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(Université Paris-Dauphine - PSL)

Isaac Newton Institute seminar during the “Frontiers in kinetic theory:
connecting microscopic to macroscopic scales” semester

March 1st, 2022

S.Mischler (CEREMADE ) Hypocoercivity & Geometry March 1st, 2022 1 / 34



Outline of the talk

1 Introduction
Villani’s program
second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement
The relaxation operator in the torus
The relaxation operator with confinement force
The relaxation operator in bounded domain

3 Linearized Boltzmann equation with confinement
Linearized Boltzmann equation in the torus
Linearized Boltzmann equation in bounded domain
Linearized Boltzmann equation with force confinement

4 Perspectives

S.Mischler (CEREMADE ) Hypocoercivity & Geometry March 1st, 2022 2 / 34



Outline of the talk

1 Introduction
Villani’s program
second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement
The relaxation operator in the torus
The relaxation operator with confinement force
The relaxation operator in bounded domain

3 Linearized Boltzmann equation with confinement
Linearized Boltzmann equation in the torus
Linearized Boltzmann equation in bounded domain
Linearized Boltzmann equation with force confinement

4 Perspectives

S.Mischler (CEREMADE ) Hypocoercivity & Geometry March 1st, 2022 3 / 34



Villani’s program (Notes on 2001 IHP course, Sect. 8. Toward exponential convergence)

1. Find a constructive method for bounding below the spectral gap in L2(M−1),
the space of self-adjointness, say for the Boltzmann operator with hard spheres.

3. Find a constructive argument to overcome the degeneracy in the space
variable, to get an exponential decay for the linear semigroup associated with the
linearized spatially inhomogeneous Boltzmann equation; something similar to
hypo-ellipticity techniques.

2. Find a constructive argument to go from a spectral gap in L2(M−1) to a
spectral gap in L1, with all the subtleties associated with spectral theory of
non-self-adjoint operators in infinite dimension ...

4. Combine the whole things with a perturbative and linearization analysis to get
a constructive exponential decay for the nonlinear equation close to equilibrium.

⇒ constructive constants are fundamental for connecting microscopic to
macroscopic scales
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Space inhomogeneous Boltzmann equation (or related models)

Consider a kinetic equation on the density of particles of a gas

∂tF + v · ∇xF + . . . = Q(F )

F (0, .) = F0

where F = F (t, x , v) ≥ 0, time t ≥ 0, velocity v ∈ R3, position x ∈ Ω,

Ω = T3 (torus)

Ω = R3 + confinement force field

Ω ⊂ R3 + boundary reflection conditions

Q = linear relaxation or Fokker-Planck collisions operator : 1 conservation (of mass)

Q = nonlinear (quadratic) Boltzmann (or Landau) collisions operator
: d + 2 conservations (of mass, momentum and energy)

Theorem (expected)

There exists a unique stationary solution F∞(x , v) = M(v) = (2π)−3/2e−|v|2/2 and for
any F0 the (unique?) solution Ft satisfies

Ft → F∞, t → ∞.

What about a constructive rate = quantitative and constructive H-Theorem ?
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Splitting of the proof into 4 constructive steps :

We introduce the linearized Boltzmann operator

L := T + S, T := −v · ∇x , S := Q(·,M) + Q(M, ·)

and the projections

πf := microscopic projection on N(S)
Πf := macroscopic projection on N(L)

coercivity in v of S: there exist some Hilbert spaces h and h∗

(−Sh, h)h ≥ λ ∥π⊥h∥2h∗ , π⊥ = I − π

hypocoercivity in (x , v) of L: there exists a Hilbert space H = L2 or Hk and an
equivalent Hilbert norm such that

((−Lh, h ))H ≥ κ |||Π⊥h |||2H, Π⊥ = I − Π

there exists a Banach algebra X such that

∥SL(t)f0 − Πf0∥X ≤ C eat∥f0 − Πf0∥X , ∀ t ≥ 0.

