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The Keller-Segel (KS) equation writes

Of = Axf —Vx(fVyxc) in (0,00) x R?
gdic = Ayc+f—ac in (0,00) x R?

time variable t > 0, position variable x € R2?,
mass density of cells f = f(t,x) >0,
chemo-attractant concentration ¢ = c(t,x) € R (or € Ry if € > 0).

We take ¢ = o« = 0 so that

z

—Ve=K =Kxf, IC::VH:i

1
= —
27 |z|?’ T or og |z

For the case €, > 0 we refer to

o Carrapatoso, Egaia, M., Uniqueness and long time assymptotic for
the Keller-Segel equation - Part Il : The parabolic-parabolic case,
work in preparation
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The Keller-Segel (KS) equation writes

OHf = Axf —Vi(fVyxc) in (0,00) x R
edic = ODyc+f—ac in (0,00) x R?
time variable t > 0, position variable x € R?,

mass density of cells f = f(t,x) >0,
chemo-attractant concentration ¢ = c(t,x) € R (or € Ry if £ > 0).

We take ¢ = o« = 0 so that

_ 1 =z 1
—Ve=K:=Kxf, K:ZVRZZW’ n::glog\zl

and the system rewrites as only one nonlinear parabolic equation
Of = A +V(FK) in (0,00) x R?
~ ~—
spread over aggregate

S.Mischler (CEREMADE & IUF) Keller-Segel equation 17th of June, 2013

3/35



Initial datum

The evolution equation is complemented with an initial condition
f(0,.)=fo in R2
We shall always assume that
fo € L(R*) N LL(R?), fylogfh e L'(R?),
and the mass condition (subcritical case)
M = fo(x) dx € (0, 8m).
R2
Notations: Weighted Lebesgue space LP(m), 1 < p < oo, weight m :
LP(m) := {f € Lipe(R?); [[Fllio(my := lIf mlle < o0}

LP = LP((x)k), k > 0, polynomial weight function (x) := (1 + |x|?)!/2

L% (R?) := cone of nonnegative functions of L!(IR?)
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Moments

Mass conservation

Second moment

(2) Ms(t) = /ﬂéz f(t,x)|x|? dx = C1(M) t + May,

with M
My = / fo(x) [x|?dx, Ci(M):=4M (1——).
’ R2 8

Observe that for M > 87 there holds M»(t) < 0 in finite time !!
Higher order moment equation

dM

Vk>2

< K2 My_p < k2 M2k ppr=2/%
> - < <

k
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Free energy = Lyapunov functional

The following free energy-dissipation of the free energy identity (formally)

holds
(3) F(t) + /0 Dx(s)ds = Fp € R,

where the free energy F(t) = F(f(t)), Fo = F(fo) is defined by

1
F = F(f) ::/ flogfdx+/ f K dx,
R2 2 Jr2

and the dissipation of free energy is defined by
D]: = D]:(f) = / f |V(Iog f) + VI_{‘Q dx > 0,
R2

with again k = k% f.
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Definition of weak solution

Definition 1. Blanchet, Dolbeault, Perthame 2006
We say that

0<fel™0,T;Y(R?))nC([0, T); D'(R?), VT e(0,00),

is a weak solution to the Keller-Segel equation associated to the initial
condition fy whenever f satisfies (1), (2) and

(3)  F(t)+ /Otpf(s) ds < Fo Vt>0,

as well as the Keller-Segel equation in the distributional sense, namely

/ fo(x) (0, x) dx—/ /RQf(t x) { (Vi(log f) + K) - chp—atcp}dxdt

for any T > 0 and ¢ € C3([0, T) x R?).
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Existence and uniqueness of weak solution

Theorem 2. (Existence) ’

For any initial datum f there exists at least one weak solution

o Blanchet-Dolbeault-Perthame (Electron. JDE 2006)

Theorem 3. (Uniqueness) ’

For any initial datum fy there exists at most one weak solution.

> Use a trick picked up from the analysis of the two-dimensional
Navier-Stokes equation in vortex formulation

o Ben-Artzi (ARMA 1994), Brezis (ARMA 1994)
e Fournier, Hauray, M. (ArXiv 2012)

> Uniqueness under the additional assumption f, € L>(RR?)
e Carrillo, Lisini, Mainini (ArXiv 2012)

> Uniqueness of “"Maximal free energy solutions” when M > 8.
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Self-similar variables

Introduce the rescaled functions g
g(t,x) := R(t)2f(log R(t), R(t)"x), R(t) := (14 2t)'/2.
It is a solution to the rescaled KS equation

og=Ng+V(gx—gKxg) in (0,00) x R?

