Hypocoercivity and geometrical constraints /space confinement

S. Mischler

(Université Paris-Dauphine - PSL)

Isaac Newton Institute seminar during the "Frontiers in kinetic theory: connecting microscopic to macroscopic scales" semester March 1st, 2022

1/34

Outline of the talk

Introduction

- Villani's program
- second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement

- The relaxation operator in the torus
- The relaxation operator with confinement force
- The relaxation operator in bounded domain

Sinearized Boltzmann equation with confinement

- Linearized Boltzmann equation in the torus
- Linearized Boltzmann equation in bounded domain
- Linearized Boltzmann equation with force confinement

Perspectives

Outline of the talk

Introduction

- Villani's program
- second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement

- The relaxation operator in the torus
- The relaxation operator with confinement force
- The relaxation operator in bounded domain

Linearized Boltzmann equation with confinement

- Linearized Boltzmann equation in the torus
- Linearized Boltzmann equation in bounded domain
- Linearized Boltzmann equation with force confinement

Perspectives

3/34

1. Find a constructive method for bounding below the spectral gap in $L^2(M^{-1})$, the space of self-adjointness, say for the Boltzmann operator with hard spheres.

3. Find a constructive argument to overcome the degeneracy in the space variable, to get an exponential decay for the linear semigroup associated with the linearized spatially <u>inhomogeneous</u> Boltzmann equation; something similar to hypo-ellipticity techniques.

2. Find a constructive argument to go from a spectral gap in $L^2(M^{-1})$ to a spectral gap in L^1 , with all the subtleties associated with spectral theory of non-self-adjoint operators in infinite dimension ...

4. Combine the whole things with a perturbative and linearization analysis to get a constructive exponential decay for the nonlinear equation close to equilibrium.

 \Rightarrow constructive constants are fundamental for connecting microscopic to macroscopic scales

S.Mischler (CEREMADE)

Hypocoercivity & Geometry

4/34

Space inhomogeneous Boltzmann equation (or related models)

Consider a kinetic equation on the density of particles of a gas

$$\partial_t F + \mathbf{v} \cdot \nabla_x F + \ldots = Q(F)$$

 $F(0,.) = F_0$

where $F = F(t, x, v) \ge 0$, time $t \ge 0$, velocity $v \in \mathbb{R}^3$, position $x \in \Omega$,

- $\Omega = \mathbb{T}^3$ (torus)
- $\Omega = \mathbb{R}^3 + \mbox{confinement force field}$
- $\Omega \subset \mathbb{R}^3$ + boundary reflection conditions

Q = linear relaxation or Fokker-Planck collisions operator : 1 conservation (of mass)

- Q = nonlinear (quadratic) Boltzmann (or Landau) collisions operator
 - : d + 2 conservations (of mass, momentum and energy)

Theorem (expected)

There exists a unique stationary solution $F_{\infty}(x, v) = M(v) = (2\pi)^{-3/2} e^{-|v|^2/2}$ and for any F_0 the (unique?) solution F_t satisfies

$$F_t \to F_\infty, \quad t \to \infty.$$

What about a constructive rate = quantitative and constructive H-Theorem ?

S.Mischler (CEREMADE)	Hypocoercivity & Geometry	March 1st. 2022	5 / 34
()			-,

Splitting of the proof into 4 constructive steps :

We introduce the linearized Boltzmann operator

$$\mathcal{L} := \mathcal{T} + \mathcal{S}, \quad \mathcal{T} := -v \cdot \nabla_x, \quad \mathcal{S} := Q(\cdot, M) + Q(M, \cdot)$$

and the projections

 πf := microscopic projection on N(S) Πf := macroscopic projection on $N(\mathcal{L})$

• coercivity in v of S: there exist some Hilbert spaces \mathfrak{h} and \mathfrak{h}_*

$$(-\mathcal{S}h,h)_{\mathfrak{h}} \geq \lambda \, \|\pi^{\perp}h\|_{\mathfrak{h}_{*}}^{2}, \quad \pi^{\perp} = I - \pi$$

• hypocoercivity in (x, v) of \mathcal{L} : there exists a Hilbert space $\mathcal{H} = L^2$ or H^k and an equivalent Hilbert norm such that

 $((-\mathcal{L}h, h))_{\mathcal{H}} \geq \kappa \parallel \Pi^{\perp}h \parallel^{2}_{\mathcal{H}}, \quad \Pi^{\perp} = I - \Pi$

• there exists a Banach algebra \mathcal{X} such that

$$\|S_{\mathcal{L}}(t)f_0-\Pi f_0\|_{\mathcal{X}}\leq C e^{at}\|f_0-\Pi f_0\|_{\mathcal{X}}, \quad \forall t\geq 0.$$

• In a conditional bounded regime or a close to the equilibrium regime:

$$\|F_t - F_\infty\| \leq C e^{at}, \quad \forall t \geq 0.$$

S.Mischler (CEREMADE)

Hypocoercivity & Geometry

"(x, v) coercivity" estimate issue \Rightarrow hypocoercivity answer

In a Hilbert space $\mathcal{H} \supset \mathcal{H}_x \otimes \mathcal{H}_v$, consider an operator

$$\mathcal{L} = \mathcal{S} + \mathcal{T}, \quad \mathcal{S}^* = \mathcal{S} \leq 0, \quad \mathcal{T}^* = -\mathcal{T}.$$