In a conditional bounded regime or a close to the equilibrium regime:

∥Ft − F∞∥ ≤ C eat , ∀ t ≥ 0.
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”(x , v) coercivity” estimate issue ⇒ hypocoercivity answer

In a Hilbert space H ⊃ Hx ⊗Hv , consider an operator

L = S + T , S∗ = S ≤ 0, T ∗ = −T .

• Microscopic conservation. S acts on the v variable space Hv and is coercive:

(−Sf , f )h ≳ ∥f ⊥∥2h∗
, f ⊥ = f − πf ,

for a finite dimensional range projector π in h = Hv . We have

f ∈ N(S) ⇔ (Sf , f ) = 0 ⇔ f = πf

• Macroscopic conservation. The main issue is

N(L) = N(S) ∩ N(T ) ̸= N(S) in H!!

In H the operator S is degenerately / partially coercive: for the initial Hilbert
norm, we get the same degenerate / partial positivity of the Dirichlet form

D[f ] := (−Lf , f ) = (−Sf , f ) ≳ ∥π⊥f ∥2H∗
̸= ∥Π⊥f ∥2H∗

, ∀ f .

That information is not strong enough in order to control the longtime behavior
of the dynamic of the associated semigroup !! We need to control πf ∈ Hx !
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What is the L2-hypocoercivity about - the twisted norm approach

▷ Find a new Hilbert norm by twisting

|||f |||2 := ∥f ∥2 + 2(Af ,Bf )

such that the new Dirichlet form is coercive for f such that Πf = 0:

D[f ] := ((−Lf , f ))
= (−Lf , f ) + (−ALf ,Bf ) + (Af ,−BLf )
≳ ∥f ⊥∥2 + ∥πf ∥2.

▷ We destroy the nice symmetric / skew symmetric structure and we have also to be very
careful with the ”remainder terms”.
▷ That functional inequality approach is equivalent (and more precise if constructive) to the
other more dynamical approach (called ”Lyapunov” or ”energy” approach).

Theorem. (for strong coercive operators in both variables, in particular h∗ ⊂ h)

There exist some new but equivalent Hilbert norm ||| · ||| and a (constructive) constant
λ > 0 such that the associated Dirichlet form satisfies

D[f ] ≥ λ |||f |||2, ∀ f , Πf = 0

▷ It implies |||eLt f ||| ≤ e−λt |||f ||| and then ∥eLt f ∥ ≤ Ce−λt∥f ∥, ∀ f , Πf = 0.
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Hypocoercivity and macroscopic stationary state

From the hypocoercivity estimate

D[f ] ≥ ∥f ⊥∥2 + ∥πf ∥2, if Πf = 0,

we are able to establish
Lf = 0 ⇒ f = Πf .

We have more
Lf ≃ 0 ⇒ f ≃ Πf .
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About the Boltzmann equation

General regime and conditional bounded regime

DiPerna-Lions renormalized solutions (∼ 1990)

Constructive entropy approach: Desvillettes-Villani (2001-2005)

Exponential convergence: Mouhot + Baranger, Strain, Neumann, Gualdani-M.,
Carrapatoso-M. (since 2006)

Close to the equilibrium regime:

Non constructive spectral analysis approach : Ukai (1974), Arkeryd, Esposito,
Pulvirenti (1987), Wennberg (1995)

Energy (in high order Sobolev space) approach [2002-...] : Guo and Guo’ school

Micro-Macro approach : Shizuta, Kawashima (1984), Liu, Yu (2004), Yang, Guo,
Duan, ...
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About Hypocoercivity estimates:

More about close to the equilibrium regime and hypocoercivity

Constructive estimate and hypoellipticty : Hérau, Nier, Helffer, Eckmann, Hairer
(2003-2005), Villani (2009)

Constructive hypocoercivity estimates without hypoellipticty [2006-...]: Hérau,
Villani, Mouhot, Neumann, Dolbeault, Schmeiser, Guo, . . .

Carrapatoso, Dolbeault, Hérau, M., Mouhot, Weighted Korn and Poincaré-Korn
Inequalities in the Euclidean Space and Associated Operators, ARMA (2022)

Bernou, Carrapatoso, M., Tristani, Hypocoercivity for kinetic linear equations in
bounded domains with general Maxwell boundary condition, Annales IHP (?)

