Uniqueness and long time assymptotic for the Keller-Segel equation The parabolic-elliptic case

S. Mischler

(Paris-Dauphine & IUF)

In collaboration with G. Egaña (La Habana, Cuba)

Conference Kinetic Theory June 17-21, 2013, Cambridge - UK

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof: uniqueness
- Sketch of the proof : long time behaviour

The Keller-Segel (KS) equation writes

$$\begin{array}{rcl} \partial_t f & = & \Delta_x f - \nabla_x (f \, \nabla_x c) & \text{in} \quad (0, \infty) \times \mathbb{R}^2 \\ \varepsilon \partial_t c & = & \Delta_x c + f - \alpha c & \text{in} \quad (0, \infty) \times \mathbb{R}^2 \end{array}$$

time variable $t \geq 0$, position variable $x \in \mathbb{R}^2$, mass density of cells $f = f(t, x) \geq 0$, chemo-attractant concentration $c = c(t, x) \in \mathbb{R}$ (or $\in \mathbb{R}_+$ if $\varepsilon > 0$).

We take $\varepsilon = \alpha = 0$ so that

$$-\nabla c = \bar{\mathcal{K}} := \mathcal{K} * f, \quad \mathcal{K} := \nabla \kappa = \frac{1}{2\pi} \frac{z}{|z|^2}, \quad \kappa := \frac{1}{2\pi} \log|z|$$

For the case $\varepsilon, \alpha > 0$ we refer to

• Carrapatoso, Egaña, M., Uniqueness and long time assymptotic for the Keller-Segel equation - Part II: The parabolic-parabolic case, work in preparation

The Keller-Segel (KS) equation writes

$$\partial_t f = \Delta_x f - \nabla_x (f \nabla_x c) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2$$

$$\varepsilon \partial_t c = \Delta_x c + f - \alpha c \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2$$

time variable $t \geq 0$, position variable $x \in \mathbb{R}^2$, mass density of cells $f = f(t, x) \geq 0$, chemo-attractant concentration $c = c(t, x) \in \mathbb{R}$ (or $\in \mathbb{R}_+$ if $\varepsilon > 0$).

We take $\varepsilon = \alpha = 0$ so that

$$-\nabla c = \bar{\mathcal{K}} := \mathcal{K} * f, \quad \mathcal{K} := \nabla \kappa = \frac{1}{2\pi} \frac{z}{|z|^2}, \quad \kappa := \frac{1}{2\pi} \log|z|$$

and the system rewrites as only one nonlinear parabolic equation

$$\partial_t f = \underbrace{\Delta_{\mathsf{x}} f}_{\mathit{spread over}} + \underbrace{\nabla_{\mathsf{x}} (f \, \bar{\mathcal{K}})}_{\mathit{aggregate}} \quad \mathsf{in} \quad (0, \infty) \times \mathbb{R}^2$$

Initial datum

The evolution equation is complemented with an initial condition

$$f(0,.)=f_0$$
 in \mathbb{R}^2 .

We shall always assume that

$$f_0 \in L^1_2(\mathbb{R}^2) \cap L^1_+(\mathbb{R}^2), \quad f_0 \log f_0 \in L^1(\mathbb{R}^2),$$

and the mass condition (subcritical case)

$$M:=\int_{\mathbb{R}^2}f_0(x)\,dx\in(0,8\pi).$$

Notations: Weighted Lebesgue space $L^p(m)$, $1 \le p \le \infty$, weight m:

$$L^p(m) := \{ f \in L^1_{loc}(\mathbb{R}^2); \ \|f\|_{L^p(m)} := \|f \ m\|_{L^p} < \infty \}.$$

 $L_k^p = L^p(\langle x \rangle^k)$, $k \ge 0$, polynomial weight function $\langle x \rangle := (1 + |x|^2)^{1/2}$ $L_+^1(\mathbb{R}^2) :=$ cone of nonnegative functions of $L^1(\mathbb{R}^2)$

Moments

Mass conservation

(1)
$$M(t) := \int_{\mathbb{R}^2} f(t, x) dx = \int_{\mathbb{R}^2} f_0(x) dx = M,$$

Second moment

(2)
$$M_2(t) := \int_{\mathbb{R}^2} f(t,x) |x|^2 dx = C_1(M) t + M_{2,0},$$

with

$$M_{2,0} := \int_{\mathbb{R}^2} f_0(x) |x|^2 dx, \quad C_1(M) := 4M \left(1 - \frac{M}{8\pi}\right).$$

Observe that for $M>8\pi$ there holds $M_2(t)<0$ in finite time !!

