Krein-Rutman theorem and Kinetic Fokker-Planck equation

S. Mischler

(CEREMADE, Université Paris Dauphine-PSL)

in collaboration with C. Fonte & P. Gabriel

Cambridge, March 2, 2023

Aleksandr Krein - 8 Esquisses de la jeunesse www.youtube.com/watch?v=sJIG1Cp2n9Y Bob Rutman www.youtube.com/watch?v=6RTaGQiQfA Puscifer "Theorem" www.youtube.com/watch?v=bfKV0WmjtT8 and www.kineticmusicgroup.com
Wanted (Fokker) www.youtube.com/watch?v=nAHHWe4v7Rg

Squarepusher - Maximum Planck www.youtube.com/watch?v=DXrozghtRMY

Equation by Camille, Hans Zimmer www.youtube.com/watch?v=bVCAe0gH-A

(or Baauer - Planck www.youtube.com/watch?v=CHt337NYqTY)

Outline of the talk

Introduction

2 The Krein Rutman theorem

3 The Kinetic Fokker-Planck equation

Outline of the talk

Introduction

2 The Krein Rutman theorem

3 The Kinetic Fokker-Planck equation

The KR theorem issue - stationary problem

- framework: a positive semigroup $S_t = S_{\mathcal{L}}(t) = e^{t\mathcal{L}}$ with generator \mathcal{L} on a Banach lattice X with positive cone X_+ in duality with another Banach lattice Y (Y = X' or X = Y').
- \triangleright Concrete situations are $X=C_0,\ X=L^p_m,\ X=M^1_m,\ \text{here for KFP:}\ X:=L^2_m$
- (CS1) existence of a solution $(\lambda_1, f_1, \phi_1) \in \mathbb{R} \times X \times Y$ to the first eigentriplet problem :

$$f_1 \geq 0$$
, $\mathcal{L}f_1 = \lambda_1 f_1$, $\phi_1 \geq 0$, $\mathcal{L}^* \phi_1 = \lambda_1 \phi_1$

suitable geometric properties as

(CS2)
$$\lambda_1 \in \Sigma_+(\mathcal{L})$$
 algebraically simple, $f_1 > 0$ unique positive eigenvector for \mathcal{L} , $\phi_1 > 0$ unique positive eigenvector for \mathcal{L}^* , $\langle f_1, \phi_1 \rangle := 1$

(CS3₁)
$$\Sigma_+(\mathcal{L}) \cap \Sigma_P(\mathcal{L}) - \lambda_1$$
 is a (discrete) additive subgroup of $i\mathbb{R}$

(CS3₂)
$$\Sigma_+(\mathcal{L}) \cap \Sigma_P(\mathcal{L}) = \{\lambda_1\}$$

(CS3₃)
$$\Sigma(\mathcal{L}) \cap \Delta_{\kappa} = \{\lambda_1\}$$
, $\kappa < \lambda_1$ (spectral gap)

where

 $\Sigma_+(\mathcal{L}) := s(\mathcal{L}) + i\mathbb{R}$ boundary spectrum, $s(\mathcal{L}) := \{\sup \Re e\lambda; \ \lambda \in \Sigma(\mathcal{L})\}$ spectral bound, $\Sigma_P(\mathcal{L})$ point spectrum (set of eigenvalues), $\Delta_\kappa := \{z \in \mathbb{C}, \Re ez < \kappa\}$

The KR theorem issue - asymptotic problem

• asymptotic attractivity/stability. The functions $t\mapsto f_1e^{\lambda_1t}$ and $t\mapsto \phi_1e^{\lambda_1t}$ are particular solutions (with maximal growth) to the primal and the dual evolution problem. Is this first function attractive

$$e^{t\mathcal{L}}f_0 - e^{\lambda_1 t}f_1\langle \phi_1, f_0 \rangle = o(e^{\lambda_1 t})$$
?

Introducing $\widetilde{S}_t:=S_{\mathcal{L}}(t)e^{-\lambda_1 t}$ and assuming $\langle \phi_1,f_0
angle=0$, we wonder if

• (CE1) mean ergodicity when

$$rac{1}{T}\int_0^T \widetilde{S}_t f_0 dt o 0;$$

• (CE2) ergodicity when

$$\widetilde{S}_t f_0 \rightarrow 0$$
;

• (CE3) quantitative asymptotical stability when

$$\|\widetilde{S}_t f_0\|_0 \leq \Theta(t) \|f_0\|_1, \quad \Theta(t) \to 0,$$

with non constructive rate or constructive rate with $X_1 = X \subset X_0$, Θ exponential (geometric, dissipative) or sub-exponential (subgeometric, weak dissipative)

