
‖(ASB)(∗m)‖X→Y e−at dt <∞, ∀ a > a∗, with Y ⊂ X compact,

is equivalent to

(4) there exist ξ1, ..., ξJ ∈ ∆̄a, there exist Π1, ...,ΠJ some finite rank projectors, there
exists Tj ∈ B(RΠj) such that LΠj = ΠjL = TjΠj , Σ(Tj) = {ξj}, in particular

Σ(L) ∩ ∆̄a = {ξ1, ..., ξJ} ⊂ Σd(Σ)

and there exists a constant Ca such that

‖SL(t)−
J∑

j=1

etTj Πj‖X→X ≤ Ca e
at , ∀ a > a∗

B Weyl (1910), Ribarič-Vidav (1969), Vidav (1974), Voigt (1980), M.-Scher (2016)

• It can be seen as a condition under which a “spectral mapping theorem for the
principal part of the spectrum holds”

• Issue : constants are not constructive !!
S.Mischler (CEREMADE) Semigroup methods June 23, 2022 23 / 55



Resolvent and semigroup

We define
RL(λ) := (λ− L)−1,

when λ− L : D(L)→ X is one-to-one.
In that case, we write λ ∈ ρ(L) ⊂ C the resolvent set.
We have ρ(L) ⊃ ∆ω(SL) 6= ∅, ∆a := {z ∈ C; <ez > a} and

RL(λ) =

∫ ∞
0

SL(t)e−λt dt, ∀λ ∈ ∆ω(L). (4)

The counterpart of the Duhamel formulas are

RL = RB +RBARL = RB +RLARL

and some counterpart of the iterated Duhamel formulas is e.g.

RL = RB + · · ·+ (RBA)(N−1)RB + (RBA)NRL.

Inversing the Laplace transform (4), we get

SL(t) =
i

2π

∫
↑a
eztRL(z)dz

= SB + · · ·+ (SBA)∗(N−1) ∗ SB +
i

2π

∫
↑a
ezt(RB(z)A)NRL(z)dz
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Resolvent and spectrum

• We define the spectrum set Σ(L) := C\ρ(L).

• We define the point spectrum set (the set of eigenvalues)

ΣP(L) := {λ ∈ C; ∃f ∈ X\{0} Lf = λf }.

• We say that λ ∈ Σ(L) is isolated if ∃r > 0, Σ(L) ∩ B(λ, r) = {λ}.
• For λ ∈ ΣP(L), we define Mλ := limn→∞ N(λ− L)n the almost algebraic eigenspace
and maa := dimM(L − λ) ∈ {1...,∞} the “almost algebraic multiplicity”.

• If it exists, the algebraic eigenspace Eλ associated to λ ∈ ΣP(L) satisfies
- there exists a projection Π which commutes with L and satisfies ΠX = Eλ,
- L|Eλ ∈ B(Eλ), ΣP(L|Eλ) = Σ(L|Eλ) = {λ} and λ /∈ ΣP(L|X0

) with X0 := (I − Π)X .

• We define the discrete spectrum set Σd(L) as the set of λ ∈ ΣP(L) which is isolated
and which algebraic multiplicity dimEλ is finite.

We have
Σd(L) ⊂ ΣP(L) ⊂ Σ(L), Mλ ⊂ Eλ if λ ∈ ΣP(L)

and

Π =
i

2π

∫
|z−λ|=r/2

RL(z) dz if λ ∈ Σd(L).
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Sketch of the proof of Weyl + spectral mapping theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

SL = Π SL + Π⊥ SL Π⊥,

with Π⊥ := I − Π, Σ(LΠ⊥) ∩∆a∗ = ∅ and write the (iterated) Duhamel formula

SL =
N−1∑
`=0

SB ∗ (ASB)(∗`) + SL ∗ (ASB)(∗N)

Using the inverse Laplace formula for b > ω(L) ≥ s(L) = sup<eΣ(L) and the fact that
Π⊥RL(z) is analytic in ∆a∗ , we get