Higher order moment equation

$$\forall k \geq 2$$
 $\frac{dM_k}{dt} \leq k^2 M_{k-2} \leq k^2 M^{2/k} M_k^{1-2/k}$

Free energy = Lyapunov functional

The following free energy-dissipation of the free energy identity (formally) holds

(3)
$$\mathcal{F}(t) + \int_0^t \mathcal{D}_{\mathcal{F}}(s) ds = \mathcal{F}_0 \in \mathbb{R},$$

where the free energy $\mathcal{F}(t) = \mathcal{F}(f(t))$, $\mathcal{F}_0 = \mathcal{F}(f_0)$ is defined by

$$\mathcal{F} = \mathcal{F}(f) := \int_{\mathbb{R}^2} f \log f dx + \frac{1}{2} \int_{\mathbb{R}^2} f \, \bar{\kappa} \, dx,$$

and the dissipation of free energy is defined by

$$\mathcal{D}_{\mathcal{F}} = \mathcal{D}_{\mathcal{F}}(f) := \int_{\mathbb{R}^2} f |\nabla (\log f) + \nabla \bar{\kappa}|^2 dx \ge 0,$$

with again $\bar{\kappa} = \kappa * f$.

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof : uniqueness
- Sketch of the proof : long time behaviour

Definition of weak solution

Definition 1. Blanchet, Dolbeault, Perthame 2006

We say that

$$0 \leq f \in L^{\infty}(0, T; L^{1}(\mathbb{R}^{2})) \cap C([0, T); \mathcal{D}'(\mathbb{R}^{2})), \quad \forall \ T \in (0, \infty),$$

is a weak solution to the Keller-Segel equation associated to the initial condition f_0 whenever f satisfies (1), (2) and

(3')
$$\mathcal{F}(t) + \int_0^t \mathcal{D}_{\mathcal{F}}(s) ds \leq \mathcal{F}_0 \quad \forall t > 0,$$

as well as the Keller-Segel equation in the distributional sense, namely

$$\int_{\mathbb{R}^2} f_0(x) \, \varphi(0,x) \, dx = \int_0^T \int_{\mathbb{R}^2} f(t,x) \left\{ (\nabla_x (\log f) + \bar{\mathcal{K}}) \cdot \nabla_x \varphi - \partial_t \varphi \right\} \, dx dt$$

for any T > 0 and $\varphi \in C_c^2([0, T) \times \mathbb{R}^2)$.

Existence and uniqueness of weak solution

Theorem 2. (Existence)

For any initial datum f_0 there exists at least one weak solution

Blanchet-Dolbeault-Perthame (Electron. JDE 2006)

Theorem 3. (Uniqueness)

For any initial datum f_0 there exists at most one weak solution.

- \rhd Use a trick picked up from the analysis of the two-dimensional Navier-Stokes equation in vortex formulation
 - Ben-Artzi (ARMA 1994), Brezis (ARMA 1994)
 - Fournier, Hauray, M. (ArXiv 2012)
- ightharpoonup Uniqueness under the additional assumption $f_0 \in L^\infty(\mathbb{R}^2)$
 - Carrillo, Lisini, Mainini (ArXiv 2012)
- \triangleright Uniqueness of "Maximal free energy solutions" when $M \ge 8\pi$.

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof : uniqueness
- Sketch of the proof : long time behaviour

Self-similar variables

Introduce the rescaled functions g

$$g(t,x) := R(t)^{-2} f(\log R(t), R(t)^{-1}x), \quad R(t) := (1+2t)^{1/2}.$$

It is a solution to the rescaled KS equation

$$\partial_t g = \Delta g + \nabla (\underline{g} \, x - g \, \mathcal{K} * g) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2$$

- Mass is conserved, M_2 moment is bounded unifomly in time
- Modified free energy dissipation of free energy identity

(3")
$$\frac{d}{dt}\mathcal{E} = -\mathcal{D}_{\mathcal{E}} \Rightarrow \text{Lyapunov functional}$$

with

$$\mathcal{E} := \int g(1 + \log g) + \frac{1}{2} \int g|x|^2 + \frac{1}{2} \int g \kappa * g$$

$$\mathcal{D}_{\mathcal{E}} := \int g|\nabla(\log g + \frac{|x|^2}{2} + \kappa * g)|^2$$