Discussion about KR - dissipative case

Spectral analysis

- Perron-Frobenius 1907-09 (dim $< \infty$), Phillips 60' (positive semigroup)
- Krein-Rutman 1948 (exist+geo when $int X_+ \neq \emptyset \leftrightarrow X = C(E)$, E compact)
- Greiner 1984, Webb 1984, Bürger 1988 (int $X_{+} = \emptyset$, not constructive)
- \rightarrow Schaefer (and German school), Voigt, Gearhart, Prüss, Nagel, Arendt, ...
- ightarrow more readable book by Bátkai, Kramar Fijavž and Rhandi
- Scher-M 2016 (≃ German school, a bit more constructive)
- Lions' college de France course 2020, (existence, weak compactness argument)

Ergodicity, probabilistic and coupling method approach (conservative case)

- von Neumann, Birkhoff, Markov, Kakutani (existence) ~ 30'
- Doblin 40', Harris 50', Meyn-Tweedie 90', Hairer-Matingly 2011 (convergence)

Probabilistic and coupling method approach (non conservative)

- Collet-Martinez-Méléart-San Martin 2011-13, Champagnat-Villemonais 2016
- Bensaye, Cloez, Gabriel, Marguet (abstract KR via coupling) 2019-22

Discussion about KR - weak dissipative case (but conservative)

Spectral analysis and functional inequalities

- Toscani-Villani 2000, Rochner-Wang 2001 (Fokker-Planck operator)
- Kavian-M.-Ndao 2021 (idem)

Entropy, probabilistic and coupling method approach (non conservative)

- M.-Michel-Perthame 2005 (GRE)
- Douc, Fort, Guillin 2009 (weak Lypunov condition)
- Cañizo-M. 2023 (idem but constructive rate)

Two goals

First goal: to revisit Krein-Rutman theory

- more general than the initial Krein-Rutmann theorem (int $X_+ = \emptyset$ is possible) / less abstract than usual semigroup school approach
- \bullet more intuitive = series of a priori estimates / the necessary assumptions are made clearer at each step

What is new?

- KR in the weak dissipative case (no spectral gap!!)
- only weak compactness arguments are needed
- (towards) constructive rate

Proof based on

- simple Banach lattice tools (no ideal, no quasi interior point, no Calkin algebra)
- \bullet simple spectral analysis tools (no essential spectrum/growth bound), ergodicity and probabilistic (coupling method) tools
- additional strong positivity assumptions

Second goal: apply / illustrate on KFP model

Kinetic Fokker-Planck equation in a domain

We consider the KFP equation

$$\begin{cases} \partial_t f = \mathcal{L}f, & (0, \infty) \times \mathcal{O}, \\ \gamma_- f = \mathcal{R}\gamma_+ f = \alpha \mathcal{D}\gamma_+ f + \beta \Gamma \gamma_+ f, & (0, \infty) \times \Sigma_-, \end{cases}$$

where $\mathcal{O}:=\Omega\times\mathbb{R}^d$, $\Omega\subset\mathbb{R}^d$ bounded domain, Σ_- incoming boundary $\subset\Sigma=\partial\Omega\times\mathbb{R}^d$, with general Kinetic Fokker-Planck operator

$$\mathcal{L}f := -\mathbf{v} \cdot \nabla_{\mathbf{x}}f + \Delta_{\mathbf{v}}f + \mathbf{b} \cdot \nabla_{\mathbf{v}}f + \mathbf{c}f,$$

and general reflection operator ${\mathscr R}$ associated to the specular reflection operator

$$\Gamma_{x}(g(x,\cdot))(v) = g(x,\mathcal{V}_{x}v), \quad \mathcal{V}_{x}v = v - 2n(x)(n(x)\cdot v),$$

and the diffusive operator

$$\mathcal{D}_x(g(x,\cdot))(v) = c_{\mathscr{M}}\mathscr{M}(v)\widetilde{g}(x), \quad \widetilde{g}(x) = \int_{\Sigma_+^x} g(x,w) \, n(x) \cdot w \, dw,$$

for a normalized Maxwellian $\mathcal M$ and some accomodation coefficients $\alpha,\beta\in[0,1]$, $\alpha+\beta\leq\zeta\leq 1\Rightarrow$ leak is possible.