Carrapatoso, Dolbeault, Hérau, M., Mouhot, Schmeiser, Special macroscopic
modes and hypocoercivity, arXiv (2021)
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What is the talk about :

relaxation equation in the torus - Hérau

relaxation equation with confinement force - Dolbeault-Mouhot-Schmeiser

relaxation equation in a bounded domain ∼ Guo (but Villani’s formalism)

linearized Boltzmann equation in the torus

- Mouhot-Neumann by H1-hypocoercivity ̸= L2-hypocoercivity

linearized Boltzmann in a bounded domain

- Guo, Briant-Guo, . . . , Bernou, Carrapatoso, M., Tristani

linearized Boltzmann with confinement force

- Duhan, Duhan-Li, . . . , Carrapatoso, Dolbeault, Hérau, M., Mouhot, Schmeiser
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Relaxation operator with confinement

We consider the ”simplest” relaxation kinetic operator

L := S + T

where S is the ”simplest” relaxation operator

Sf := ρfM − f =: f ⊥, ρf := ⟨f ⟩ :=
∫

fdv

and T is the transport operator

T f := −v · ∇x f + . . . .

We may assume

(case 1) · · · = 0, Ω := Td , (ϕ := 0);

(case 2) · · · = ∇xϕ · ∇v f , Ω := Rd , e.g . ϕ ∼ |x |γ , γ ≥ 1;

(case 3) · · · = 0, Ω ⊂ Rd + reflection, (ϕ := 0).
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microscopic and macroscopic conservations (e.g. torus case)

• By definition
Sf = 0 ⇔ f − ρfM(v) = 0,

so that
N(S) = {ρ(x)M}, πf := ρf (x)M(v)

• We remind that
N(L) = N(S) ∩ N(T ),

so that
f ∈ N(L) ⇔ ρf (x)M ∈ N(T ).

We compute
v · ∇x(ρf (x)M(v)) = 0 ⇒ ∇xρf = 0.

By periodicity, we deduce ρf (x) = ⟨ρf ⟩.
As a conclusion:

N(L) = vectM, Πf = ⟨ρf ⟩M(v)

and the only macroscopic law of conservation is the mass conservation.
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L2 estimate for the relaxation operator

We introduce the twisted Hilbert norm

|||f |||2 := ∥f ∥2H − 2η(∇x∆
−1ρ,m)

with 1 >> η > 0 and then the Dirichlet form

D(f ) = ((−Lf , f ))
= (−Lf , f ) + η(∇x∆

−1ρf ,m[Lf ]) + η(∇x∆
−1ρ[Lf ],mf ).

Here

ρ := ρf = ρ[f ] = ⟨f ⟩ =
∫

fdv ,

m := mf = m[f ] = ⟨f v⟩ =
∫

fvdv .

Theorem 1

For a convenient choice of 1 >> η > 0 there holds (with explicit constant)

D(f ) ≳ |||f |||2 ≃ ∥f ∥2H, ∀ f , Πf = 0,

with
Πf = ⟨ρf ⟩M(v).
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Case 1 - The torus case

∆−1 := solution to the Poisson equation with periodic condition.
We split D = D0 + D1 + D2.
• We have

D0 := (−Lf , f )L2(M−1) = ∥f ⊥∥2H
• We compute

m[Lf ] = ⟨vT πf ⟩+ ⟨vLf ⊥⟩
= −∇xρf +∇x⟨v ⊗ v f ⊥⟩+ ⟨vf ⊥⟩,

so that

D1 := η(∇x∆
−1ρf ,m[Lf ])

:= η
(
∇x∆

−1ρf ,−∇xρf +∇x⟨v ⊗ v f ⊥⟩+ ⟨vf ⊥⟩
)

≳ η∥ρf ∥2L2 − η∥ρf ∥L2 ∥f
⊥∥H.

with ∥ρf ∥2L2 = ∥πf ∥2L2 !

