Yet another look at Krein-Rutman theorem

S. Mischler

(Paris-Dauphine)

in collaboration with C. Fonte & P. Gabriel

ANR NOLO March 2, 2022

The KR theorem issue

For a positive semigroup $S_t=S_{\mathcal{L}}(t)=e^{t\mathcal{L}}$ with generator \mathcal{L} on a Banach lattice X with positive cone X_+ , we ask for

• existence of a first eigenvalue triplet solution $(\lambda, f_1, \phi_1) \in \mathbb{R} \times X \times X'$:

$$f_1 \ge 0, \ \mathcal{L}f_1 = \lambda_1 f_1, \quad \phi_1 \ge 0, \ \mathcal{L}^* \phi_1 = \lambda_1 \phi_1$$

- suitable geometric properties as
 - (1) $f_1 > 0$ unique positive eigenvector for \mathcal{L} , $\mathcal{N}(\mathcal{L} \lambda_1)^k = \text{vect} f_1$ and $\phi_1 > 0$ unique positive eigenvector for \mathcal{L}^* , $\mathcal{N}(\mathcal{L}^* \lambda_1)^k = \text{vect} \phi_1$
 - (1') $\Sigma_{+}(\mathcal{L}) \lambda_{1}$ is a (discrete) subgroup of $i\mathbb{R}$, with $\Sigma_{+}(\mathcal{L}) := \{\lambda, \ \lambda \in \Sigma_{P}(\mathcal{L}), \Re e \lambda = \lambda_{1}\}$
 - (2) $\Sigma_{+}(\mathcal{L}) = \{\lambda_{1}\}$
- asymptotic attractivity/stability of the principale eigenfunction

$$e^{t\mathcal{L}}f_0 - e^{\lambda_1 t}f_1\langle \phi_1, f_0 \rangle = o(e^{\lambda_1 t}),$$

with constructive rate.

Framework

- $X=(X,\|\cdot\|,\geq)$ Banach lattice with positive cone $X_+:=\{f\geq 0\}$ Typically $X=L^p$, $X=C_0$ or $X=M^1$ or a weighted such spaces
- $S = (S_t)$ a positive semigroup on X (of linear operators):
 - $S_t \in \mathcal{B}(X)$, $S_{t_1}S_{t_2} = S_{t_1+t_2}$, $S_0 = I$,
 - strongly or weakly * continuous trajectories,
 - $||S_t||_{X\to X} \leq Me^{\kappa_1 t}$,
 - $S \ge 0$: $S_t f \ge 0$ if $f \ge 0$,
 - the generator $\mathcal L$ splits as

$$\mathcal{L} = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t) = O(e^{\kappa_{\mathcal{B}} t}), \ \kappa_{\mathcal{B}} < \kappa_{1}$$

with associated Duhamel and iterated Duhamel formulas

$$S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}$$

= $S_{\mathcal{B}} + \dots + (S_{\mathcal{B}} \mathcal{A})^{*N-1} * S_{\mathcal{B}} + (S_{\mathcal{B}} \mathcal{A})^{*N} * S_{\mathcal{L}}$

• Examples

$$\mathcal{L}f = \operatorname{div}(a\nabla f) + b \cdot \nabla f + cf$$
$$= -a \cdot \nabla f - Kf + \int kf_* dy_*$$

Framework

- $X=(X,\|\cdot\|,\geq)$ Banach lattice with positive cone $X_+:=\{f\geq 0\}$ Typically $X=L^p$, $X=C_0$ or $X=M^1$ or a weighted such spaces
- $S = (S_t)$ a positive semigroup on X (of linear operators):
 - $S_t \in \mathcal{B}(X)$, $S_{t_1}S_{t_2} = S_{t_1+t_2}$, $S_0 = I$,
 - strongly or weakly * continuous trajectories,
 - $||S_t||_{X\to X} \leq Me^{\kappa_1 t}$,
 - $S \ge 0$: $S_t f \ge 0$ if $f \ge 0$,
 - the generator $\mathcal L$ splits as

$$\mathcal{L} = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \prec \mathcal{B}, \quad S_{\mathcal{B}}(t) = O(e^{\kappa_{\mathcal{B}}t}), \ \kappa_{\mathcal{B}} < \kappa_{1}$$

with associated Duhamel and iterated Duhamel formulas

$$S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}$$

= $S_{\mathcal{B}} + \dots + (S_{\mathcal{B}} \mathcal{A})^{*N-1} * S_{\mathcal{B}} + (S_{\mathcal{B}} \mathcal{A})^{*N} * S_{\mathcal{L}}$