Theorem - KR for the KFP equation

The conclusions (CS1), (CS2), (CS3 $_3$) and (CE3) with exponential rate but non constructive constants hold

Discussion about KFP

Existence in \mathbb{R}^d and in a domain (with additional NL terms)

- Degond 1986, Dreseler 1987, Bouchut 1993, Carrillo-Soler 1993-97
- Carrillo 1998, M. 2000-2010

Regularity

- Golse-Lions-Perthame-Sentis 1988, Lions-Perthame 1992, M.-Weng 2017
- Hörmander 1967, Bouchut 1995, Hérau 2007, Hwang-Ju-Velázquez 2014
- De Giorgi 1956, DiBenedetto-Gianazza-Vespri 1986-2012
- Hérau+Pravda-Starov 2011, Golse-Imbert-Mouhot-Vasseur 2019, Zhu 2021

Longtime behaviour and Hypocoercivity

- Bonilla-Carrillo-Soler-Vasquez 1995-98
- Nier-Helfer-Hérau 2004-05, Neuman-Mouhot 2006, Villani 2009

KR for the KFP operator with zero inflow boundary condition

• Lelièvre-Maurin-Monmarché 2022, Guillin-Nectoux-Wu arXiv 2022

What is new?

reflection at the boundary condition for a non conservative model

Outline of the talk

Introduction

2 The Krein Rutman theorem

3 The Kinetic Fokker-Planck equation

Existence part in the KR theorem

We assume that ${\mathcal L}$ enjoys the following properties

(H1)
$$\mathcal{R}_{\mathcal{L}}(\alpha) := (\alpha - \mathcal{L})^{-1} \in \mathscr{B}(X) \cap \mathscr{B}(X_+)$$
 for any $\alpha \geq \kappa_1$

We may define

$$\mathcal{I} := \{ \kappa \in \mathbb{R}; \, \forall \, \alpha \geq \kappa, \, \mathcal{R}_{\mathcal{L}}(\alpha) \in \mathscr{B}(X) \cap \mathscr{B}(X_{+}) \} \neq \emptyset.$$

(H2)
$$\exists \kappa_0 \in \mathbb{R}, \ \kappa_0 \notin \mathcal{I}.$$

We may define

$$\lambda_1 := \inf \mathcal{I} \in [\kappa_0, \kappa_1].$$

(H3) If (λ_n) in \mathbb{R} , (g_n) in X_+ and (ε_n) in X_+ satisfy

$$\lambda_n \searrow \lambda_1, \ \|g_n\| = 1, \ \varepsilon_n \to 0, \ \lambda_n g_n - \mathcal{L} g_n = \varepsilon_n,$$

then (for a subsequence) $g_n \rightharpoonup f_1$, $f_1 \neq 0$.

Theorem (∼Lions)

Under conditions (H1)-(H2)-(H3) there exists a solution (λ_1, f_1) to the first eigenvalue problem

Proof of the existence part in the KR theorem

ullet Because $\lambda_n \searrow \lambda_1$ we must have $\|\mathcal{R}_{\mathcal{L}}(\lambda_n)\|_{\mathscr{B}(X)} \to \infty$.

On the contrary $\lambda_1 \notin \Sigma(\mathcal{L})$.

That implies that there exists $\eta>0$ such that $B(\lambda_1,\eta)\cap\Sigma(\mathcal{L})=\emptyset$ and

$$\mathcal{R}(\alpha) = \mathcal{R}(\lambda_1) \sum_{k=0}^{\infty} (\lambda_1 - \alpha)^k \mathcal{R}(\lambda_1)^k \ge 0,$$

for any $\lambda_1 - \eta < \alpha \le \lambda_1$.

 $]\lambda_1 - \eta, \lambda_1] \subset \mathcal{I}$ and that is in contradiction with definition of λ_1 .

- That means there exists $\varepsilon_n \to 0$ and $||g_n|| = 1$ such that $g_n = \mathcal{R}_{\mathcal{L}}(\lambda_n)\varepsilon_n$. Because $\mathcal{R}_{\mathcal{L}}(\lambda_n) \in \mathcal{B}(X_+)$ we may assume $g_n \ge 0$, $\varepsilon_n \ge 0$.
- We just apply (H3) and conclude

The Krein Rutman theorem under splitting structure

(H1') $S=S_{\mathcal{L}}$ is a positive semigroup with growth bound $\omega(S_{\mathcal{L}}) \leq \kappa_1$

(H2') $\exists \kappa_0 < \kappa_1$, $\exists \psi_0 \ngeq 0$ such that $\mathcal{L}^*\psi_0 \ge \kappa_0\psi_0$ or $\exists f_0 \supsetneqq 0$ such that $\mathcal{L}f_0 \ge \kappa_0f_0$ (H3') $\mathcal{L} = \mathcal{A} + \mathcal{B}$ with $\mathcal{A} \in \mathcal{B}(X)$, $\exists \kappa_{\mathcal{B}} < \kappa_0$, $\mathcal{R}_{\mathcal{B}}(\alpha) \in \mathcal{B}(X)$ uniformly in $\alpha \ge \kappa_{\mathcal{B}}$ and $\exists N \ge 1$ such that $\mathcal{W}(\alpha) := (\mathcal{R}_{\mathcal{B}}(\alpha)\mathcal{A})^N$ satisfies