• Microscopic conservation. S acts on the v variable space \mathcal{H}_v and is coercive:

$$(-\mathcal{S}f,f)_{\mathfrak{h}}\gtrsim \|f^{\perp}\|_{\mathfrak{h}_{*}}^{2}, \quad f^{\perp}=f-\pi f,$$

for a finite dimensional range projector π in $\mathfrak{h} = \mathcal{H}_{\mathbf{v}}$. We have

$$f \in \mathcal{N}(\mathcal{S}) \Leftrightarrow (\mathcal{S}f, f) = 0 \Leftrightarrow f = \pi f$$

• Macroscopic conservation. The main issue is

 $N(\mathcal{L}) = N(\mathcal{S}) \cap N(\mathcal{T}) \neq N(\mathcal{S})$ in $\mathcal{H}!!$

In \mathcal{H} the operator \mathcal{S} is degenerately / partially coercive: for the initial Hilbert norm, we get the same degenerate / partial positivity of the Dirichlet form

$$D[f] := (-\mathcal{L}f, f) = (-\mathcal{S}f, f) \gtrsim \|\pi^{\perp}f\|_{\mathcal{H}_*}^2 \neq \|\Pi^{\perp}f\|_{\mathcal{H}_*}^2, \quad \forall f.$$

That information is not strong enough in order to control the longtime behavior of the dynamic of the associated semigroup !! We need to control $\pi f \in \mathcal{H}_x$!

What is the L^2 -hypocoercivity about - the twisted norm approach

▷ Find a new Hilbert norm by twisting

$$|||f|||^2 := ||f||^2 + 2(Af, Bf)$$

such that the new Dirichlet form is coercive for f such that $\prod f = 0$:

$$D[f] := ((-\mathcal{L}f, f))$$

= $(-\mathcal{L}f, f) + (-A\mathcal{L}f, Bf) + (Af, -B\mathcal{L}f)$
 $\gtrsim ||f^{\perp}||^2 + ||\pi f||^2.$

 \triangleright We destroy the nice symmetric / skew symmetric structure and we have also to be very careful with the "remainder terms".

> That functional inequality approach is equivalent (and more precise if constructive) to the other more dynamical approach (called "Lyapunov" or "energy" approach).

Theorem. (for strong coercive operators in both variables, in particular $\mathfrak{h}_* \subset \mathfrak{h}$)

There exist some new but equivalent Hilbert norm $||\!|\cdot|\!|\!|$ and a (constructive) constant $\lambda>0$ such that the associated Dirichlet form satisfies

$$D[f] \ge \lambda |||f|||^2, \quad \forall f, \ \Pi f = 0$$

 $\triangleright \text{ It implies } |||e^{\mathcal{L}t}f||| \le e^{-\lambda t}|||f||| \text{ and then } ||e^{\mathcal{L}t}f|| \le Ce^{-\lambda t}||f||, \forall f, \ \Pi f = 0.$

From the hypocoercivity estimate

$$D[f] \ge ||f^{\perp}||^2 + ||\pi f||^2$$
, if $\Pi f = 0$,

we are able to establish

$$\mathcal{L}f=0 \quad \Rightarrow \quad f=\Pi f.$$

We have more

 $\mathcal{L}f \simeq 0 \quad \Rightarrow \quad f \simeq \Pi f.$

General regime and conditional bounded regime

- DiPerna-Lions renormalized solutions (\sim 1990)
- Constructive entropy approach: Desvillettes-Villani (2001-2005)
- Exponential convergence: Mouhot + Baranger, Strain, Neumann, Gualdani-M., Carrapatoso-M. (since 2006)

Close to the equilibrium regime:

- Non constructive spectral analysis approach : Ukai (1974), Arkeryd, Esposito, Pulvirenti (1987), Wennberg (1995)
- Energy (in high order Sobolev space) approach [2002-...] : Guo and Guo' school
- Micro-Macro approach : Shizuta, Kawashima (1984), Liu, Yu (2004), Yang, Guo, Duan, ...

More about close to the equilibrium regime and hypocoercivity

- Constructive estimate and hypoellipticty : Hérau, Nier, Helffer, Eckmann, Hairer (2003-2005), Villani (2009)
- Constructive hypocoercivity estimates without hypoellipticty [2006-...]: Hérau, Villani, Mouhot, Neumann, Dolbeault, Schmeiser, Guo, ...
- Carrapatoso, Dolbeault, Hérau, M., Mouhot, *Weighted Korn and Poincaré-Korn Inequalities in the Euclidean Space and Associated Operators*, ARMA (2022)
- Bernou, Carrapatoso, M., Tristani, *Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition*, Annales IHP (?)
- Carrapatoso, Dolbeault, Hérau, M., Mouhot, Schmeiser, *Special macroscopic modes and hypocoercivity*, arXiv (2021)