• Examples

$$\mathcal{L}f = \operatorname{div}(a\nabla f) + b \cdot \nabla f + cf - M\chi_R f + M\chi_R f$$
$$= -a \cdot \nabla f - Kf + \int k_R^c f_* dy_* + \int k_R f_* dy_*$$

Existence part in the KR theorem

Assumptions:

- (1) S is a positive semigroup
- (2) $\exists \kappa_0 \in \mathbb{R} \ \exists \psi_0 \in X'_+ \setminus \{0\} \ \mathcal{L}^* \psi_0 \ge \kappa_0 \psi_0$
- (3) (dissipative case) splitting structure with $\kappa_{\mathcal{B}} < \kappa_0$
- (3') (weakly dissipative case) $\kappa_0=0,\ \exists\Theta\in L^1(\mathbb{R}_+)$ such that

$$||f_t|| \le M||f_0|| + \int_0^t \Theta(t-s)[f_s]_0 ds$$

with
$$[f] = [f]_0 := \langle \psi_0, |f| \rangle$$
.

Conclusion: \exists a solution (λ, f_1, ϕ_1) to the first eigenvalue triplet problem

Example:

$$\mathcal{L}f = \Delta f + \operatorname{div}(bf) + cf$$

$$b := \nabla |x|^{\gamma}/\gamma$$
, $\gamma > 0$, $c \in C_c(\mathbb{R}^d)$

Dissipativity / Lyapunov / weak dissipativity / weak Lyapunov

Dissipativity $\exists a \in \mathbb{R}$

$$\forall f^* \in J_f, \ \langle f^*, \mathcal{B}f \rangle \leq a \|f\|^2 \ \Leftrightarrow \ \|S_{\mathcal{B}}(t)f\| \leq e^{at} \|f\|,$$

with
$$J_f := ||f|| (sign f)$$
 if $X = L^1$, $J_f := f$ if $X = L^2$

Lyapunov $\exists a \in \mathbb{R}$ (or \mathbb{R}_{-}), $\exists \psi$, $\exists \psi_0 \lesssim \psi$ (supp ψ_0 compact)

$$\mathcal{L}^*\psi \le a\psi + \psi_0$$

Examples

- ullet $\mathcal L$ satisfies Lyapunov with $\psi=1\Rightarrow\mathcal B:=\mathcal L-M\chi$ is dissipative $/\ \mathcal L$ satsfies (3)
- $\mathcal{L}f := \Delta f + \operatorname{div}(x^{\gamma-1}f)$ satisfies Lyapunov with $\psi = 1 + |x|^2$ when $\gamma \geq 2$

Weak dissipativity with a = 0, $X_2 \subset X_1$

$$\forall f^* \in J_f, \ \langle f^*, \mathcal{B}f \rangle_{X_2} \le -\|f\|_{X_1}^2 \quad \approx \quad \|S_{\mathcal{B}}(t)f\|_{X_1} \le \Theta(t)\|f\|_{X_2}$$

Weak Lyapunov with a=0, $\exists \psi_i$, $\psi_0 \lesssim \psi_1 \lesssim \psi_2$

$$\mathcal{L}^*\psi_2 \le -\psi_1 + \psi_0$$

Examples

- ullet weak Lyapunov for $\mathcal{L}\Rightarrow$ weak dissipativity for $\mathcal{B}:=\mathcal{L}-\psi_0\ /\ \mathcal{L}$ satsfies (3')
- ullet $\mathcal{L}f:=\Delta f+\operatorname{div}\!ig(x^{\gamma-1}fig)$ satisfies weak Lyapunov with same ψ when $\gamma\in(0,1)$