 $\mathcal{W}(\alpha): \mathcal{X}_0 \to \mathcal{X}_1$ is positive and uniformly bounded in $\alpha \geq \kappa_0$

with $\mathcal{X}_1 \subset X \subset \mathcal{X}_0$ and assuming that for any $R_1 \geq R_0 > 0$ the set (ring)

$$\mathcal{C} := \{ g \in X_+; \ \|g\|_{\mathcal{X}_0} \ge R_0, \ \|g\|_{\mathcal{X}_1} \le R_1 \}$$

is relatively sequentially compact for the weak topology $\sigma(X,Y)$ and $0 \notin \overline{\mathcal{C}}$. (H3") same condition on the (almost) dual operator $\mathcal{W}^{\sharp}(\alpha) := (\mathcal{R}_{\mathcal{B}^*}(\alpha)\mathcal{A}^*)^N$

Theorem

Under conditions (H1')-(H2')-(H3'')-(H3"') there exists a solution (λ_1, f_1, ϕ_1) to the first eigentriplet problem

- (H3') and (H3'') are automatically verified when $\mathcal{W}(\alpha) \in \mathcal{K}(X)$
- (H3') holds if $\mathcal{W}: L^p_m \to L^q_\omega$ weakly compact in L^p_m
- (H3') holds if $\mathcal{W}:M^1_{m_0} o M^1_{m_1}$ weakly * compact in $M^1_{m_0}$

Proof of the existence part in the KR theorem

- (H1') \Rightarrow (H1) $0 \le S_{\mathcal{L}} = \mathcal{O}(e^{\kappa t})$, $\forall \kappa > \kappa_1$, is equivalent to the Kato inequality $(\operatorname{sign} f)\mathcal{L}f \le \mathcal{L}|f|$ and $\kappa \mathcal{L} \in \mathscr{B}(X) \cap \mathscr{B}(X_+)$, $\forall \kappa > \kappa_1$.
- $(H2') \Rightarrow (H2)$
- ullet (H3') \Rightarrow (H3) For a sequence of approximation solutions

$$g_n \geq 0, \ \|g_n\| = 1, \ \lambda_n g_n - \mathcal{B} g_n - \mathcal{A} g_n = \lambda_n g_n - \mathcal{L} g_n = \varepsilon_n \to 0,$$

we write

$$g_n = \mathcal{R}_{\mathcal{B}}(\lambda_n)\varepsilon_n + \mathcal{R}_{\mathcal{B}}(\lambda_n)\mathcal{A}g_n$$

and iterating

$$g_n = \{\mathcal{R}_{\mathcal{B}}(\lambda_n) + \dots + (\mathcal{R}_{\mathcal{B}}(\lambda_n)\mathcal{A})^{N-1}\mathcal{R}_{\mathcal{B}}(\lambda_n)\}\varepsilon_n + \mathcal{W}(\lambda_n)g_n$$

=: $v_n + w_n$.

By assumptions $v_n \to 0$ so that $w_n \in \mathcal{C} = \mathcal{C}_{1/2,R}$, $\mathcal{X}_0 = X$, $\mathcal{X}_1 \subset X$. As a consequence, $w_{n_k} \rightharpoonup f_1 \neq 0$, $v_{n_k} \to 0$, so that $g_{n_k} \rightharpoonup f_1$ and $f_1 \geq 0$. Passing to the limit in the first equation, we also get $\lambda_1 f_1 - \mathcal{L} f_1 = 0$.

Geometry part in the KR theorem

- \bullet (CS2) is a consequence of the weak maximum principle (H1') (or (H1") + (H1"")) and the strong maximum principle (H4), where :
 - (H1") weak maximum principle: $(\lambda \mathcal{L})f \geq 0$, $\lambda > \lambda_1 \Rightarrow f \geq 0$
 - (H1''') Kato's inequalities : $\mathcal{L}|f| \geq (\mathsf{sign} f) \mathcal{L} f$, $\mathcal{L} f_+ \geq (\mathsf{sign}_+ f) \mathcal{L} f$
 - (H4) strong maximum principle: $(\lambda \mathcal{L})f \ge 0$, $f \ge 0$, $f \ne 0 \Rightarrow f > 0$
- \bullet (CS3₁) is a consequence of (CS2), (H4) (and (H3') for the additional discrete property)
- (CS3₂) is a consequence of (CS2), (H4) and (H5_i)_{i=1,2} with
 - (H5₁) inverse Kato's inequalities : $\mathcal{L}|f| = (\operatorname{sign} f)\mathcal{L}f$ implies f = u|f|
 - $(H5_2)$ aperiodicity condition :

$$\forall f \in X_{+} \setminus \{0\}, \forall \phi \in Y_{+} \setminus \{0\}, \exists T > 0, \forall \tau \geq T \quad \langle S_{\tau} f, \phi \rangle > 0.$$