- relaxation equation in the torus Hérau
- relaxation equation with confinement force Dolbeault-Mouhot-Schmeiser
- relaxation equation in a bounded domain \sim Guo (but Villani's formalism)
- linearized Boltzmann equation in the torus
 - Mouhot-Neumann by H^1 -hypocoercivity $\neq L^2$ -hypocoercivity
- linearized Boltzmann in a bounded domain
 - Guo, Briant-Guo, ..., Bernou, Carrapatoso, M., Tristani
- linearized Boltzmann with confinement force
 - Duhan, Duhan-Li, ..., Carrapatoso, Dolbeault, Hérau, M., Mouhot, Schmeiser

Outline of the talk

Introduction

- Villani's program
- second step: quantitative hypocoercivity estimates

Relaxation equation with confinement

- The relaxation operator in the torus
- The relaxation operator with confinement force
- The relaxation operator in bounded domain

3 Linearized Boltzmann equation with confinement

- Linearized Boltzmann equation in the torus
- Linearized Boltzmann equation in bounded domain
- Linearized Boltzmann equation with force confinement

Perspectives

We consider the "simplest" relaxation kinetic operator

$$\mathcal{L} := \mathcal{S} + \mathcal{T}$$

where ${\mathcal{S}}$ is the "simplest" relaxation operator

$$\mathcal{S}f :=
ho_f M - f =: f^{\perp}, \quad
ho_f := \langle f \rangle := \int f dv$$

and \mathcal{T} is the transport operator

$$\mathcal{T}f := -\mathbf{v}\cdot \nabla_{\mathbf{x}}f + \dots$$

We may assume

$$\begin{array}{ll} (\text{case 1}) & \cdots = 0, \quad \Omega := \mathbb{T}^d, \quad (\phi := 0); \\ (\text{case 2}) & \cdots = \nabla_x \phi \cdot \nabla_v f, \quad \Omega := \mathbb{R}^d, \quad e.g. \; \phi \sim |x|^{\gamma}, \; \gamma \geq 1; \\ (\text{case 3}) & \cdots = 0, \quad \Omega \subset \mathbb{R}^d \; + \; \text{reflection}, \quad (\phi := 0). \end{array}$$

microscopic and macroscopic conservations (e.g. torus case)

• By definition

$$Sf = 0 \Leftrightarrow f - \rho_f M(v) = 0,$$

so that

$$N(S) = \{\rho(x)M\}, \quad \pi f := \rho_f(x)M(v)$$

• We remind that

$$N(\mathcal{L}) = N(\mathcal{S}) \cap N(\mathcal{T}),$$

so that

$$f \in N(\mathcal{L}) \Leftrightarrow \rho_f(x)M \in N(\mathcal{T}).$$

We compute

$$\mathbf{v}\cdot \nabla_{\mathbf{x}}(\rho_f(\mathbf{x})\mathbf{M}(\mathbf{v})) = 0 \Rightarrow \nabla_{\mathbf{x}}\rho_f = 0.$$

By periodicity, we deduce $\rho_f(x) = \langle \rho_f \rangle$. As a conclusion:

$$N(\mathcal{L}) = \operatorname{vect} M, \quad \Pi f = \langle
ho_f
angle M(v)$$

and the only macroscopic law of conservation is the mass conservation.

L^2 estimate for the relaxation operator

We introduce the twisted Hilbert norm

$$|||f|||^2 := ||f||^2_{\mathcal{H}} - 2\eta(\nabla_x \Delta^{-1}\rho, m)$$

with 1 >> η >0 and then the Dirichlet form

$$D(f) = ((-\mathcal{L}f, f))$$

= $(-\mathcal{L}f, f) + \eta(\nabla_{x}\Delta^{-1}\rho_{f}, m[\mathcal{L}f]) + \eta(\nabla_{x}\Delta^{-1}\rho[\mathcal{L}f], m_{f}).$

Here

$$\rho := \rho_f = \rho[f] = \langle f \rangle = \int f dv,$$

$$m := m_f = m[f] = \langle f v \rangle = \int f v dv.$$

Theorem 1

For a convenient choice of $1 >> \eta > 0$ there holds (with explicit constant)

$$D(f) \gtrsim |||f|||^2 \simeq ||f||_{\mathcal{H}}^2, \quad \forall f, \ \Pi f = 0,$$

with

$$\Pi f = \langle \rho_f \rangle M(v).$$

S.Mischler (CEREMADE)	Hypocoercivity & Geometry	March 1st, 2022	16 / 34

Case 1 - The torus case

 Δ^{-1} := solution to the Poisson equation with periodic condition. We split $D = D_0 + D_1 + D_2$.

• We have

$$D_0 := (-\mathcal{L}f, f)_{L^2(M^{-1})} = \|f^{\perp}\|_{\mathcal{H}}^2$$

• We compute

$$\begin{aligned} m[\mathcal{L}f] &= \langle v\mathcal{T}\pi f \rangle + \langle v\mathcal{L}f^{\perp} \rangle \\ &= -\nabla_{x}\rho_{f} + \nabla_{x} \langle v \otimes v f^{\perp} \rangle + \langle vf^{\perp} \rangle, \end{aligned}$$

so that

$$D_{1} := \eta (\nabla_{x} \Delta^{-1} \rho_{f}, m[\mathcal{L}f])$$

$$:= \eta (\nabla_{x} \Delta^{-1} \rho_{f}, -\nabla_{x} \rho_{f} + \nabla_{x} \langle \mathbf{v} \otimes \mathbf{v} f^{\perp} \rangle + \langle \mathbf{v}f^{\perp} \rangle)$$

$$\gtrsim \eta \|\rho_{f}\|_{L^{2}}^{2} - \eta \|\rho_{f}\|_{L^{2}} \|f^{\perp}\|_{\mathcal{H}}.$$

with $\|\rho_f\|_{L^2}^2 = \|\pi f\|_{L^2}^2$!