{Π⊥ SL} ∗ (ASB)(∗N) =
i

2π

∫ b+i∞

b−i∞
ezt Π⊥ RL(z)(ARB(z))N dz

= lim
M→∞

i

2π

∫ a+iM

a−iM

ezt Π⊥ RL(z)(ARB(z))N dz

These three identities together

SL = Π SL + Π⊥ {
N−1∑
`=0

SB ∗ (ASB)(∗`)}Π⊥

+
i

2π

∫
↑a
ezt Π⊥ RL(z)(ARB(z))N dz = O(eat)?
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The key estimate on the last term

We clearly have

sup
z=a+iy, y∈[−M,M]

‖Π⊥RL(z)(ARB(z))N‖ ≤ C <∞ (not constructive!)

and it is then enough to get the bound

‖RL(z)(ARB(z))N‖ ≤ C/|y |2, ∀ z = a + iy , |y | ≥ M, a > a∗

We assume (in order to make the proof simpler) that ζ = 1 in estimate (2), namely

‖(ASB)(∗n)‖X→X1 = O(eat) ∀ t ≥ 0,

with X1 := D(L) = D(B), which implies

‖(ARB(z))n‖X→X1 ≤ Ca ∀ z = a + iy , a > a∗.

We also assume (for the same reason) that ζ′ = 0, so that

A ∈ B(X ) and RB(z) =
1

z
(RB(z)B − I ) ∈ L(X1,X )

imply
‖ARB(z)‖X1→X ≤ Ca/|z | ∀ z = a + iy , a > a∗.

The two estimates together imply

(∗) ‖(ARB(z))n+1‖X→X ≤ Ca/|z | ∀ z = a + iy , a > a∗.

• In order to deal with the general case 0 ≤ ζ′ < ζ ≤ 1 one has to use some additional
interpolation arguments
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The key estimate on the last term - 2nd step

We write
RL(I − V) = U

with

U :=
n∑
`=0

RB(ARB)`, V := (ARB)n+1

For M large enough

(∗∗) ‖V(z)‖ ≤ 1/2 ∀ z = a + iy , |y | ≥ M,

and we may write the Neuman series

RL(z) = U(z)︸ ︷︷ ︸
bounded

∞∑
j=0

V(z)j

︸ ︷︷ ︸
bounded

For N = 2(n + 1), we finally get from (∗) and (∗∗)

‖RL(z)(ARB(z))N‖ ≤ C/〈y〉2, ∀ z = a + iy , |y | ≥ M
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The key argument for the first term

We write again
RL(I − V) = U

with

U :=
n∑
`=0

RB(ARB)`, V := (ARB)n+1

Because
• I − V is holomorphic on ∆a∗ ,
• it is a compact perturbation of the identity
• it satisfies I − V(z)→ I when <ez →∞,

one may use the theory of degenerate-meromorphic functions of Ribarič and Vidav
(1969), and conclude that V(z) is invertible outside of a discrete set D of ∆a∗ .

That implies that Σ(L) ∩∆a∗ = D is a discrete set of ∆∗ .

On the other hand, thanks to the Fredholm alternative, one deduces that the eigenspace
associated to each spectral value λ ∈ D is non zero and finite dimensional, so that
λ ∈ Σd(L).

We define

Π =
i

2π

∫
↑a
RL(z) dz , with ↑a ∩Σ(L) = ∅.
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Let’s start again with a picture
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The KR theorem issue

For a positive semigroup St = SL(t) = etL with generator L on a Banach lattice
X with positive cone X+, we ask for

• existence of a first eigenvalue triplet solution (λ, f1, φ1) ∈ R× X × X ′ :

f1 ≥ 0, Lf1 = λ1f1, φ1 ≥ 0, L∗φ1 = λ1φ1

• suitable geometric properties as

(1) f1 > 0 unique positive eigenvector for L, N(L − λ1)k = vectf1
and φ1 > 0 unique positive eigenvector for L∗, N(L∗ − λ1)k = vectφ1

(1′) Σ+(L)− λ1 is a (discrete) subgroup of iR,
with Σ+(L) := {λ, λ ∈ ΣP(L), <eλ = λ1}