• Similarly

ρ[Lf ] = ⟨T πf ⟩+ ⟨Lf ⊥⟩ = −∇x⟨vf ⊥⟩,

so that

D2 := η(∇x∆
−1ρ[Lf ],mf ) = −η(∇x∆

−1∇x⟨vf ⊥⟩,mf ) ≳ −η∥f ⊥∥2H
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The key arguments

We have used the splitting
f = πf + f ⊥,

the cancellation
Sπf = 0,

the identities
(∇∆−1ρ,−∇ρ) = ∥ρ∥2L2 = ∥πf ∥2L2 ,

and
∥f ∥2 = ∥ρ∥2 + ∥f ⊥∥2,

the two estimates

∆−1 : H−1 → H1,

∆−1 : L2 → H2.

and the Young inequality

D ≳ A2 + ηB2 − ηAB − ηA2

≳ (1− η − 1
2
)A2 + η(1− η

2
)B2
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Case 2 - The whole space with confinement force

We rather define ∆−1 := ∆∗−1
ϕ , ∆∗

ϕ stands for the modified Laplacian operator

∆∗
ϕu := ∆u −∇ϕ · ∇u = eϕ∇(e−ϕ∇u),

and the twisted L2 scalar product

((f , g)) = (f , g)H − η(∇∆∗−1
ϕ (ρf e

ϕ),mg )L2 − η(mf ,∇∆∗−1
ϕ (ρge

ϕ))L2 .

We compute

m[−Lf ] = m[−T πf ] + . . .

= m[v · ∇xρfM −∇ϕ · ∇ϕρfM] + . . .

= m[Mv · (∇xρf +∇ϕρf )] + . . .

= ∇xρf +∇ϕρf + · · · = e−ϕ∇(ρf e
ϕ) + . . .

We deduce that the leader term in D1 is

D1,1 := −η(∇∆∗−1
ϕ (ρf e

ϕ),m[−T πf ])L2

= −η(∇∆∗−1
ϕ (ρf e

ϕ), e−ϕ∇(ρf e
ϕ))L2

= η(eϕ∇(e−ϕ∇∆∗−1
ϕ (ρf e

ϕ)), ρf )L2

= η ∥ρf ∥2L2(eϕ).
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Case 3 - bounded domain with reflection condition at the boundary

We complement the ”simplest” relaxation kinetic operator with the reflection condition
at the boundary

f− = Cf+ on Σ−, f± = f|Σ± ,

where
Σ± := {(x , v) ∈ Σ := ∂Ω× Rd , ±n(x) · v > 0}

and n(x) stands for the outward unit normal vector at boundary point x ∈ ∂Ω.

The reflection operator C splits as

Cg = (1− α)Rg + αDg ,

with accomodation coefficient α ∈ [0, 1], R the specular reflection operator

Rg(x , v) := g(x ,Rxv), Rxv := v − 2(v · n(x))n(x),

and D the diffusion reflection operator

Dg := c M(v) g̃ , g̃(x) :=

∫
n(x)·w>0

g(x ,w)n(x) · w dw ,

where c such that cM̃ = 1.
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Case 3 - hypocoercivity estimate with reflection condition at the boundary

Same defintion of the twisted Hilbert norm, with now u := ∆−1ρf solution to the
Poisson equation with Neumann boundary condition (mass is conserved !).

• Because of the dissipation property of the diffusion reflection operator

D0 := (−Lf , f ) ≥ λ∥f ⊥∥2 + 1

2
∥
√
α(2− α)D⊥f+∥2∂H+

with D⊥ = I −D, ∂H+ := L2(Σ+, n(x) · vdvdσx).

• We compute (with ̸= integration by part)

η−1D1 :=
(
∇xu,−v∇x⟨vf ⟩

)
+ . . .

=
(
∂iju, ⟨vivj f ⟩

)
+

∫
Σ

(∇u · v)fn · v + . . .