• Similarly

$$\rho[\mathcal{L}f] = \langle \mathcal{T}\pi f \rangle + \langle \mathcal{L}f^{\perp} \rangle = -\nabla_{\mathsf{x}} \langle \mathsf{v}f^{\perp} \rangle,$$

so that

$$D_2 := \eta(\nabla_x \Delta^{-1} \rho[\mathcal{L}f], m_f) = -\eta(\nabla_x \Delta^{-1} \nabla_x \langle vf^{\perp} \rangle, m_f) \gtrsim -\eta \|f^{\perp}\|_{\mathcal{H}}^2$$

The key arguments

We have used the splitting

$$f=\pi f+f^{\perp},$$

the cancellation

$$S\pi f = 0,$$

the identities

$$(
abla \Delta^{-1}
ho, -
abla
ho) = \|
ho\|_{L^2}^2 = \|\pi f\|_{L^2}^2,$$

and

$$||f||^2 = ||\rho||^2 + ||f^{\perp}||^2$$

the two estimates

$$\begin{split} \Delta^{-1} &: H^{-1} \to H^1, \\ \Delta^{-1} &: L^2 \to H^2. \end{split}$$

and the Young inequality

$$\begin{array}{rcl} D &\gtrsim& A^2 + \eta B^2 - \eta AB - \eta A^2 \\ &\gtrsim& (1 - \eta - \frac{1}{2})A^2 + \eta (1 - \frac{\eta}{2})B^2 \end{array}$$

Case 2 - The whole space with confinement force

We rather define $\Delta^{-1} := \Delta_{\phi}^{*-1}$, Δ_{ϕ}^{*} stands for the modified Laplacian operator

$$\Delta_{\phi}^* u := \Delta u - \nabla \phi \cdot \nabla u = e^{\phi} \nabla (e^{-\phi} \nabla u),$$

and the twisted L^2 scalar product

$$((f,g)) = (f,g)_{\mathcal{H}} - \eta (\nabla \Delta_{\phi}^{*-1}(\rho_f e^{\phi}), m_g)_{L^2} - \eta (m_f, \nabla \Delta_{\phi}^{*-1}(\rho_g e^{\phi}))_{L^2}.$$

We compute

$$m[-\mathcal{L}f] = m[-\mathcal{T}\pi f] + \dots$$

= $m[\mathbf{v} \cdot \nabla_{\mathbf{x}}\rho_{f}M - \nabla\phi \cdot \nabla_{\phi}\rho_{f}M] + \dots$
= $m[M\mathbf{v} \cdot (\nabla_{\mathbf{x}}\rho_{f} + \nabla\phi\rho_{f})] + \dots$
= $\nabla_{\mathbf{x}}\rho_{f} + \nabla\phi\rho_{f} + \dots = e^{-\phi}\nabla(\rho_{f}e^{\phi}) + \dots$

We deduce that the leader term in D_1 is

$$D_{1,1} := -\eta (\nabla \Delta_{\phi}^{*-1}(\rho_{f}e^{\phi}), m[-\mathcal{T}\pi f])_{L^{2}}$$

$$= -\eta (\nabla \Delta_{\phi}^{*-1}(\rho_{f}e^{\phi}), e^{-\phi} \nabla (\rho_{f}e^{\phi}))_{L^{2}}$$

$$= \eta (e^{\phi} \nabla (e^{-\phi} \nabla \Delta_{\phi}^{*-1}(\rho_{f}e^{\phi})), \rho_{f})_{L^{2}}$$

$$= \eta \|\rho_{f}\|_{L^{2}(e^{\phi})}^{2}.$$

Case 3 - bounded domain with reflection condition at the boundary

We complement the "simplest" relaxation kinetic operator with the reflection condition at the boundary

$$f_- = \mathcal{C}f_+$$
 on $\Sigma_-, f_\pm = f_{|\Sigma_\pm|}$

where

$$\Sigma_{\pm} := \{ (x, v) \in \Sigma := \partial \Omega \times \mathbb{R}^d, \ \pm n(x) \cdot v > 0 \}$$

and n(x) stands for the outward unit normal vector at boundary point $x \in \partial \Omega$. The reflection operator C splits as

$$\mathcal{C}g = (1 - \alpha)\mathcal{R}g + \alpha \mathcal{D}g,$$

with accomodation coefficient $\alpha \in [0, 1]$, \mathcal{R} the specular reflection operator

$$\mathcal{R}g(x,v) := g(x,R_xv), \quad R_xv := v - 2(v \cdot n(x))n(x),$$

and \mathcal{D} the diffusion reflection operator

$$\mathcal{D}g := c M(v) \widetilde{g}, \quad \widetilde{g}(x) := \int_{n(x) \cdot w > 0} g(x, w) n(x) \cdot w \, dw,$$

where c such that $c\widetilde{M} = 1$.