@ Mass is conserved, My moment is bounded unifomly in time
@ Modified free energy - dissipation of free energy identity

(3" ES = —D¢ = Lyapunov functional

with
1 2, 1
& = /g(1+|ogg) /gX\ /gﬁ*g
‘ 2
De = /gIV(Iogg ++ K+ g)?
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Three stationary problems

We look for

G=GueZy:={gecll; Mo(g) =M, £(g) < oo}
such that
Problem 1. G is a solution to the stationary KS PDE

AG+V(Gx+GK*G)=0 in R2
Problem 2. G is a solution to the minimisation problem
E(G) = min &£
(6) = min £(g),

Problem 3. G makes vanish the rescaled dissipiation of the free energy:

De(G) =0.
For a smooth and positive function G

Pbl < Pb3 <« Pb2
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Long time behaviour

Theorem 4. (self-similar problem)

e J! Gy stationnary solution (PDE, minimisation, vanishing), it satisfies
Gl COO(R2) and e—(l—&-z—:)|x|2/2—&-C1,E < Gy < e—(l—s)\x|2/2+C27€

e Y fy there holds ||g(t) — Gml[;r — O without rate as t — oo;

o Vfy € L®(G,,) there holds ||g(t) — Guml|/x < Cr et

@ Blanchet, Dolbeault, Perthame (Electron. JDE 2006)
Biler, Karch, Laurencgot, Nadzieja (M2AS 2006)
Blanchet, Dolbeault, Escobedo, Fernandez (JMAA 2010)
Calvez, Carrillo (Proc. Amer. Math. Soc. 2012)
Campos, Dolbeault (arXiv 2012)

Theorem 5. (Universal and optimal self-similar behaviour)

If moreover Ma4(fy) < oo, there holds ||g(t) — Gml|;4/3 < Cr et

@ Similar result and method for the homogeneous Boltzmann equation
by Mouhot (CMP 2006)
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Estimates

@ A priori estimates
= wellknown, since Jager, Luckhaus (TAMS 1992),
Banchet, Dolbeault, Perthame (Electron. JDE 2006)

@ A posteriori estimates
= renormalization argument “a la DiPerna-Lions”

@ Optimal estimates near t = 0
=- Smoothing effect thanks to nonlinear ode argument “a la Nash”
o Uniform in time estimates

= in self-similar variables
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Estimates

Theorem 6. (A posterioi estimates)

Any weak solution f is smooth for positive time, namely
f € C*((0,00) x R?), satisfies the free energy identity (3) and

t1/4||f(ta -)HL4/3 —0 ast—0.

Moreover, the rescaled solution g satisfies

sup M (g(t)) < max((k — 1)*/2M, My (%)) Yk > 2,
t>0

as well as

sup [lg(t, w2 <C Ve>0,
t>e

for some explicit constant C which depends on €, M, Fo and Ma.
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Three mains results

Theorem 6: A posterioi accurate estimates
= Theorem 3: Uniqueness

—> Theorem 5: Universal and optimal self-similar behaviour
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Logarithmic HLS inequality and Entropy bound (a priori) Known
The Logarithmic Hardy-Littlewood Sobolev inequality: V£ >0
£(x) log f(x dx—i——// y) log |x — y| dxdy > Go(M),
R? R2 X R2
(Beckner, Carlen, Loss) implies that for subcritical mass M < 87

H = H(f) = /flogf < G(M)F + G(M).

Together with the classical bound

1
HT =HT(F /flogf)+<7-l+ M, + Cs(M),

we get
HH(F(1)) + Ma(F(2)) + Co(M) /Otpf(f(s)) ds
< G(M) Fo + ZMg(t) + C(M) + Go(M),
< C(M,Ho, Map, T).
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Logarithmic HLS inequality and Entropy bound (a priori) Known
The Logarithmic Hardy-Littlewood Sobolev inequality: V£ >0
f(x)log f(x dX—i——// y) log |x — y| dxdy > G(M),
R2 R2 X R2
(Beckner, Carlen, Loss) implies that for subcritical mass M < 8, there holds
M= H(F) = /flogf < (M) F + Cy(M).
Together with the classical bound

1
HY = HT(f) :/1"(Iogf)Jr §H+ZM2+ Gs(M),

we get
¢ HT(F), My(f) € L>=(0, T), Dx(f) e L*(0,T)
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Fisher information bound (a priori) Known

We have
5/(f) <Dr+C(MHY) = I(f)el*0,T).