- (CS3₃) is a consequence of (CS2), (H4) and (H5₃) with
 - (H5₃) Voigt's quasi-compactness :

$$S_T = V_T + K_T$$
, $V_t = \mathcal{O}(e^{\kappa_B t})$, $K_T \in \mathcal{K}(X)$

Stability part in the KR theorem

- ullet (CE1) (weak convergence) is a consequence of (CS1) and (CS2) when $X\subset L^1_{loc}$
- ullet (CE2) is a consequence of (CS1), (CS2), (CS3 $_2$) and the trajectories $(\widetilde{S}_t f)_{t\geq 0}$ are relatively compact
- (CE3) (exponential rate but without constructive constants) is a consequence of (CS2), (H4) and (H5₃) thanks to Voigt-Greiner-Webb-Bürger theorem
- \bullet (CE3) (exponential or sub-exponential rate with constructive constants) is consequence of (CS1) together with a Lyapunov condition and a Doblin-Harris condition. Typically :

$$\|\bar{S}_T f\| \le \gamma_L \|f\| + K\langle |f|, \psi_0 \rangle$$

with $\gamma_L = \gamma_L(T) < 1$ for any T > 0 and for some $\psi_0 > 0$ and

$$\exists T > 0, \ \exists g_0 > 0, \ \forall f \ge 0, \ S_T f \ge g_0 \langle \psi_0, f \rangle$$

 $\exists R_0 > 0, \ \phi_1 \le R_0 \psi_0$

Outline of the talk

Introduction

2 The Krein Rutman theorem

3 The Kinetic Fokker-Planck equation

Assumptions on the Kinetic Fokker-Planck operator

We consider the Kinetic Fokker-Planck operator

$$\left\{ \begin{array}{l} \mathcal{L}f = - \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f + \Delta_{\boldsymbol{v}} f + \boldsymbol{b} \cdot \nabla_{\boldsymbol{v}} f + \boldsymbol{c} f \quad \text{in} \quad \mathcal{O}, \\ \gamma_{-} f = \alpha \mathcal{D} \gamma_{+} f + \beta \Gamma \gamma_{+} f \quad \text{on} \quad \Sigma_{-}, \end{array} \right.$$

with
$$\Sigma_{\pm} := \{(x,v) \in \partial\Omega \times \mathbb{R}^d, \, \pm v \cdot \textit{n}(x) > 0\}$$
. We assume furthermore $c, \operatorname{div}_v b, b/\langle v \rangle \in L^\infty(\mathcal{O}), \quad \limsup_{(x,v) \to \infty} b \cdot \hat{v} > 0,$

with notations $\hat{v} := v/\langle v \rangle$, $\langle v \rangle^2 = 1 + |v|^2$. For simplicity, we assume here

$$\varpi := c + \frac{|v|^2 + d}{2} - \frac{1}{2} \operatorname{div}_v b - b \cdot v \to -\infty$$

and we denote

$$\kappa_{1}' := \| \left(c + \frac{\Delta m^{2}}{2m^{2}} - \frac{1}{2} \operatorname{div}_{v} b - b \cdot \frac{\nabla m}{m} \right)_{+} \|_{L^{\infty}}$$

$$\kappa_{1}'' := \| \left(c - \operatorname{div}_{v} b \right)_{+} \|_{L^{\infty}}, \quad m := \mathcal{M}^{-1/2}$$

We finaly assume that

$$n(x) = -\nabla \delta(x) \in W^{1,\infty}(\Omega), \quad \delta(x) := \operatorname{dist}(x, \partial \Omega).$$

Constructive condition (H1) for the Kinetic Fokker-Planck operator

Consider a solution f to $(\lambda - \mathcal{L})f = \mathscr{F}$ in \mathcal{O} , $\gamma_- f = \mathscr{R} \gamma_+ f + \text{ on } \Sigma_-$.