=
(
∂iju, δijρf

)
+

∫
Σ+

(∇u · v)αD⊥f+ n · v +
(
∂iju, ⟨vivj f ⊥⟩

)
+ . . . ,

where we have used the identity (reformulation if the reflection condition)∫
Σ

ψf n · v =

∫
Σ+

ψαD⊥f+ n · v +

∫
Σ+

{ψ − ψ ◦ Rx} (1− α)D⊥f+ n · v

+

∫
Σ+

{ψ − ψ ◦ Rx}Df+ n(x) · v ,

with ψ := ∇u · v , so that ψ − ψ ◦ Rx = 0.
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η−1D1 =
(
∂iju, δijρf

)
+

∫
Σ+

(∇u · v)αD⊥f+ n · v + . . .

= ∥ρf ∥2L2 −O
(
∥u∥H1(∂Ω)∥αD

⊥f+∥∂H+

)
+ . . .

= ∥ρf ∥2L2 −O
(
∥ρf ∥L2∥αD

⊥f+∥∂H+

)
+ . . . ,

by Cauchy-Schwarz inequality and elliptic regularity estimate.
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Linearized Boltzmann equation in the torus

Consider the equation

∂t f + v · ∇x f = Sf , (0,∞)× Td × Rd ,

with linearized Boltzmann collisional operator S, and thus

L := T + S, T := −v · ∇x & Td -periodicity.

• The microscopic null space is

f ∈ N(S) ⇔ (Sf , f ) = 0 ⇔ f = πf

with
πf := ρfM(v) +mf vM(v) + ef E(v)M(v), E(v) := 1√

2d
(|v |2 − d)

• The naive macroscopic conservation are

d

dt

∫
f (1, vi , |v |2)dvdx = 0

and the naive macroscopic projector is

Πf := ⟨ρf ⟩M(v) + ⟨mf ⟩vM(v) + ⟨ef ⟩E(v)M(v)
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Macroscopic null space by hand

• The macroscopic null space is

f ∈ N(L) ⇔ Sf = T f = 0 ⇔ T πf = 0

The last equation writes 

∂tρf = −∇x ·mf

∂tmf = −∇xρf −
√

2
d
∇xef

∂tef = −
√

2/d ∇x ·mf

1√
2d
(∂tef )I = ∇s

xmf

0 = ∇xef

where (∇s
xm)ij = (∂imj + ∂jmi )/2 is the symmetric gradient. The Schwarz Lemma

∂2
xi xjmk = ∂xi (∇

sm)j,k + ∂xj (∇
sm)i,k − ∂xk (∇

sm)i,j

and differential calculus yield

ρf ∼ a− x · b′ + |x |2c ′′, mf ∼ Ax + b − xc ′, ef = c

with b = b(t), c = c(t) ∈ R and a ∈ R, A ∈ Ma = {A∗ = −A} independent of time.

The periodicity condition and Πf = 0 imply a = b = c = A = 0. That proves

Πf := ⟨ρf ⟩M(v) + ⟨mf ⟩vM(v) + ⟨ef ⟩E(v)M(v)
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the twisted L2 norm and associated Dirichlet form

The appropriate twisted L2 norm is

|||f |||2 := ∥f ∥2L2 − 2η1(∇xu[ef ],Mp[f ])

−2η2(∇s
xU[mf ],Mq[f ])− 2η3(∇xu[ρf ],mf )

with 1 >> η1 >> η2 >> η3 > 0, u = u(E) and U = U(M) are given by

−∆u = E in Td ,

−div(∇sU) = M in Td

and Mr [f ] = ⟨rf ⟩, p := v(|v |2 − 5)/2, q := v ⊗ v − I .

The four main contributions in the associated Dirichlet form are

D[f ] ≳ ∥f ⊥∥2 + η1(∇u[ef ],∇ef ) + η2(∇s
xU[mf ],∇mf )

+η3(∇xu[ρf ],∇ρf )− . . .