(2) Σ+(L) = {λ1}

• asymptotic attractivity/stability of the principal eigenfunction

etLf0 − eλ1t f1〈φ1, f0〉 = o(eλ1t),

with constructive rate.
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Krein-Rutmann for positive operator

Th 3. Consider a semigroup generator L on a Banach lattice such that
(1) L such as in Weyl’s Theorem for some a∗ ∈ R;
(2) ∃b > a∗ and ψ ∈ D(L∗) ∩ X ′+\{0} such that L∗ψ ≥ b ψ;
(3) SL is positive (and L satisfies Kato’s inequalities);
(4) −L satisfies a strong maximum principle.

Defining λ1 := s(L), there holds

a∗ < λ1 = ω(L) and λ1 ∈ Σd(L),

and there exists 0 < f1 ∈ D(L) and 0 < φ1 ∈ D(L∗) such that

Lf1 = λ1 f1, L∗φ1 = λ1 φ1, RΠL,λ1 = Vect(f1),

and then
ΠL,λ1 f = 〈f , φ1〉 f1 ∀ f ∈ X .

Moreover, there exist α ∈ (a∗, λ1) and C > 0 such that for any f0 ∈ X

‖SL(t)f0 − eλ1t ΠL,λ1 f0‖X ≤ C eαt ‖f0 − ΠL,λ1 f0‖X ∀ t ≥ 0.

B In M. & Scher, that is mainly a consequence of Weyl + spectral mapping theorem by
establishing furthemore that

Σ(L) ∩∆a∗ = {λ1}, λ1 ∈ R.
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Existence part in the KR theorem

Th 3′ Assumptions:

(1) S is a positive semigroup

(2) ∃κ0 ∈ R ∃ψ0 ∈ X ′+\{0} L∗ψ0 ≥ κ0ψ0

(3) (dissipative case) splitting structure with κB < κ0

(3′) (weakly dissipative case) κ0 = 0, ∃Θ ∈ L1(R+) such that

‖ft‖ ≤ M‖f0‖+

∫ t

0

Θ(t − s)[fs ] ds, ft := St f0,

with [f ] := 〈ψ0, |f |〉 and X ⊂ X (weakly) compact, with ‖f ‖X := [f ].

Conclusion: ∃ a solution (λ, f1, φ1) to the first eigenvalue triplet problem

Example: (1) The Fokker-Planck operator

Lf = ∆f + div(Ef ) + cf , E := ∇|x |γ/γ, γ > 0, c ∈ Cc(Rd).

(2) The condition (3′) is natural under a splitting structure

SL = SB + · · ·+ (SBA)∗(N−1) ∗ SB + (SBA)∗N ∗ SL,

with A bounded, B weakly dissipative, (SBA)∗N : X → X .
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Existence - 1st proof ∼ Collet-Mart́ınez-Méléard-San Mart́ın?

We assume (case N = 1 and X = M1) with κB < κ0

[ft ] ≥ eκ0(t−s)[fs ], ∀t > s, fτ := Sτ f0

, ‖ft‖ ≤ eκBt‖f0‖+ C2

∫ t

0

eκB(t−s)[fs ] ds ⇔ C1 = 1

Step 1. We define

C := {f ≥ 0, [f ] = 1, ‖f ‖ ≤ M}, Φt(f0) :=
ft

[ft ]
.

For f0 ∈ C and α := κB − κ0 < 0, we compute for t ≤ t0,

‖Φt(f0)‖ ≤ eαt‖f0‖+ C2

∫ t

0

eα(t−s) ds

≤ (1 + αt/2)M + C2t ≤ M

t0 > 0 small and M > 0 large. That implies Φt : C → C.

From the Schauder/Tykonov theorem:

∃ ξt ∈ C, Φt(ξt) = ξt .
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Existence - 1st proof (continuation)

Step 1. We reformulate

∃ ft ∈ C, ∃λ′t ∈ [κ0, κ1], St ft = eλ
′
t t ft .