Case 3 - hypocoercivity estimate with reflection condition at the boundary

Same definition of the twisted Hilbert norm, with now $u := \Delta^{-1} \rho_f$ solution to the Poisson equation with Neumann boundary condition (mass is conserved !).

• Because of the dissipation property of the diffusion reflection operator

$$D_0 := (-\mathcal{L}f, f) \geq \lambda \|f^{\perp}\|^2 + rac{1}{2} \|\sqrt{lpha(2-lpha)}\mathcal{D}^{\perp}f_+\|^2_{\partial\mathcal{H}_+}$$

with $\mathcal{D}^{\perp} = I - \mathcal{D}$, $\partial \mathcal{H}_+ := L^2(\Sigma_+, n(x) \cdot vdvd\sigma_x)$.

• We compute (with \neq integration by part)

$$\eta^{-1}D_{1} := (\nabla_{x}u, -v\nabla_{x}\langle vf \rangle) + \dots$$

= $(\partial_{ij}u, \langle v_{i}v_{j}f \rangle) + \int_{\Sigma} (\nabla u \cdot v)fn \cdot v + \dots$
= $(\partial_{ij}u, \delta_{ij}\rho_{f}) + \int_{\Sigma_{+}} (\nabla u \cdot v)\alpha \mathcal{D}^{\perp}f_{+}n \cdot v + (\partial_{ij}u, \langle v_{i}v_{j}f^{\perp}\rangle) + \dots,$

where we have used the identity (reformulation if the reflection condition)

$$\begin{split} \int_{\Sigma} \psi f \, \mathbf{n} \cdot \mathbf{v} &= \int_{\Sigma_{+}} \psi \alpha \mathcal{D}^{\perp} f_{+} \, \mathbf{n} \cdot \mathbf{v} + \int_{\Sigma_{+}} \left\{ \psi - \psi \circ R_{x} \right\} (1 - \alpha) \mathcal{D}^{\perp} f_{+} \, \mathbf{n} \cdot \mathbf{v} \\ &+ \int_{\Sigma_{+}} \left\{ \psi - \psi \circ R_{x} \right\} \mathcal{D} f_{+} \, \mathbf{n} (x) \cdot \mathbf{v}, \end{split}$$

with $\psi := \nabla u \cdot v$, so that $\psi - \psi \circ R_x = 0$.

S.Mischler (CEREMADE)

Hypocoercivity & Geometry

Case 3 - hypocoercivity estimate with reflection condition at the boundary

Same definition of the twisted Hilbert norm, with now $u := \Delta^{-1} \rho_f$ solution to the Poisson equation with Neumann boundary condition (mass is conserved !).

• Because of the dissipation property of the diffusion reflection operator

$$\mathcal{D}_0 := (-\mathcal{L}f, f) \geq \lambda \|f^{\perp}\|^2 + rac{1}{2} \|\sqrt{lpha(2-lpha)}\mathcal{D}^{\perp}f_+\|^2_{\partial\mathcal{H}_+}$$

with $\mathcal{D}^{\perp} = I - \mathcal{D}$, $\partial \mathcal{H}_+ := L^2(\Sigma_+, n(x) \cdot vdvd\sigma_x)$.

• We compute (with \neq integration by part)

$$\eta^{-1}D_{1} = (\partial_{ij}u, \delta_{ij}\rho_{f}) + \int_{\Sigma_{+}} (\nabla u \cdot v)\alpha \mathcal{D}^{\perp}f_{+} n \cdot v + \dots$$
$$= \|\rho_{f}\|_{L^{2}}^{2} - \mathcal{O}(\|u\|_{H^{1}(\partial\Omega)}\|\alpha \mathcal{D}^{\perp}f_{+}\|_{\partial\mathcal{H}_{+}}) + \dots$$
$$= \|\rho_{f}\|_{L^{2}}^{2} - \mathcal{O}(\|\rho_{f}\|_{L^{2}}\|\alpha \mathcal{D}^{\perp}f_{+}\|_{\partial\mathcal{H}_{+}}) + \dots,$$

by Cauchy-Schwarz inequality and elliptic regularity estimate.

Outline of the talk

Introduction

- Villani's program
- second step: quantitative hypocoercivity estimates

2) Relaxation equation with confinement

- The relaxation operator in the torus
- The relaxation operator with confinement force
- The relaxation operator in bounded domain

Iinearized Boltzmann equation with confinement

- Linearized Boltzmann equation in the torus
- Linearized Boltzmann equation in bounded domain
- Linearized Boltzmann equation with force confinement

Perspectives

Linearized Boltzmann equation in the torus

Consider the equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{S}f, \quad (\mathbf{0}, \infty) \times \mathbb{T}^d \times \mathbb{R}^d,$$

with linearized Boltzmann collisional operator \mathcal{S} , and thus

$$\mathcal{L} := \mathcal{T} + \mathcal{S}, \quad \mathcal{T} := -\mathbf{v} \cdot \nabla_x \ \& \ \mathbb{T}^d$$
-periodicity.