≳ ∥f ⊥∥2 + η1∥ef ∥2 + η2∥mf ∥2 + η3∥ρf ∥2 − . . .
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Here comes a Korn inequality

In order to solve the system

−div(∇sU) = M in Td

and to prove it is elliptic, we introduce the bilinear form

a(U,V ) := (−div(∇sU),V ) = (∇sU,∇V )

= (∇sU,∇sV ),

which is continuous in H1(Td). It is also coercive thanks to Korn and Poincaré
inequalities

a(U,U) = ∥∇sU∥2

≳ ∥∇U∥2 ≳ ∥U∥2H1 ,

when ⟨U⟩ = 0.

Theorem 2

For a convenient choice of 1 >> η1 >> η2 >> η3 > 0, there holds

((−Lh, h)) ≥ |||Π⊥f |||2 ≃ ∥Π⊥f ∥2H

with
Πf = ⟨ρf ⟩M(v) + ⟨mf ⟩vM(v) + ⟨ef ⟩E(v)M(v)
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linearized Boltzmann equation in a domain

Consider the equation{
∂t f + v · ∇x f = Sf , (0,∞)×O,
f− = Cf+ = (1− α)Rf+ + αDf+, (0,∞)× Σ−,

with linearized Boltzmann collisional operator S, accomodation coefficient α ∈ [0, 1],
specular reflection operator R and diffusion reflection operator D.

Same microscopic conservations and macroscopic mass is conserved

d

dt

∫
fdxdv = 0, ∀α ∈ [0, 1].

It is the macroscopic conservation law when α > 0. When α = 0, energy is conserved

d

dt

∫
f |v |2dxdv = 0

as well as the total angular momentum

d

dt

∫
(Ax · v) fdxdv = 0

associated to rotation deplacements preserving Ω:

A ∈ AΩ := {A∗ = −A; Ax · n(x) = 0 ∀ x ∈ ∂Ω}.
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twisted L2 norm with the help of convenient Korn inequalities

The appropriate modified L2 norm is

|||f |||2 := ∥f ∥2L2 − 2η1(∇xu[ef ],Mp[f ])

−2η2(∇s
xU[mf ],Mq[f ])− 2η3(∇xuN [ρf ],mf )

with 1 >> η1 >> η2 >> η3 > 0, u = u(E), U = U(M) and uN = uN [ρ] are given by{
−∆u = E in Ω,

(2− α) ∂u
∂n

+ αu = 0 on ∂Ω,
−div(∇sU) = M in Ω,

U · n = 0 on ∂Ω,
(2− α)[∇sU − (∇sU : n ⊗ n)n] + αU = 0 on ∂Ω,{

−∆uN = ρ in Ω,
∂u
∂n

= 0 on ∂Ω,

and Mr [f ] = ⟨rf ⟩, p := v(|v |2 − 5)/2, q := v ⊗ v − I .

The macrocopic projector is

Πf := ⟨ρf ⟩M(v) if α > 0,

Πf := ⟨ρf ⟩M(v) + (PAΩ⟨∇
amf ⟩)x · vM(v) + ⟨ef ⟩E(v)M(v) if α = 0,
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Linearized Boltzmann equation with force confinement

Consider the equation

∂t f + v · ∇x f −∇xϕ · ∇v f = Sf , (0,∞)× Rd × Rd ,

with the linearized Boltzmann collisional operator S (with same microscopic
conservations).

• mass is conserved ⇒ mass mode

F := M, M := e−|v|2/2e−ϕ

is a stationary state.

• Hamiltonian energy
H := 1

2
|v |2 + ϕ(x)

is conserved ⇒ energy mode F := HM is a stationary state.

• roatations A compatible with ϕ if

A ∈ Aϕ := { A ∈ Ma; ∇(x) · ∇ϕ(x) = 0, ∀ x}

⇒ rotation mode F := (Ax · v)HM is a stationary state if A ∈ Aϕ.
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There are possibly other non stationary special modes

Define
Eϕ := span{∇ϕ(x)− x}

with dimension dϕ ∈ {0, . . . , d}.
• If 1 ≤ dϕ ≤ d − 1 and i such that ∂xiϕ = xi then

(xi cot t − vi sin t)M, (xi sin t + vi cos t)M,

are harmonic directional modes (particular oscillating solutions).