• Multiplying by $f m^2$, we get

$$\int (\lambda - \varpi) f^2 m^2 + \int |\nabla_{\mathbf{v}} f|^2 m^2 + \int_{\Sigma} (\gamma f)^2 n(\mathbf{x}) \cdot \mathbf{v} m^2 = \int \mathscr{F} f m^2,$$

so that

$$\int (\lambda - \varpi) f^2 m^2 + \int |\nabla_{\nu} f|^2 m^2 \leq \|\mathscr{F}\|_{L^2_m} \|f\|_{L^2_m},$$

with $\inf(\lambda - \varpi) > 0$ when $\lambda > \kappa'_1$. \Rightarrow existence

• Multiplying by $f(x) \cdot \hat{v}/\langle v \rangle$ and using Cauchy-Schwarz, we get

$$\left(\int_{\Sigma} |\gamma f| |n(x) \cdot v|\right)^2 \lesssim \int_{\Sigma} f^2 m^2 (n(x) \cdot \hat{v})^2 \lesssim \|f\|_{L_m^2}^2 + \|\mathscr{F}\|_{L_m^2}^2.$$

- ⇒ trace condition is meaningful
- Multiplying by S'(f), S(f) = |f| or $S(f) = f_+$, when $\mathscr{F} = 0$, we get

$$0 \geq \int_{\mathcal{O}} S(f)(\lambda - c + \operatorname{div} b) + \int_{\Sigma} S(\gamma f) \nu \cdot v \varphi.$$

with $\inf(\lambda - c + \operatorname{div} b) > 0$ when $\lambda > \kappa_1''$. \Rightarrow uniqueness and positivity

• The three estimates together $\Rightarrow \mathcal{R}_{\mathcal{L}}(\lambda) \in \mathcal{B}(X) \cap \mathcal{B}(X_+)$ when $\lambda > \kappa_1 = \max(\kappa_1', \kappa_1'')$

S.Mischler (CEREMADE) Krein-Rutman & KFP

Additional a priori estimates

• Multiplying by $f\psi$, with $\psi = \delta(x)^{1/2} n(x) \cdot v$ Lions-Perthame type multiplicator, we get

$$\int \frac{(n(x)\cdot\hat{v})^2}{\delta(x)^{1/2}} f^2 \lesssim \|f\|_{L_m^2}^2 + \|\mathscr{F}\|_{L_m^2}^2.$$

• Together with the first estimate, we get

$$\int_{\mathcal{O}} f^2 \{ m_1^2 + \frac{(n(x) \cdot \hat{v})^2}{\delta(x)^{1/2}} \} + |\nabla_v f|^2 m^2 \lesssim \|\mathscr{F}\|_{L_m^2}^2,$$

for $\lambda > \kappa_1'$, $m_1 := m \langle \varpi_- \rangle^{1/2} >> m$.

• Defining

$$\mathcal{U}_{\varepsilon} := \{ (x, v) \in \mathcal{O}; \ \delta(x) > \varepsilon, \ |v| \le \varepsilon^{-1} \},$$

there exists $\Lambda(\varepsilon) \to \infty$ when $\varepsilon \to 0$, such that

$$\Lambda(\varepsilon) \int_{\mathcal{U}_{\varepsilon}^{c}} f^{2} m^{2} \leq \|f\|_{L_{m}^{2}}^{2} + \|\mathscr{F}\|_{L_{m}^{2}}^{2}$$

Condition (H3) witth N=1 for the Kinetic Fokker-Planck operator

We define

$$\mathcal{A}f := M\chi f, \quad \mathbf{1}_{B_R} \leq \chi(v) \leq \mathbf{1}_{B_{2R}} \quad \mathcal{B} := \mathcal{L} - \mathcal{A}.$$

ullet For any $\kappa \in \mathbb{R}$, we may fix M,R>0 large enough such that

$$\sup_{z\in\Delta_{\kappa}}\|\mathcal{R}_{\mathcal{B}}(z)\|_{\mathscr{B}(L^{2}_{m})}<\infty,$$

what comes from the very first a priori estimate.

• Moreover in that situation $\mathcal{R}_{\mathcal{B}}(\lambda) \in \mathscr{K}(L_m^2)$ for any fixed $\lambda > \kappa$. We consider

$$(\lambda - \mathcal{B})g_n = G_n, \quad \|G_n\|_{L^2_m} = 1.$$

From the previous a priori estimates, we have

$$\|g_n\|_{L^2_{m_1}} + \|\nabla_v g_n\|_{L^2_m} + \sup_{\varepsilon > 0} \Lambda(\varepsilon) \|g_n\|_{L^2(\mathcal{U}^c_\varepsilon)} \lesssim 1.$$

Using the averaging lemma for the kinetic equation

$$v\cdot\nabla_{x}g_{n}=G_{n}+\Delta_{v}g_{n}+b\cdot\nabla_{v}g_{n}+(c-\lambda-M\chi)g_{n}\ \ \text{bdd}\ \ L_{x,loc}^{2}H_{v,loc}^{-1},$$

we deduce

$$g_n = g_n *_{\scriptscriptstyle V} \rho_\alpha + (g_n - g_n *_{\scriptscriptstyle V} \rho_\alpha) \in \text{ compact } L^2_{loc}.$$

Additional local regularity and local positivity estimates

Consider the KFP equation

$$\partial_t g + v \cdot \nabla_x g - \Delta_v g + \langle v \rangle^2 g = \mathcal{G} \text{ in } I \times \mathcal{U},$$

with $I = \emptyset$, $I \subset \mathbb{R}_+$, $\mathcal{U} = \mathbb{R}^d \times \mathbb{R}^d$, $\mathcal{U} \subset\subset \mathcal{O}$.