Step 2. We reformulate again by choising t = 2−n:

∃ fn ∈ C, ∃λ′n ∈ [κ0, κ1], St fn = eλ
′
nt fn, ∀ t ∈ Dm,m ≤ n,

with
Dm := {t = j2−m} = 2−mN = part of dyadic real numbers

By compactness, ∃λ1 ∈ [κ0, κ1], ∃ f1 ∈ C such that

St fnk = e
λ′nk

t
fnk , λnk → λ1, fnk ⇀ f1.

We deduce
St f1 = eλ1t f1, ∀ t ∈ Dm, ∀m

and then
St f1 = eλ1t f1, ∀ t ≥ 0.
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Existence - 2nd proof ∼ Cañizo-M

We assume (general dissipative case for N and X ) with κB < κ0

[ft ] ≥ eκ0(t−s)[fs ], ∀t > s, fτ := Sτ f0

, ‖ft‖ ≤ C1e
κBt‖f0‖+ C2

∫ t

0

eκB(t−s)[fs ] ds, C1 > 1

Step 1. With the same notations

‖ΦT0 (f0)‖ ≤ C1e
αT0M +

C2

|α| ≤ M,

for T0 and M > 0 large enough. That implies ΦT0 : C → C.

From the Schauder/Tykonov theorem:

∃ fT0 ∈ X+, [fT0 ] = 1, ST0 fT0 = eλ1T0 fT0 .

We cannot make T0 → 0 !!
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Existence - 2nd proof (continuation)

Step 2. We denote S̄t := Ste
−λ1t . We have built a periodic solution

S̄t fT0 = S̄t−kT0 fT0 , k := [t/T0], ∀ t > 0.

For any t ≥ 0, we deduce

[S̄t fT0 ] ≥ e(κ0−λ1)(t−kT0)[fT0 ] ≥ e(κ0−λ1)T0 =: r∗ > 0,

‖S̄t fT0‖ ≤ C2e
(κ2−λ1)(t−kT0)‖fT0‖ ≤ C2e

(κ2−λ1)T0)‖fT0‖ =: R∗ <∞.

The mean uT satisfies the same estimates:

uT :=
1

T

∫ T

0

S̄t fT0 dt ∈ G := {g ∈ X+; [g ] ≥ r∗, ‖g‖ ≤ R∗}.

By compactness, there exists f1 ∈ G and (Tk) such that uTk ⇀ f1.
The von Neumann, Birkhoff mean ergodicity trick leads to

S̄t f1 − f1 = lim
k→∞

{ 1

Tk

∫ Tk

0

S̄t S̄s fT0ds −
1

Tk

∫ Tk

0

S̄s fT0ds
}

= lim
k→∞

{ 1

Tk

∫ Tk+t

Tk

S̄s fT0ds −
1

Tk

∫ t

0

S̄s fT0ds
}

= 0,

because (S̄s fT0 ) is uniformly bounded. We deduce Lf1 = λ1f1.

S.Mischler (CEREMADE) Semigroup methods June 23, 2022 38 / 55



Existence - third proof (dynamical approach)

We assume (including weakly dissipative case)

[ft ] ≥ [fs ], ∀t > s, κ0 := 0,

‖ft‖ ≤ M‖f0‖+

∫ t

0

Θ(t − s)[fs ] ds, M ≥ 1

For some g0 ∈ X+ such that [g0] = 1, we set

C := {f ≥ 0, [f ] = 1, ‖f ‖ ≤ R}, R := max(2‖Θ‖L1 , ‖g0‖)

and we define the increasing function

λ(t) := inf
f∈C

[St f ].

We have the alternative

• (case 1) supλ ≤ 2M

• (case 2) supλ > 2M
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Existence - third proof (case 1)

By compactness, there exists f0 ∈ C such that

sup
t≥0

[St f0] ≤ 2M.

We remind the iterated Duhamel formula

S = v + (SBA)(∗N) ∗ S

and the associated mean equation

UT = VT + WT

with

UT :=
1

T

∫ T

0

Stdt, vT :=
1

T

∫ T

0

vtdt, WT :=
1

T

∫ T

0

(SBA)(∗N) ∗ Sdt.