• If dϕ = 0 ⇔ ϕ(x) = |x |2/2, there are additional harmonic pulsation modes

[(|x |2 − |v |2) cos(2t)− 2x · v sin(2t)]M.

• We find
Πf = ⟨ρ⟩M + ⟨⟨Hf ⟩⟩HM + Pϕ⟨∇am⟩x · vM,

when we additionally assume if dϕ ∈ {1, . . . , d − 1}

⟨⟨xi f ⟩⟩ = ⟨⟨xi f ⟩⟩ = 0

and if dϕ = 0
⟨⟨2x · vf ⟩⟩ = ⟨⟨(|x |2 − |v |2)f ⟩⟩ = 0
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twisted L2 norm with the help of convenient Korn inequality and finite dimensional control

The appropriate modified L2 norm is not

|||f |||2 := ∥f ∥2L2 − 2η1(∆
−1
ϕ ∇xef ,Mp[f ])

−2η2(∆
−1
ϕ ∇s

xmf ,Mq[f ])− 2η3(∆
−1
ϕ ∇xρf ,mf )

with 1 >> η1 >> η2 >> η3 > 0 and

∆ϕu := ∆u −∇ϕ · ∇u − u.

We need to control additional macroscopic quantities b = b(t), c = c(t) ∈ R and
A ∈ Ma defined by

ρf ∼ −x · b′ + |x |2c ′′ + ϕc, mf ∼ Ax + b − xc ′, ef = c

which appear when considering the hyperbolic system T πf = 0, or more precisely and
worst T πf = O(∥f ⊥∥). We also need a Korn inequality

∥u∥ ≲ ∥∆−1/2
ϕ ∇su∥

in order to control m.
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A Lyapunov approach

We rather define

F(t) := ∥f ∥2L2 − η1(∆
−1
ϕ ∇xe,Mp[f ])− η2(∆

−1
ϕ ∇s

xms ,Mq[f ])

−η3(∆−1
ϕ ∇xws ,ms) + η3(∆

−1
ϕ ∇x∂tws ,ws)

−η5 ⟨(X − Y · ∇xϕ),∇xϕ · Ax⟩ − η6 ⟨b, b′⟩ − η6 ⟨c ′, c ′′⟩,

with convenient 1 >> η1 >> η2 >> η3 >> η4 >> η5 >> η6 > 0, where

ρs ∼ ρ− ⟨∇ρ⟩x − ⟨∆ρ⟩|x |2

ms ∼ m − ⟨∇am⟩x − ⟨∇ ·m⟩x − ⟨m⟩
ws ∼ ρs − ⟨e⟩(ϕ− ⟨∆ϕ⟩|x |2)
X ∼ (2ϕ+∇ϕ · x − d)c + |x |2c ′′ − x · b′

Y ∼ ⟨xϕ⟩c + ⟨|x |2x⟩c ′′ − ⟨x ⊗ x⟩b′

and ρ, m, e, A, b and c are defined by

ρ = ⟨f ⟩, m = ⟨vf ⟩, e = ⟨Ef ⟩
A = ⟨∇am⟩, b = ⟨m⟩, c = ⟨e⟩

We prove
F ′ ≲ −F ∼ −∥f ∥2 when Πf = 0.

S.Mischler (CEREMADE ) Hypocoercivity & Geometry March 1st, 2022 32 / 34



Outline of the talk

1 Introduction
Villani’s program
second step: quantitative hypocoercivity estimates

2 Relaxation equation with confinement
The relaxation operator in the torus
The relaxation operator with confinement force
The relaxation operator in bounded domain

3 Linearized Boltzmann equation with confinement
Linearized Boltzmann equation in the torus
Linearized Boltzmann equation in bounded domain
Linearized Boltzmann equation with force confinement

4 Perspectives
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Perspectives

• Same semigroup decay in L∞ ? in any cases :
- linearized Boltzmann
- linearized Landau
- with force confinement
- in a bounded domain

• The nonlinear problem ?

• Uniform estimate in the grazing collisions limit (Boltzmann → Landau) ?

• Uniform estimate in the fluid limit (Boltzmann → Navier-Stokes) ?
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