• The microscopic null space is

$$f \in N(S) \Leftrightarrow (Sf, f) = 0 \Leftrightarrow f = \pi f$$

with

$$\pi f := \rho_f M(v) + m_f v M(v) + e_f \mathfrak{E}(v) M(v), \quad \mathfrak{E}(v) := \frac{1}{\sqrt{2d}} (|v|^2 - d)$$

• The naive macroscopic conservation are

$$\frac{d}{dt}\int f(1,v_i,|v|^2)dvdx=0$$

and the naive macroscopic projector is

$$\Pi f := \langle \rho_f \rangle M(v) + \langle m_f \rangle v M(v) + \langle e_f \rangle \mathfrak{E}(v) M(v)$$

S.Mischler (CEREMADE)

Hypocoercivity & Geometry

Macroscopic null space by hand

• The macroscopic null space is

$$f \in N(\mathcal{L}) \Leftrightarrow Sf = \mathcal{T}f = 0 \Leftrightarrow \mathcal{T}\pi f = 0$$

The last equation writes

$$\begin{cases} \partial_t \rho_f = -\nabla_x \cdot m_f \\ \partial_t m_f = -\nabla_x \rho_f - \sqrt{\frac{2}{d}} \nabla_x e_f \\ \partial_t e_f = -\sqrt{2/d} \nabla_x \cdot m_f \\ \frac{1}{\sqrt{2d}} (\partial_t e_f) I = \nabla_x^s m_f \\ 0 = \nabla_x e_f \end{cases}$$

where $(\nabla_x^s m)_{ij} = (\partial_i m_j + \partial_j m_i)/2$ is the symmetric gradient. The Schwarz Lemma $\partial_{x_i x_j}^2 m_k = \partial_{x_i} (\nabla^s m)_{j,k} + \partial_{x_j} (\nabla^s m)_{i,k} - \partial_{x_k} (\nabla^s m)_{i,j}$

and differential calculus yield

$$ho_f \sim \mathbf{a} - \mathbf{x} \cdot \mathbf{b}' + |\mathbf{x}|^2 \mathbf{c}'', \quad \mathbf{m}_f \sim \mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{x}\mathbf{c}', \quad \mathbf{e}_f = \mathbf{c}$$

with b = b(t), $c = c(t) \in \mathbb{R}$ and $a \in \mathbb{R}$, $A \in M^a = \{A^* = -A\}$ independent of time. The periodicity condition and $\prod f = 0$ imply a = b = c = A = 0. That proves

$$\Pi f := \langle \rho_f \rangle M(v) + \langle m_f \rangle v M(v) + \langle e_f \rangle \mathfrak{E}(v) M(v)$$

The appropriate twisted L^2 norm is

$$|||f|||^{2} := ||f||_{L^{2}}^{2} - 2\eta_{1}(\nabla_{x}u[e_{f}], M_{\rho}[f]) -2\eta_{2}(\nabla_{x}^{s}U[m_{f}], M_{q}[f]) - 2\eta_{3}(\nabla_{x}u[\rho_{f}], m_{f})$$

with $1>>\eta_1>>\eta_2>>\eta_3>0,\ u=u(E)$ and U=U(M) are given by

$$-\Delta u = E$$
 in \mathbb{T}^d ,
 $-\operatorname{div}(\nabla^s U) = M$ in \mathbb{T}^d
and $M_r[f] = \langle rf \rangle$, $p := v(|v|^2 - 5)/2$, $q := v \otimes v - I$.

The four main contributions in the associated Dirichlet form are

$$D[f] \gtrsim \|f^{\perp}\|^{2} + \eta_{1}(\nabla u[e_{f}], \nabla e_{f}) + \eta_{2}(\nabla_{x}^{s} U[m_{f}], \nabla m_{f}) \\ + \eta_{3}(\nabla_{x} u[\rho_{f}], \nabla \rho_{f}) - \dots \\ \gtrsim \|f^{\perp}\|^{2} + \eta_{1}\|e_{f}\|^{2} + \eta_{2}\|m_{f}\|^{2} + \eta_{3}\|\rho_{f}\|^{2} - \dots$$

S.Mischler (CEREMADE)

25 / 34

Here comes a Korn inequality

In order to solve the system

$$-\operatorname{div}(\nabla^{s} U) = M$$
 in \mathbb{T}^{d}

and to prove it is elliptic, we introduce the bilinear form

$$\begin{aligned} \mathsf{a}(U,V) &:= (-\mathsf{div}(\nabla^s U),V) = (\nabla^s U,\nabla V) \\ &= (\nabla^s U,\nabla^s V), \end{aligned}$$

which is continuous in $H^1(\mathbb{T}^d)$. It is also coercive thanks to Korn and Poincaré inequalities

$$\begin{aligned} \mathsf{a}(U,U) &= \|\nabla^s U\|^2 \\ &\gtrsim \|\nabla U\|^2 \gtrsim \|U\|_{H^1}^2, \end{aligned}$$

when $\langle U \rangle = 0$.