S.Mischler (CEREMADE) Krein-Rutman March 2, 2022

5/20

First Geometry part in the KR theorem

Assumptions:

(C1) conclusions of the existence part

The consequences of the semigroup positivity assumption

- (1') the weak maximum principle: $(\lambda \mathcal{L})f \geq 0$, $\lambda > \lambda_1 \Rightarrow f \geq 0$
- (1") Kato's inequalities : $\mathcal{L}|f| \ge (\operatorname{sign} f)\mathcal{L}f$, $\mathcal{L}f_+ \ge (\operatorname{sign}_+ f)\mathcal{L}f$,
- (4) the strong maximum principle: $(\lambda \mathcal{L})f \geq 0$, $f \geq 0$, $f \not\equiv 0 \Rightarrow f > 0$

Conclusions:

- $f_1 > 0$ unique positive eigenvector for \mathcal{L} , $\mathcal{N}(\mathcal{L} \lambda_1)^k = \text{vect} f_1$ and the same for ϕ_1 , $\Sigma_+(\mathcal{L}) \lambda_1$ is a subgroup of $i\mathbb{R}$
- $\Sigma_+(\mathcal{L}) \lambda_1$ is a **disscrete** subgroup of $i\mathbb{R}$ if $\kappa_{\mathcal{B}} < \kappa_0$ in the dissipative splitting structure hypothesis (3)
 - mean ergodicity

$$rac{1}{T}\int_0^T ar{f_t} dt
ightarrow f_1 \langle f_0, \phi_1
angle ext{ as } T
ightarrow \infty,$$

under the weakly dissipative splitting structure hypothesis (3'), with $\bar{S}_{\mathcal{L}} := e^{-\lambda_1 t} S_{\mathcal{L}}$, $\bar{f}_t := \bar{S}_t f_0$.

Second Geometry part in the KR theorem

Assumptions:

- (C2) conclusions of the existence and first geometric part
- (5) reverse Kato's inequality (for eigenvectors)

$$(\operatorname{sign} \bar{f})\mathcal{L}f = \mathcal{L}|f| \Rightarrow f = u|f|, u \in S^1$$

(5') eventual strong positivity

$$\forall\, \textit{f}_{0} \in \textit{X}_{+} \backslash \{0\}, \,\, \phi \in \textit{X}'_{+} \backslash \{0\}, \,\, \exists\,\, \textit{T}, \,\, \forall t \geq \,\textit{T}, \,\, \langle \textit{f}_{t}, \phi \rangle > 0$$

or in other words when $E = \bigcup E_k$, E_k compact

$$\forall k, \exists T, \forall t \geq T, f_t > 0 \text{ on } E_k \text{ if } f_0 \not\equiv 0 \text{ on } E_k$$

(5") reverse strong positivity (for eigenvectors)

$$|S_t f| = S_t |f| \Rightarrow \exists u_t \in S^1, f_t = u_t |f_t|$$

(5"') splitting structure and $(\lambda_1 + iy - \mathcal{B})^{-N} \mathcal{A} = \mathcal{O}(|y|^{-1-\bullet})$

Conclusions:

- $\bullet \ \Sigma_+ = \{\lambda_1\}$
- ergodicity $\bar{f}_t \to f_1 \langle f_0, \phi_1 \rangle$ as $t \to \infty$ (without rate)

S.Mischler (CEREMADE)

Constructive rate part in the KR theorem

Assumptions:

- (C1) conclusions of the existence part
- (3) (dissipative case) splitting structure with $\kappa_{\mathcal{B}} < \kappa_0$ which implies

$$\|\bar{S}_T f\| \leq \gamma_L \|f\| + K[f]_{\psi_0}$$

with $\gamma_L=\gamma_L(T)<1$ for any T>0 and for some $\psi_0>0$

(6) strong Doblin-Harris irreducibility condition and regularity

$$\exists \ T>0, \ \exists \ g_0>0, \ \forall \ f\geq 0, \ S_T f\geq g_0 \langle \psi_0,f\rangle$$

$$\exists \ R_0>0, \ \phi_1\leq R_0 \psi_0 \quad \text{(or a weaker estimate)}$$

Conclusion: There exists some constructive constants $C \ge 1$, a < 0 such that

$$\|\bar{S}_t f\| \le C e^{at} \|f\|, \ \forall \ t \ge 0,$$

for any $f \in X$ such that $\langle f, \phi_1 \rangle = 0$.

• Similar (but weaker) result in the weak dissipative case

Discussion - dissipative case

Spectral analysis and KR result

- Perron-Frobenius (dim $< \infty$), Phillips (positive semigroup)
- Krein-Rutman (existence+geo when $int X_+ \neq \emptyset$, ok X = C(E), E compact)
- German school (int $X_+ = \emptyset$ ok, but not constructive nor weakly dissipative)
- ightarrow Schaefer, Nagel, Greiner, Arendt, . . . and many others since ~ 1980
- → more readable book by Bátkai, Kramar Fijavž and Rhandi
- Scher-M (≈ German school, a bit more constructive)
- P.-L. Lions college de France course (existence, weak compactness argument)
- Alfaro-Gabriel-Kavian and many others ... (KR with more or less explicit rate)

Ergodicity, probabilistic and coupling method approach (conservative case)

- von Neumann, Birkhoff, Markov, Kakutani (existence)
- Doblin, Harris, Meyn, Tweedie (exponential convergence)
- Hairer-Matingly (the same but constructive and simple proof)

Probabilistic and coupling method approach (non conservative)

- Bensaye, Cloez, Gabriel, Marguet (abstract KR via coupling)
- Cañizo-Gabriel-Yoldaş and many others ... (KR with more or less explicit rate)

Discussion - weak dissipative case (but conservative)

Spectral analysis and functional inequalities

- Toscani-Villani, Rochner-Wang (Fokker-Planck operator)
- Kavian-M.-Ndao (idem)

Probabilistic and coupling method approach (non conservative)

- Douc, Fort, Guillin (weak Lypunov condition)
- Cañizo-M. (idem but constructive rate)

What is new?

- KR in the weak dissipative case with possibly no control on strong compactness nor graph norm
- constructive rate
- the necessary assumptions are made clearer at each step

Existence - first proof (dynamical approach) ~ Del Moral-Miclos? Collet-Martínez-Méléard-San Martín?

We assume (case
$$N=1$$
 and $X=M^1$) with $\kappa_{\mathcal{B}}<\kappa_0$
$$[f_t]\geq e^{\kappa_0(t-s)}[f_s], \ \forall t>s, \quad f_\tau:=S_\tau f_0$$

$$, \qquad \|f_t\|\leq e^{\kappa_{\mathcal{B}}t}\|f_0\|+C_2\int_0^t e^{\kappa_{\mathcal{B}}(t-s)}[f_s]\,ds$$

Step 1. We define

$$\mathcal{C} := \{ f \ge 0, \ [f] = 1, \ \|f\| \le M \}, \quad \Phi_t(f_0) := \frac{f_t}{[f_t]}.$$

For $f_0 \in \mathcal{C}$ and $\alpha := \kappa_{\mathcal{B}} - \kappa_0 < 0$, we compute for any for $t \leq t_0$,

$$\|\Phi_t(f_0)\| \le e^{\alpha t} \|f_0\| + C_2 \int_0^t e^{\alpha(t-s)} ds$$

 $\le (1 + \alpha t/2)M + C_2 t \le M$

 $t_0 > 0$ small and M > 0 large. That implies $\Phi_t : \mathcal{C} \to \mathcal{C}$.