• From Hörmander, Hérau & Pravda-Starov, we have

$$\|D_x^{2/3}g\|_{L^2} + \|D_v^2g\|_{L^2} \lesssim \|\mathcal{G}\|_{L^2} + \|g\|_{L^2}.$$

• From De Girogi, ..., DiBenedetto, ..., Golse-Imbert-Mouhot-Vasseur, we have

$$\begin{split} \|g\|_{L^{p_1}(Q_{r_1})} &\lesssim \|g\|_{L^2(Q_{r_0})} + \|\mathcal{G}\|_{L^2(Q_{r_0})} \\ \|g\|_{L^{p_{j+1}}(Q_{r_1})} &\lesssim \|g\|_{L^2(Q_{r_0})} + \|\mathcal{G}\|_{L^{p_{j}}(Q_{r_0})}, \quad 1 \leq j \leq k-1 \\ \|g\|_{L^{\infty}(Q_{r_1})} &\lesssim \|g\|_{L^2(Q_{r_0})} + \|\mathcal{G}\|_{L^{p_k}(Q_{r_0})} \\ \|g\|_{\mathcal{C}^{\alpha}(Q_{r_1})} &\lesssim \|g\|_{L^2(Q_{r_0})} + \|\mathcal{G}\|_{L^{\infty}(Q_{r_0})} \end{split}$$

with $Q_r := \text{cone} \ldots$, but also $Q_r := \mathcal{U}_r$, $r_1 > r_0 > 0$.

• From Harnack inequality in GIMV or using the energy estimates + regularity estimates in GIMV + barrier function (Villani), for any $\mathcal{U} \subset\subset \mathcal{O}$, we have

$$g \ge \varepsilon_{\mathcal{U}} > 0$$
 on \mathcal{U} ,

when G = 0, $g \ge 0$, $\|g\|_{L^2_m} = 1$.

Constructive condition (H2) for the Kinetic Fokker-Planck operator

For $0 \le h_0 \in C_c^2(\mathcal{O})$, $||h_0||_{L_m^2} = 1$, we define $f_0 \in L_m^2 \cap L^2 H^1$ the solution to

$$(\kappa_1 - \mathcal{L})f_0 = h_0 \text{ on } \mathcal{O}, \quad \gamma_- f = \mathscr{R} \gamma_+ f \text{ on } \Sigma_-.$$

• $||f_0||_{L^2} \ge 1/C_1 > 0$ because

$$1 = \int h_0^2 m^2 = \int (\kappa_1 - \mathcal{L}) f_0 h_0 m^2$$

$$\leq \int f_0 (\kappa_1 - \mathcal{L}^*) (h_0 m^2) \leq C_1 ||f_0||_{L^2_m}.$$

• From the additional estimate

$$||f_0||_{L^2H_m^1} + ||f_0\frac{\hat{\mathbf{v}}\cdot\nu}{\delta^{1/4}}||_{L^2} \leq C_2,$$

we deduce

$$\int_{\mathcal{U}} f_0^2 m^2 \geq (2C_1)^{-1}, \quad \operatorname{supp} h_0 \subset \mathcal{U},$$

• From Harnack inequality, we deduce $f_0 \ge \varepsilon_{\mathcal{U}} \mathbf{1}_{\mathcal{U}} \ge 1/C_0 h_0$ for some $\varepsilon_{\mathcal{U}}, C_0 > 0$ and next

$$\mathcal{L}f_0 = \kappa_1 f_0 - h_0 \ge \kappa_1 f_0 - \|h_0\|_{L^{\infty}} \mathbf{1}_{\mathcal{U}} \ge (\kappa_1 - \|h_0\|_{L^{\infty}} C_0) f_0,$$

Geometry of the boundary spectrum and ergodicity

- ullet (H1)-(H2)-(H3) implies \exists (λ_1, f_1, ϕ_1) solution to the eigentriplet problem (CS1)
- Harnack inequality implies strong maximum principle (H4), which in turn implies uniqueness, strict positivity and algebraic simplicity (CS2)
- Reverse Kato inequality condition (H5₁) implies triviality of eigenvalues in the boundary spectrum $\Sigma_+(\mathcal{L}) \cap \Sigma_P(\mathcal{L}) = \{\lambda_1\}$ (CS3₂)
- ullet For free, ergodicity holds for the L^1 weak convergence and, working slightly more, for the L^1 strong convergence (using GRE techniques)