Theorem 2

For a convenient choice of $1 >> \eta_1 >> \eta_2 >> \eta_3 > 0$, there holds

$$((-\mathcal{L}h,h)) \geq |||\Pi^{\perp}f|||^2 \simeq ||\Pi^{\perp}f||^2_{\mathcal{H}}$$

with

$$\Pi f = \langle \rho_f \rangle M(v) + \langle m_f \rangle v M(v) + \langle e_f \rangle \mathfrak{E}(v) M(v)$$

linearized Boltzmann equation in a domain

Consider the equation

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{S}f, \quad (\mathbf{0}, \infty) \times \mathcal{O}, \\ f_- = \mathcal{C}f_+ = (1 - \alpha)\mathcal{R}f_+ + \alpha \mathcal{D}f_+, \quad (\mathbf{0}, \infty) \times \boldsymbol{\Sigma}_- \end{cases}$$

with linearized Boltzmann collisional operator S, accomodation coefficient $\alpha \in [0, 1]$, specular reflection operator \mathcal{R} and diffusion reflection operator \mathcal{D} .

Same microscopic conservations and macroscopic mass is conserved

$$rac{d}{dt}\int \mathit{fdxdv}=\mathsf{0}, \quad orall \, lpha\in [\mathsf{0},\mathsf{1}].$$

It is the macroscopic conservation law when $\alpha > 0$. When $\alpha = 0$, energy is conserved

$$\frac{d}{dt}\int f|v|^2 dx dv = 0$$

as well as the total angular momentum

$$\frac{d}{dt}\int (Ax\cdot v)\, fdxdv=0$$

associated to rotation deplacements preserving Ω :

$$A \in \mathcal{A}_{\Omega} := \{A^* = -A; Ax \cdot n(x) = 0 \ \forall x \in \partial \Omega\}.$$

S.Mischler (CEREMADE)

Hypocoercivity & Geometry

twisted L^2 norm with the help of convenient Korn inequalities

The appropriate modified L^2 norm is

$$\|\|f\|\|^2 := \|f\|_{L^2}^2 - 2\eta_1(\nabla_x u[e_f], M_p[f]) - 2\eta_2(\nabla_x^s U[m_f], M_q[f]) - 2\eta_3(\nabla_x u_N[\rho_f], m_f)$$

with 1 >> η_1 >> η_2 >> η_3 > 0, u = u(E), U = U(M) and $u_N = u_N[\rho]$ are given by

$$\begin{cases} -\Delta u = E \quad \text{in } \Omega, \\ (2 - \alpha) \frac{\partial u}{\partial n} + \alpha u = 0 \quad \text{on } \partial \Omega, \end{cases}$$

$$\begin{cases} -\operatorname{div}(\nabla^{s} U) = M & \text{in } \Omega, \\ U \cdot n = 0 & \text{on } \partial\Omega, \\ (2 - \alpha)[\nabla^{s} U - (\nabla^{s} U : n \otimes n)n] + \alpha U = 0 & \text{on } \partial\Omega, \\ \\ \begin{cases} -\Delta u_{N} = \rho & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$

and $M_r[f] = \langle rf \rangle$, $p := v(|v|^2 - 5)/2$, $q := v \otimes v - I$. The macrocopic projector is

 $\begin{aligned} \Pi f &:= \langle \rho_f \rangle M(v) \quad \text{if } \alpha > 0, \\ \Pi f &:= \langle \rho_f \rangle M(v) + (\mathcal{P}_{\mathcal{A}_\Omega} \langle \nabla^a m_f \rangle) x \cdot v M(v) + \langle e_f \rangle \mathfrak{E}(v) M(v) \quad \text{if } \alpha = 0, \end{aligned}$

Consider the equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} \phi \cdot \nabla_{\mathbf{v}} f = \mathcal{S} f, \quad (0,\infty) \times \mathbb{R}^d \times \mathbb{R}^d,$$

with the linearized Boltzmann collisional operator \mathcal{S} (with same microscopic conservations).

 \bullet mass is conserved \Rightarrow mass mode

$$F := \mathcal{M}, \quad \mathcal{M} := e^{-|v|^2/2}e^{-\phi}$$

is a stationary state.

• Hamiltonian energy

$$\mathcal{H} := \frac{1}{2} |\mathbf{v}|^2 + \phi(\mathbf{x})$$

is conserved \Rightarrow energy mode $F := \mathcal{HM}$ is a stationary state.

• roatations A compatible with ϕ if

$$A \in \mathcal{A}_{\phi} := \{ A \in M^{a}; \nabla(x) \cdot \nabla \phi(x) = 0, \forall x \}$$

 \Rightarrow rotation mode $F := (Ax \cdot v)\mathcal{HM}$ is a stationary state if $A \in \mathcal{A}_{\phi}$.

There are possibly other non stationary special modes

Define

$$E_{\phi} := span\{\nabla \phi(x) - x\}$$

with dimension $d_{\phi} \in \{0, \ldots, d\}$.

• If $1 \leq d_{\phi} \leq d-1$ and *i* such that $\partial_{x_i} \phi = x_i$ then

$$(x_i \cot t - v_i \sin t)\mathcal{M}, \quad (x_i \sin t + v_i \cos t)\mathcal{M},$$

are harmonic directional modes (particular oscillating solutions).