From Brouwer-Schauder-Tykonov theorem:

$$\exists \, \xi_t \in \mathcal{C}, \quad \Phi_t(\xi_t) = \xi_t.$$

Existence - first proof (continuation)

Step 1. We reformulate

$$\exists f_t \in \mathcal{C}, \ \exists \lambda_t' \in [\kappa_0, \kappa_1], \quad S_t f_t = e^{\lambda_t'} f_t.$$

Step 2. We reformulate again by choising $t = 2^{-n}$:

$$\exists f_n \in \mathcal{C}, \ \exists \lambda'_n \in [\kappa_0, \kappa_1], \quad S_t f_n = e^{\lambda'_n t} f_n, \quad \forall \ t \in \mathbb{D}_m, m \leq n,$$

with

$$\mathbb{D}_m := \{t = j2^{-m}\} = 2^{-m}\mathbb{N} = \text{ part of dyadic real numbers }$$

By compactness, $\exists \lambda_1 \in [\kappa_0, \kappa_1], \exists f_1 \in \mathcal{C}$ such that

$$S_t f_{n_k} = e^{\lambda'_{n_k}} f_{n_k}, \quad \lambda_{n_k} \to \lambda_1, \ f_{n_k} \rightharpoonup f_1.$$

We deduce

$$S_t f_1 = e^{\lambda_1 t} f_1, \quad \forall \ t \in \mathbb{D}_m, \ \forall \ m$$

and then

$$S_t f_1 = e^{\lambda_1 t} f_1, \quad \forall \ t > 0.$$

Existence - second proof (dynamical approach) ~ Cañizo-M

We assume (general dissipative case for N and X) with $\kappa_{\mathcal{B}} < \kappa_0$

$$[f_t] \geq e^{\kappa_0(t-s)}[f_s], \ \forall t > s, \quad f_{ au} := S_{ au}f_0 \ , \qquad \|f_t\| \leq rac{C_1}{1}e^{\kappa_B t}\|f_0\| + C_2\int_0^t e^{\kappa_B(t-s)}[f_s] \ ds, \ rac{C_1}{1} > 0$$

Step 1. With the same notations

$$\|\Phi_{T_0}(f_0)\| \leq C_1 e^{\alpha T_0} M + \frac{C_2}{|\alpha|} \leq M,$$

for T_0 and M>0 large enough. That implies $\Phi_{T_0}:\mathcal{C}\to\mathcal{C}.$ From Brouwer-Schauder-Tykonov theorem:

$$\exists f_{T_0} \in X_+, [f_{T_0}] = 1, S_{T_0} f_{T_0} = e^{\lambda_1 T_0} f_{T_0}.$$

We cannot make $T_0 \rightarrow 0$!!

Existence - second proof (continuation)

Step 2. We denote $\bar{S}_t := S_t e^{-\lambda_1 t}$. We have built a periodic solution

$$\bar{S}_t f_{T_0} = \bar{S}_{t-kT_0} f_{T_0}, \quad k := [t/T_0], \quad \forall t > 0.$$

For any $t \geq 0$, we deduce

$$\begin{split} & [\bar{S}_t f_{\mathcal{T}_0}] \geq e^{(\kappa_0 - \lambda_1)(t - kT_0)} [f_{\mathcal{T}_0}] \geq e^{(\kappa_0 - \lambda_1)T_0} =: r_* > 0, \\ & \|\bar{S}_t f_{\mathcal{T}_0}\| \leq C_2 e^{(\kappa_2 - \lambda_1)(t - kT_0)} \|f_{\mathcal{T}_0}\| \leq C_2 e^{(\kappa_2 - \lambda_1)T_0)} \|f_{\mathcal{T}_0}\| =: R^* < \infty. \end{split}$$

The mean u_T satisfies the same estimates:

$$u_T := \frac{1}{T} \int_0^T \bar{S}_t f_{T_0} dt \in \mathcal{G} := \{ g \in X_+; [g] \ge r_*, \|g\| \le R^* \}.$$

By compactness, there exists $f_1 \in \mathcal{G}$ and (T_k) such that $u_{T_k} \rightharpoonup f_1$.