Convenient splitting/representation formula for the semigroup

We introduce the splitting

$$Ag := M \Upsilon_{\varepsilon} g, \quad \Upsilon_{\varepsilon} g := \chi_{\varepsilon} g, \quad \mathcal{B} := \mathcal{L} - \mathcal{A},$$

with $\chi_{\varepsilon} \in C_c^2(\mathcal{O})$, $\mathbf{1}_{\mathcal{U}_{2\varepsilon}} \leq \chi_{\varepsilon} \leq \mathbf{1}_{\mathcal{U}_{\varepsilon}}$ (truncation in both x and v).

We write the Duhamel and iterated Duhamel formulas (with N := k + 2)

$$S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}$$

$$= S_{\mathcal{B}} + \dots + (S_{\mathcal{B}} \mathcal{A})^{*N-1} * S_{\mathcal{B}} + (S_{\mathcal{B}} \mathcal{A})^{*N} * S_{\mathcal{L}}$$

$$= U + W * S_{\mathcal{L}}$$

For T>0 large and $0<\tau< T$ small, we next define a modified convolution operator

$$\begin{cases} (a *_{\tau} b)(t) := \int_{\tau}^{t-\tau} a(t-s)b(s) ds & \text{if } t \in [\tau, T-\tau] \\ (a *_{\tau} b)(t) := 0 & \text{if } t \in [\tau, T-\tau]^{c}, \end{cases}$$

(with these notations $*_0 = *$) and the new splitting

$$S_{\mathcal{L}} = U + K_1^c + K_2^c + K,$$

with

$$K:= {\color{red}\Upsilon_{\!\scriptscriptstyle \mathcal{V}}} W_{\!\scriptscriptstyle \mathcal{T}} *_{\!\scriptscriptstyle \mathcal{T}} S_{\!\scriptscriptstyle \mathcal{L}}, \quad K^c_1:=W*S_{\!\scriptscriptstyle \mathcal{L}} - W_{\!\scriptscriptstyle \mathcal{T}} *_{\!\scriptscriptstyle \mathcal{T}} S_{\!\scriptscriptstyle \mathcal{L}}, \quad K^c_2:= (1-{\color{red}\Upsilon_{\!\scriptscriptstyle \mathcal{V}}})W_{\!\scriptscriptstyle \mathcal{T}} *_{\!\scriptscriptstyle \mathcal{T}} S_{\!\scriptscriptstyle \mathcal{L}}$$

where $W_{\tau} := (S_{\mathcal{B}} \mathcal{A})^{*_{\tau} N}$.

Exponential rate without constructive constants

Let us fix $\kappa < \kappa_{\mathcal{B}} < \kappa_0 \le \lambda_1$ and choose \mathcal{A} in such a way that $S_{\mathcal{B}}(t) = \mathcal{O}(e^{\kappa_{\mathcal{B}}t})$.

ullet We choose T large, au>0 small and u>0 small such that

$$\|U\| \leq \tfrac{1}{3}e^{\kappa T}, \quad \|K_1^c\| \leq \tfrac{1}{3}e^{\kappa T}, \quad \|K_2^c\| \leq \tfrac{1}{3}e^{\kappa T}.$$

For the third estimate we must first observe that

$$W_{\tau} *_{\tau} \mathcal{S}_{\mathcal{L}} : L_m^2 \to L_{m_{p_1}}^{p_1}$$

with $m_{p_1} := \mathcal{M}^{1/p_1-1}$ so that (u_n^2) is weakly compact in L^1 if (u_n) is a bounded sequence of $L_{m_{p_1}}^{p_1}$ as a consequence of the first De Giorgi-GIMV estimate.

From the series of De Giorgi-GIMV estimates, we have

$$K = \Upsilon_{\nu} W_{\tau} *_{\tau} S_{\mathcal{L}} : L_{m}^{2} \to C^{\alpha}(\mathcal{U}_{\nu}), \quad \mathcal{U}_{\nu} \subset\subset \mathcal{O},$$

so that $K \in \mathcal{K}(L_m^2)$.

• We conclude to the exponential rate but without constructive constants (CE3) thanks to Voigt-Greiner-Webb-Bürger theorem

Perspectives (work in progress)

- The same for a variable wall temperature $0 \le \vartheta \in W^{1,\infty}(\partial\Omega)$, $\vartheta^{-1} \in L^{\infty}(\partial\Omega)$
- Constructive constants for the exponential rate of convergence
- L^p convergence for any $1 \le p \le \infty$
- \bullet The same for a relaxation type equation (a kernel term instead of the Δ_{ν} term)