- If $d_{\phi} = 0 \Leftrightarrow \phi(x) = |x|^2/2$, there are additional harmonic pulsation modes $[(|x|^2 - |v|^2)\cos(2t) - 2x \cdot v\sin(2t)]\mathcal{M}.$
- We find

$$\Pi f = \langle \rho \rangle M + \langle \langle \mathcal{H} f \rangle \rangle \mathcal{H} M + P_{\phi} \langle \nabla^{a} m \rangle x \cdot v \mathcal{M},$$

when we additionally assume if $d_\phi \in \{1,\ldots,d-1\}$

$$\langle\!\langle x_i f \rangle\!\rangle = \langle\!\langle x_i f \rangle\!\rangle = 0$$

and if $d_{\phi} = 0$

$$\langle\!\langle 2x \cdot vf \rangle\!\rangle = \langle\!\langle (|x|^2 - |v|^2)f \rangle\!\rangle = 0$$

twisted L^2 norm with the help of convenient Korn inequality and finite dimensional control

The appropriate modified L^2 norm is not

$$\|\|f\|\|^2 := \|f\|_{L^2}^2 - 2\eta_1(\Delta_{\phi}^{-1}\nabla_x e_f, M_{\rho}[f]) - 2\eta_2(\Delta_{\phi}^{-1}\nabla_x^s m_f, M_q[f]) - 2\eta_3(\Delta_{\phi}^{-1}\nabla_x \rho_f, m_f)$$

with $1 >> \eta_1 >> \eta_2 >> \eta_3 > 0$ and

$$\Delta_{\phi} u := \Delta u - \nabla \phi \cdot \nabla u - u.$$

We need to control additional macroscopic quantities $b = b(t), c = c(t) \in \mathbb{R}$ and $A \in M^a$ defined by

$$\rho_f \sim -x \cdot b' + |x|^2 c'' + \phi c, \quad m_f \sim Ax + b - xc', \quad e_f = c$$

which appear when considering the hyperbolic system $T\pi f = 0$, or more precisely and worst $T\pi f = \mathcal{O}(\|f^{\perp}\|)$. We also need a Korn inequality

$$\|u\| \lesssim \|\Delta_{\phi}^{-1/2} \nabla^{s} u\|$$

in order to control *m*.

A Lyapunov approach

We rather define

$$\begin{aligned} \mathcal{F}(t) &:= \|f\|_{L^2}^2 - \eta_1(\Delta_{\phi}^{-1}\nabla_x e, M_p[f]) - \eta_2(\Delta_{\phi}^{-1}\nabla_x^s m_s, M_q[f]) \\ &- \eta_3(\Delta_{\phi}^{-1}\nabla_x w_s, m_s) + \eta_3(\Delta_{\phi}^{-1}\nabla_x \partial_t w_s, w_s) \\ &- \eta_5 \left\langle (X - Y \cdot \nabla_x \phi), \nabla_x \phi \cdot A x \right\rangle - \eta_6 \left\langle b, b' \right\rangle - \eta_6 \left\langle c', c'' \right\rangle, \end{aligned}$$

with convenient $1>>\eta_1>>\eta_2>>\eta_3>>\eta_4>>\eta_5>>\eta_6>0,$ where

$$\begin{array}{lll} \rho_{s} & \sim & \rho - \langle \nabla \rho \rangle x - \langle \Delta \rho \rangle |x|^{2} \\ m_{s} & \sim & m - \langle \nabla^{*}m \rangle x - \langle \nabla \cdot m \rangle x - \langle m \rangle \\ w_{s} & \sim & \rho_{s} - \langle e \rangle (\phi - \langle \Delta \phi \rangle |x|^{2}) \\ X & \sim & (2\phi + \nabla \phi \cdot x - d)c + |x|^{2}c'' - x \cdot b' \\ Y & \sim & \langle x\phi \rangle c + \langle |x|^{2}x \rangle c'' - \langle x \otimes x \rangle b' \end{array}$$

and ρ , *m*, *e*, *A*, *b* and *c* are defined by

$$\begin{split} \rho &= \langle f \rangle, \quad m = \langle vf \rangle, \quad e = \langle \mathfrak{E}f \rangle \\ A &= \langle \nabla^a m \rangle, \quad b = \langle m \rangle, \quad c = \langle e \rangle \\ \end{split}$$

We prove

$$\mathcal{F}' \lesssim -\mathcal{F} \sim - \|f\|^2$$
 when $\Pi f = 0.$

Outline of the talk

Introduction

- Villani's program
- second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement

- The relaxation operator in the torus
- The relaxation operator with confinement force
- The relaxation operator in bounded domain

Linearized Boltzmann equation with confinement

- Linearized Boltzmann equation in the torus
- Linearized Boltzmann equation in bounded domain
- Linearized Boltzmann equation with force confinement

Perspectives

- Same semigroup decay in L^{∞} ? in any cases :
 - linearized Boltzmann
 - linearized Landau
 - with force confinement
 - in a bounded domain
- The nonlinear problem ?
- \bullet Uniform estimate in the grazing collisions limit (Boltzmann \rightarrow Landau) ?
- Uniform estimate in the fluid limit (Boltzmann \rightarrow Navier-Stokes) ?