The von Neumann, Birkhoff mean ergodicity trick leads to

$$\begin{split} \bar{S}_t f_1 - f_1 &= \lim_{k \to \infty} \left\{ \frac{1}{T_k} \int_0^{T_k} \bar{S}_t \bar{S}_s f_{T_0} ds - \frac{1}{T_k} \int_0^{T_k} \bar{S}_s f_{T_0} ds \right\} \\ &= \lim_{k \to \infty} \left\{ \frac{1}{T_k} \int_{T_k}^{T_k + t} \bar{S}_s f_{T_0} ds - \frac{1}{T_k} \int_0^t \bar{S}_s f_{T_0} ds \right\} = 0, \end{split}$$

because $(\bar{S}_s f_{T_0})$ is uniformly bounded. We deduce $\mathcal{L}f_1 = \lambda_1 f_1$.

14 / 20

Existence - fourth proof (dynamical approach)

We assume (including weakly dissipative case)

$$\begin{aligned} & [f_t] \ge [f_s], \ \forall t > s, \quad \kappa_0 := 0, \\ & \|f_t\| \le M \|f_0\| + \int_0^t \Theta(t-s)[f_s] \ ds, \ M \ge 1 \end{aligned}$$

For some $g_0 \in X_+$ such that $[g_0] = 1$, we set

$$\mathcal{C} := \{ f \geq 0, \ [f] = 1, \ \|f\| \leq R \}, \quad R := \max(2\|\Theta\|_{L^1}, \|g_0\|)$$

and we define the increasing function

$$\lambda(t) := \inf_{f \in \mathcal{C}} [S_t f].$$

We have the alternative

- (case 1) sup $\lambda < 2M$
- (case 2) $\sup \lambda > 2M$

Existence - fourth proof (case 1)

By compactness, there exists $f_0 \in \mathcal{C}$ such that

$$\sup_{t\geq 0}[S_tf_0]\leq 2M.$$

We remind the iterated Duhamel formula

$$S = v + (S_{\mathcal{B}}\mathcal{A})^{(*N)} * S$$

and the associated mean equation

$$U_T = V_T + W_T$$

with

$$U_T := rac{1}{T} \int_0^T S_t dt, \ v_T := rac{1}{T} \int_0^T v_t dt, \ W_T := rac{1}{T} \int_0^T (S_{\mathcal{B}} \mathcal{A})^{(*N)} * S dt.$$

Thanks to Fubini and positivity, we have

$$W_T \leq \int_0^T (S_{\mathcal{B}} \mathcal{A})^{(*N)} dt U_T$$

which implies

$$||W_T f_0|| \le ||\Theta||_{L^1} [U_T f_0]$$

Existence - fourth proof (case 1 - continuation)

In a simpler way

$$\|V_Tf_0\|\leq M\|f_0\|.$$

All together, we have '

$$\|U_T f_0\| \le M \|f_0\| + \|\Theta\|_{L^1} [U_T f_0]$$
 and $1 \le [S_T f_0] \le 2M$.

From the first inequality, we deduce that $\|U_T f\|$ is uniformly bounded on $T \in \mathbb{R}_+$. By compactness, there exists $T_k \to +\infty$ and $f_1 \in X_+$ such that $U_{T_k} f \to f_1$. Thanks to the second inequality, we have $[f_1] \geq 1$.

From the same and usual mean ergodic trick, for any fixed s > 0, we have

$$S(s)f_1 - f_1 = \lim_{k \to \infty} \left\{ \frac{1}{T_k} \int_0^{T_k} S(s)S(t)f_0 dt - \frac{1}{T_k} \int_0^{T_k} S(t)f_0 dt \right\}$$
$$= \lim_{k \to \infty} \left\{ \frac{1}{T_k} \int_{T_k}^{T_k + s} S(t)f_0 dt - \frac{1}{T_k} \int_0^s S(t)f_0 dt \right\} = 0.$$

That implies that f_1 is a stationary solution, and thus $\lambda_1 = 0$.