In order to prove the first inequality, we write
Dx(f) :/f|V(Iogf—|—R)|2 > /f\VIogf|2+2/Vf~VR: I(f)—2/f2
Using the Cauchy-Schwarz inequality, the Gagliardo-Niremberg type inequality

Vpe[l,00), |[fllwme) < CoMYPI(F) P
with p = 3, and the elementary inequality f2 < 2(f A A)? + 2(f — A)Z, we have

/f2 < 2AM+2/f21fZA

1/2 1/2
< 2AM+2(/flf2A) (/f3)
HE(O)Y? 30,0 1
< 2AM 42— P MV2I(F) < C(M,HT) + S I(f
= + (|ogA)1/2 3 ()— ( 77'[ )+4()
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L? bound (a priori and formal) Known

We easily compute

d

f2dx+2/ |fo\2dx:/ 3 dx < 8MA2+8/ (f — A)3 dx
dt Jre R2 R? R2
Thanks to the Gagliardo-Niremberg type inequality

Vpe2,00) |l < ClIFIHED W (£P/2)|2EH

with p = 2, we deduce

d
f2dx+2/ VofPdx < Cat8C|(F =AYl [VFIR
dt R2 R2
< C(MHY) +|IVFIE.
We conclude with
J :
— f2dx+/ V. fPdx < C(M,HT)
dt,]RZ _R2

< C(M, Moo, Ho, T) = f € L32(L?)
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More estimates (from Fisher bound) and renomalization New
From the Gagliardo-Niremberg type inequality

Vpell,00), |flem) < CMYPI(F)1P,
Vge(l,2), [VFlame) < CqMYI12(F)3/271/a
and the bound /(f) € L}(0, T), we get
f e LP/(P=1(0, T; LP(R?)), VY p e (1,00),
K e P/(P=1)(0, T; 12P/(2=P)(R?)), V pe(1,2),
VK e LP/(P=1(0, T; LP(R?)), V¥ p € (2,0).
As a consequence,
Oef — D f = K - Vif + 2,
with £2,|VK|f € L1((0, T) x R?)

= weak solutions are renormalized solutions (thanks to DiPerna-Lions
renormalization Theorem)
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L? bound (a posteriori) New

We have

OeB(F) — DxB(F) + B"(F) V|2 = K- V. B(F) + B'(F)F?

and then
& [awe [ aevee < [ e s

for any renormalizing function 3 : R — R convex, piecewise C! and

B(u)l < C(L+u(logu)s), (B'(u)v®—B(u)u)s < C(1+u?) YueR

We choose

Br(u) == if u<K, PBk(u):= ulogu if u>K,

K
log K
and we pass to the limit K — oo.
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Optimal estimate for t — 0 (a posteriori) New

Thanks to Nash inequaliy
Ifllz < CM|VF]2
and the differential inequality

d
SN+ V71, < C(M, My, Ho)
we have for some short time t; € (0, 1]

IF(t)||12. < C/t Yte (0, t).

Interpolating with
HT(F(t) < C Vte(0,t),
we obtain
24 ||f]|as < C(log1/t)"2 -0 as t — 0.
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Uniform in time bound (a posteriori) New

We remark that

Hi(g(t) + %Mz(g(t)) < G(M) E(g(t) + Go(M) < G(M) Eo + Co(M)

and then
I(g) € L*(0,00) + L>(0, c0).

We make the same computation as before and we get

2,9 2 / 2 / 3
a Vi _
It g /‘ g| g = g

d ,
E/g% /|Vg\2+ /g2 < C(M, 1) < C(M. Ho, M)
Moreover, since ||gl;2 € L%(0,00) + L>°(0, 00), we deduce

Ve >0, 3C. sup|g(t)]? <C..
t>e

with C. only depending on e, M, Hq, Mz (or equivalently &, &)
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The mild/Duhamel formulation of the Keller-Segel equation writes

t
F(t) = D + / SIBG(Vi(s) fi(s)) ds, Vi =K,
0

for two solutions f; and f> with same initial datum 7.
The difference F := f, — f; satisfies

F(t) = /Otv - eEIB(Vy(s) F(s)) ds + ... = I + b,

For any t > 0, we define

Zi(t) == sup sY*|fi(s)llperss A(£) = sup s'*[[F(s)] a5

0<s<t 0<s<t

We recall the regularization estimate of the heat equation
C
A
V() < 577 llgll

and the Hardy-Littlewood-Sobolev inequality
[h K gllin < C LAl s llgllers
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We estimate A(T) in the following way:

/4 (8 s

IA

t
¢1/4 / |V - =2 (Va(s) F(s))|| a5 ds
0
t
C
[heat eq regularization] < t1/4/0 =) | Va(s) F(s)l|.1 ds

[HLS inequality]

IN

t
C
1/4
& /0 e sypre 12 IF($)lio ds

1 C du

We deduce
A(T) < sup tY4||h(t)|| o5 + sup Y4 ]| b(t)]| 145
[0,7] [0,7]
1
< (Z(T)+ 2Z(T)) C'A(T) < 5 A(T) for T small enough.
—_———
—0 as T—0

= A(T)=0
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The linearized problem

Define the linearized Keller-Segel operator
Ah = divX(Vh+xh~|— (Kx G)h+ (K x*h)G).