Thanks to Fubini and positivity, we have

WT ≤
∫ T

0

(SBA)(∗N)dtUT

which implies
‖WT f0‖ ≤ ‖Θ‖L1 [UT f0]
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Existence - third proof (case 1 - continuation)

In a simpler way
‖VT f0‖ ≤ M‖f0‖.

All together, we have ‘

‖UT f0‖ ≤ M‖f0‖+ ‖Θ‖L1 [UT f0] and 1 ≤ [ST f0] ≤ 2M.

From the first inequality, we deduce that ‖UT f0‖ is uniformly bounded on T ∈ R+.
By compactness, there exists Tk → +∞ and f1 ∈ X+ such that UTk f0 ⇀ f1.
Thanks to the second inequality, we have [f1] ≥ 1.
From the same and usual mean ergodic trick, for any fixed s > 0, we have

S(s)f1 − f1 = lim
k→∞

{ 1

Tk

∫ Tk

0

S(s)S(t)f0dt −
1

Tk

∫ Tk

0

S(t)f0 dt
}

= lim
k→∞

{ 1

Tk

∫ Tk+s

Tk

S(t)f0dt −
1

Tk

∫ s

0

S(t)f0 dt
}

= 0.

That implies that f1 is a stationary solution, and thus λ1 = 0.
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Existence - third proof (case 2 - step 1)

Step 1 From the assumption

∃T0 > 0, ∀ f ∈ C, [ST0 f ] ≥ 2M.

For f ∈ C, we define

ΦT0 f :=
ST0 f

[ST0 f ]
,

so that ΦT0 f ≥ 0 and [ΦT0 f ] = 1. Because of the above assumption and the Lyapunov
like estimate, we have

‖ΦT0 f ‖ ≤
1

2
‖f ‖+ ‖Θ‖L1 ≤ R.

We have established ΦT0 : C → C and from the Schauder/Tykonov theorem, there exists
fT0 ∈ C such that ΦT0 fT0 = fT0 . In other words : we have built a pair of “almost
eigenvalue and eigenfunction”

fT0 ≥ 0, [fT0 ] = 1, ST0 fT0 = eλ1T0 fT0 ,

with eλ1T0 = [ST0 f ] and thus λ1 ∈ [0, κ1].

Step 2 We conclude as in the 2nd proof !
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Hypothesis

We consider a Markov semigroup St = SL(t) defined on X := L1(Rd), meaning St ≥ 0
and S∗t 1 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There are two weight functions
m0,m1 : Rd → [1,∞), m1 ≥ m0, m0(x)→∞ as x →∞, and two real constants
b,R > 0 such that

L∗m1 ≤ −m0 + b 1BR .

(H2) Doeblin-Harris condition. ∃T > 0 ∀R > 0 ∃ ν ≥ 0, 6≡ 0, such that

STg ≥ ν
∫
BR

g , ∀ g ∈ X+.

(H3) There are two other weight functions m2,m3 : Rd → [1,∞), m3 ≥ m2 ≥ m1 such

that
L∗m3 ≤ −m2 + b 1BR

and m2 ≤ mθ
0m

1−θ
3 with θ ∈ (1/2, 1].
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Conclusion

Theorem 4

Consider a Markov semigroup S on X := L1(m3) which satisfies (H1), (H2), (H3). There
holds

‖St f0‖L1 . Θ(t)‖f0‖L1(m3), ∀ t ≥ 0, ∀ f0 ∈ X , 〈f0〉 = 0,

for the function Θ given by

Θ(t) := inf
λ>0

{
e−ελt + ξλ

}
,

where

m1 ≤
1

2ελ
m0 + ηλm3, ∀λ, ελ, ηλ → 0 as λ→∞.
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Comments

• The assumption (H3) is not necessary: m1 satsisfies a Lyaponov condition implies that
φ(m1) satsisfies a Lyaponov condition for any φ : R+ → R+ concave.

• The probabilistic proof use Martingale argument, renewal theory and (if possible?)
constants are not easily tractable.