Existence - fourth proof (case 2 - step 1)

Step 1 From the assumption

$$\exists \ T_0', \ \forall \ f \in \mathcal{C}, \ [S_t f] \geq [S_{T_0'} f] \geq 2M + \varepsilon, \ \forall \ t \geq T_0'$$

and thus

$$\exists T_0, \ \forall f \in \mathcal{C}, \ \forall T \geq T_0, \ [U_T f] \geq 2M.$$

For $f \in \mathcal{C}$, we define

$$\Psi_T f := \frac{U_T f}{[U_T f]}.$$

By the estimate on U_T established when dealing with case 1, we have

$$\|\Psi_T f\| \leq \frac{1}{2} \|f\| + \|\Theta\|_{L^1} \leq R,$$

so that $\Psi_{\mathcal{T}}: \mathcal{C} \to \mathcal{C}$.

From Brouwer-Schauder-Tykonov theorem: for any $n \geq T_0$

$$\exists \lambda_n \in [0, \kappa_1], \exists f_n \in \mathcal{C}, \ U_n f_n = e^{\lambda_n n} f_n.$$

And?

Existence - resolvent approach

We assume

$$\begin{split} &(\lambda-\mathcal{L})f \geq 0 \Rightarrow f \geq 0 \text{ (weak maximum principle)} \\ &\mathcal{L}^*\psi_0 \geq \kappa_0\psi_0 \\ &\text{splitting structure } \mathcal{L} = \mathcal{A} + \mathcal{B}, \ \|e^{\mathcal{B}t}\| = \mathcal{O}(e^{\kappa_{\mathcal{B}}t}), \ \kappa_{\mathcal{B}} < \kappa_0 \end{split}$$

We define

$$\lambda_{1} := \inf\{\lambda \in \mathbb{R}; \ (\kappa - \mathcal{L}) : X \to X, \ (\kappa - \mathcal{L}) : X_{+} \to X_{+}, \ \forall \kappa \geq \lambda\}$$
$$= \inf\{\lambda \in \mathbb{R}; \ \|(\kappa - \mathcal{L})^{-1}\|_{\mathcal{B}(X)} < \infty, \ \forall \kappa \geq \lambda\} \geq \kappa_{0}$$

That implies $\|(\lambda_n - \mathcal{L})^{-1}\|_{\mathcal{B}(X)} \to \infty$ when $\lambda_n \nearrow \lambda_1$ and in particular

$$\exists \hat{f}_n, \varepsilon_n \in X_+, \ \|\hat{f}_n\| = 1, \ \|\varepsilon_n\| \to 0, \ (\lambda_n - \mathcal{L})^{-1} \varepsilon_n = \hat{f}_n.$$

Equivalently (at rank N=1)

$$\hat{f}_n = (\lambda - \mathcal{B})^{-1} \mathcal{A} \hat{f}_n + (\lambda - \mathcal{B})^{-1} \varepsilon_n \in \text{compact}$$

We deduce

$$\hat{f}_n \to f_1, \ \|f_1\| = 1, \ f_1 = (\lambda - \mathcal{B})^{-1} \mathcal{A} \hat{f}_1.$$

Existence - mixing dynamical and resolvent approach

We assume

$$S_{\mathcal{L}}$$
 positive semigroup $\mathcal{L}^*\psi_0 \geq 0$ splitting structure $\mathcal{L}^*\psi_2 \leq -\psi_1 + \psi_0$

Step 1

$$\begin{array}{lll} \lambda_1 &:=& \inf\{\lambda \in \mathbb{R}; \ (\kappa - \mathcal{L}) : X \to X, \ (\kappa - \mathcal{L}) : X_+ \to X_+, \ \forall \, \kappa \geq \lambda\} \\ &=& \inf\{\lambda \in \mathbb{R}; \ \|(\kappa - \mathcal{L})^{-1}\|_{\mathcal{B}(X_2, X_1)} < \infty, \ \forall \, \kappa \geq \lambda\} \end{array}$$

Step 2 Repeat the previous "resolvent approach"