Define the small (strong confinement/space localisation) Hilbert space
X = [2(G~1/?) associated to scalar product

(f,g)x = /RQ fgGtdx, |fl%:=(f,f)x.
Define (the first eigenfunction) hgo := 0Gp/OM and
Xd‘ = {f e X; (f, h()’o)x = O}.

Define the quadratic form (obtained by linearization ofthe free energy &)
Q1[f] ::/ 261 dx—i—/ / f(x) f(y) k(x — y) dxdy,
R2 R2JR?

equivalent (as a norm) to ||f||%.
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Theorem 7. Spectral analysis in the small space X

For any g € XOL which belongs to the domain of A, there holds
(Ng,g) < —Culg]-
Moreover, there exists a* < —1 and C > 0 so that
|e"h—e t Nih—Tgh||x < Ce? t||h—(M1+TMo)h|lx  Vt>0, Vhe X,

where MMy is the (orthogonal) projection on Vect(hgo) and Iy is the (or-
thogonal) projection on Vect(hy 1, h12) where hy;j := 0y, G.

i

e Campos, Dolbeault (arXiv 2012)

> Nice calssical spectral analysis for self-adjoint operator (Schrodinger
type operator, schwarz symmetrization, concentration-compactness,
Rayleigh quotient)

S.Mischler (CEREMADE & IUF) Keller-Segel equation 17th of June, 2013 31/35



Define the large (weaker confinement) Banach X := Li/3 with k > 3/2 and
a(k):==1/2—k .

Proposition 8. (Spectral analysis in the large space X))
For any a > 3 := max(a*, a(k)), there exists a constant C , such that
leh — et MNih — Moh|lx < Ce® ||h—MNih—Tohllx Vt>0, Vhe X,

where again
My = projection on eigenspace Vect(hg ) associated to eigenvalue 0
Iy = projection on eigenspace Vect(hy 1, h12) associated to eigenvalue —1

> Split A=A+ B, Ag := Nxr g, B is dissipative, ASz : X — X.
Apply the extension of functional space for the spectral analysis developed in

@ Gualdani, M., Mouhot, Factorization of Non-Symmetric Operators and
Exponential H-Theorem,

as well as Theorem 7 by Campos-Dolbeault on the spectral analysis of et in the
small space X.
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Nonlinear stability

The function h:= g — G satisfies the NL equation
Oth = Ah+ div(h IC + h).
We introduce the splitting (in order to get the optimal rate)
h=ho+h1+hy, hio=h1+h
with
ho :=Tloh =ag hgo, h1 =Tl1h,
so that the evolution of h; and hy are given by

Othy = —h1 + Q1, Q1 :=My[div(h K x h)]

and
Othy = Aha + Qo, Qo 1= M[div(h K x h)].
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Thanks to the mass conservation, we have

0:/h2a0+/h12

llhollx = || [[hoollx < C [[h2l|x

Multiplying the equation on hy by hf = hy |hy|~1/3 ||h1||2‘{/33 we have

so that

d . .
E||h1||it/3 = 2(—hy + Ny[div(h K * h)], h})

IN

=2 [3e/s + C ||l jass [[div(h K Ml o72-
k

I
By an interpolation argument, we have

Ildiv(hICx h)llaa < C (Ihllwae + [1Ally) = ||h||14/3

bounded for t>¢

with o :=16/121 > 0.
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We define an equivalent norm to || - || x by

I i=77||f|\3c+/0 le™ e™ f||% dr.
For an appropriate choice of n > 0
d
I\||ef"f|\|2 < =2l Vt>0, VFfeR(—MNy—M).
With the notations S, := €™ e” and Q, := Mydiv(h K * h), we have

d [e'e]
Gl = ks A+ [ (S o) S, AR dr

(b, Q) + / (S-ho)*, Qa) 7
0

< =2||ml?+C ||h2|\L4/2 || div(h K * h)HL4/2

All together, the quantity
u(t) = [|h]|% + [ h2]|?
satisfies the differential inequality
v < —2u+ C|h|*T™ on (0,00)
and we easilly conclude recalling that h = hy + hy + hy that u < C e 2t
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