• In the probabilistic approach, one writes m0 = ξ(m1), ξ : R+ → R+ concave, and

Θ̃(t) :=
C

ξ(H−1(t))
, H(u) :=

∫ u

1

ds

ξ(s)
.

- If ξ(s) = s then Θ̃(t) = e−λt ;

- If m1 = 〈x〉k , m0 := 〈x〉k+γ−2 then Θ̃(t) = t1− k
2−γ >> Θ(t);

- If m1 = eκ〈x〉
s

, m0 := 〈x〉s+γ−2eκ〈x〉
s

then Θ̃(t) ' e−λt
s

2−γ ' Θ(t).
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A second version of the subgeometric Doeblin-Harris theorem

Consider a Markov semigroup St = SL(t) defined on X := L1
m(RD), meaning St ≥ 0 and

S∗t 1 = 1. We furthermore assume

(H1) Subgeometric Lyapunov condition. There is a weight function m : RD → [1,∞),
m↗∞, an increasing concave function ϕ : [1,∞)→ [1,∞), ϕ↗∞, and three real
constants b,R, δ > 0 such that

L∗m ≤ −δϕ(m) + b 1BR , BR := {y ∈ RD ; V (y) ≤ R}.

(H2) Doeblin-Harris irreducibility condition. ∃T > 0 ∀R > 0 ∃ ν ≥ 0, 6≡ 0, such that

STg ≥ ν
∫
BR

g , ∀ g ∈ X+.

Theorem 4′

For any f0 ∈ X , 〈f0〉 = 0, there holds

∀ t ≥ 0, ‖St f0‖ .
1

H−1(t)
‖f0‖m, H(u) :=

∫ u

1

ds

ϕ(u)
.

In particular,

1

H−1(t)
= e−t if ϕ(u) = u,

1

H−1(t)
= t−1/a if ϕ(u) = u1−a.
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several proofs :

Theorem 4 (geometric case)

Doeblin

Harris, Proceedings 1956

Meyn, Tweedie, AAP 1992, 1993, 1994

Hairer, Mattingly, Proceedings 2011

Cañizo-M. (semigroup approach)

Theorem 4 (subgeometric case)

Douc, Fort, Guillin, SPA 2009

Hairer, unpublished lecture notes, 2016

Cañizo-M. (semigroup approach)

S.Mischler (CEREMADE) Semigroup methods June 23, 2022 48 / 55



Doeblin-Harris irreducibility/strong positivity condition implies coupling
weak generator Lyapunov implies weak semigroup Lyapunov

Lemma 5

The Harris condition (H2) implies the coupling condition:
(H2′) ∃γH ∈ (0, 1), A > 0,

‖f ‖m ≤ A‖f ‖, 〈f 〉 = 0 =⇒ ‖ST f ‖ ≤ γH ‖f ‖.

proof : splitting RD = CR ∪ CcR

Lemma 6

The generator Lyapunov condition (H1) implies the semigroup Lyapunov condition:
(H1′) ∀ t > 0, ∃Kt ≥ 0,

‖St f0‖m + t‖St f0‖ϕ(m) ≤ ‖f0‖m + Kt‖f0‖,

proof : integration in time
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About Lemma 5 : contraction and strict contraction

Rk 1. Assuming just that (St) is a Markov semigroup, we have

|St f | = |St f+ − St f−| ≤ |St f+|+ |St f−| = St |f |.

Integrating, we deduce that (St) is a L1 contraction∫
|St f | ≤

∫
St |f | =

∫
|f |S∗t 1 =

∫
|f |.

Rk 2. We assume furthermore the strong Doeblin-Harris condition:

(strong H2) ∃T , ∃ ν, STg ≥ ν
∫
RD

g , ∀ g ∈ X+.

For f ∈ L1, 〈f 〉 = 0, we have

ST f± ≥ ν
∫
RD

f± =
ν

2

∫
RD

|f | =: η.

We may adapt the proof in Rk 1 in the following way

|ST f | = |ST f+ − η − (ST f− − η)|
≤ |ST f+ − η|+ |ST f− − η| = ST |f | − 2η.

Integrating, we deduce that (ST ) is a strict contraction

‖ST f ‖L1 ≤ ‖f ‖L1 − 2‖η‖L1 = (1− 〈ν〉) ‖f ‖L1
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Proof of Lemma 5: the Harris condition (H2) implies the coupling condition (H2′)

Rk 3. Assuming (H2), we have similarly∫
|ST f | ≤ γH

∫
|f | if

∫
|f |m ≤ m(R)

4

∫
|f |,

with
γH := 1− 〈ν〉/2 ∈ (0, 1).

Indeed, we mainly observe that

ST f± ≥ ν

∫
RD

f± − ν
∫
Bc
R

f±

≥ ν

2

∫
RD

|f | − ν
∫
Bc
R

|f |

≥ ν

2

∫
RD

|f | − ν

m(R)

∫
RD

|f |m

≥ ν

2

∫
RD

|f | − ν

4

∫
RD

|f |

=
ν

4

∫
RD

|f |,

and we then follow the same proof as when we have assumed (strong H2).
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Strict contraction for time discrete semigroup S := ST

S satisfies a Lyapunov operator condition (H1′′) if ∃ γL ∈ (0, 1), K ≥ 0

‖Sf ‖m + γL‖Sf ‖ϕ(m) ≤ ‖f ‖m + K‖f ‖, ∀ f

S satisfies a coupling operator condition (H2′′) if ∃γH ∈ (0, 1), A > 0,

‖f ‖m ≤ A‖f ‖, 〈f 〉 = 0 =⇒ ‖Sf ‖ ≤ γH ‖f ‖.

Lemma 7

If A > K/γL there exists α > 0 and an equivalent norm ||| · |||m to ‖ · ‖m such that

|||Sf |||m + α‖Sf ‖ϕ(m) ≤ |||f |||m, ∀ f , 〈f 〉 = 0.

Proof: a hypocoercivity trick and an alternative.
We introduce the equivalent norm for convenient choice of β, γ > 0

|||f |||m := ‖f ‖+ β‖f ‖ϕ(m) + γ ‖f ‖m∗

If ‖f ‖ϕ(m) ≤ A‖f ‖, we use the coupling condition (H2′′)
If ‖f ‖ϕ(m) ≥ A‖f ‖, we use the Lyapunov condition (H1′′)

∗ modified norm ' “hypodissipativity trick”

S.Mischler (CEREMADE) Semigroup methods June 23, 2022 52 / 55



Subgeometric convergence for time discrete semigroup S := ST
We assume that S satisfies (H1′′) and (H2′′) for two pairs mi , ϕi ,Ki , γLi and Ai ,Ki , γHi

with Ai > Ki/γHi , m1 ≤ m2, ϕ1(m1) ≤ ϕ2(m2), as well as the interpolation condition

(H3) λm1 ≤ ϕ1(m1) + ξ(λ)m2, ∀λ > 0,

with ξ : R+ → R+, ξ(λ)/λ→ 0 as λ→ 0. That means ϕ1(m1) << m1 << m2.

Lemma 8

Under the above conditions, for any f , 〈f 〉 = 0,

‖Snf ‖ . Θ̃(n)‖f ‖m2 , ∀ n,

with

Θ̃(n) =
Θ(n/2)

n
, Θ(t) := F−1(t), F (λ) :=

∫ 1

λ

ds

ξ∗(θs)

Proof:
|||Sf |||mi + α‖Sf ‖ϕi (mi ) ≤ |||f |||mi

implies
|||Sf |||m1 + αλ‖Sf ‖m1 ≤ |||f |||m1 + αξ(λ)|||f |||m2 , ∀λ > 0,

and next
|||Sn+1f |||m1 ≤ (1− θλn)|||Snf |||m1 + αξ(λn)|||f |||m2
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Outline of the talk

1 Introduction

2 Shrinkage and enlargement

3 Weyl + spectral maping theorem

4 Krein-Rutman theorem

5 Doblin-Harris theorem

6 An application to neurosciences
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Example 2 : the age structured equation
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