Three stationary problems

We look for

$$G = G_M \in \mathcal{Z}_M := \{ g \in L^1_+; \ M_0(g) = M, \ \mathcal{E}(g) < \infty \}$$

such that

Problem 1. G is a solution to the stationary KS PDE

$$\Delta G + \nabla (G x + G \mathcal{K} * G) = 0$$
 in \mathbb{R}^2

Problem 2. G is a solution to the minimisation problem

$$\mathcal{E}(G) = \min_{g \in \mathcal{Z}_M} \mathcal{E}(g),$$

Problem 3. G makes vanish the rescaled dissipiation of the free energy:

$$\mathcal{D}_{\mathcal{E}}(G)=0.$$

For a smooth and positive function G

$$Pb 1 \Leftrightarrow Pb 3 \Leftarrow Pb 2$$

Long time behaviour

Theorem 4. (self-similar problem)

- \exists ! G_M stationnary solution (PDE, minimisation, vanishing), it satisfies $G_M \in C^{\infty}(\mathbb{R}^2)$ and $e^{-(1+\varepsilon)|x|^2/2+C_{1,\varepsilon}} \leq G_M \leq e^{-(1-\varepsilon)|x|^2/2+C_{2,\varepsilon}}$
- \forall f_0 there holds $||g(t) G_M||_{L^1} \to 0$ without rate as $t \to \infty$;
- $\forall f_0 \in L^{\infty}(G_{M'}^{-1})$ there holds $||g(t) G_M||_{L^1} \leq C_{f_0} e^{-t}$.
 - Blanchet, Dolbeault, Perthame (Electron. JDE 2006)
 - Biler, Karch, Laurençot, Nadzieja (M2AS 2006)
 - Blanchet, Dolbeault, Escobedo, Fernández (JMAA 2010)
 - Calvez, Carrillo (Proc. Amer. Math. Soc. 2012)
 - Campos, Dolbeault (arXiv 2012)

Theorem 5. (Universal and optimal self-similar behaviour)

If moreover $M_4(f_0) < \infty$, there holds $||g(t) - G_M||_{L^{4/3}} \le C_{f_0} e^{-t}$.

 Similar result and method for the homogeneous Boltzmann equation by Mouhot (CMP 2006)

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof: uniqueness
- Sketch of the proof : long time behaviour

Estimates

- A priori estimates
 - ⇒ wellknown, since Jäger, Luckhaus (TAMS 1992), Banchet, Dolbeault, Perthame (Electron. JDE 2006)
- A posteriori estimates
 - ⇒ renormalization argument "à la DiPerna-Lions"
- Optimal estimates near t = 0
 - \Rightarrow Smoothing effect thanks to nonlinear ode argument "à la Nash"
- Uniform in time estimates
 - ⇒ in self-similar variables

Theorem 6. (A posterioi estimates)

Any weak solution f is smooth for positive time, namely $f \in C^{\infty}((0,\infty) \times \mathbb{R}^2)$, satisfies the free energy identity (3) and

$$t^{1/4} \| f(t,.) \|_{L^{4/3}} \to 0 \quad \text{as } t \to 0.$$

Moreover, the rescaled solution g satisfies

$$\sup_{t\geq 0} M_k(g(t)) \leq \max((k-1)^{k/2} M, M_k(f_0)) \quad \forall \ k\geq 2,$$

as well as

$$\sup_{t>\varepsilon} \|g(t,.)\|_{W^{2,\infty}} \leq C \quad \forall \, \varepsilon > 0,$$

for some explicit constant C which depends on ε , M, \mathcal{F}_0 and $M_{2,0}$.

Three mains results

Theorem 6: A posterioi accurate estimates

⇒ Theorem 3: Uniqueness

⇒ Theorem 5: Universal and optimal self-similar behaviour

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof : uniqueness
- Sketch of the proof : long time behaviour

Logarithmic HLS inequality and Entropy bound (a priori) Known

The Logarithmic Hardy-Littlewood Sobolev inequality: $\forall f \geq 0$

$$\int_{\mathbb{R}^2} f(x) \log f(x) dx + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| dx dy \ge C_2(M),$$

(Beckner, Carlen, Loss) implies that for subcritical mass $M < 8\pi$:

$$\mathcal{H} := \mathcal{H}(f) = \int f \log f \leq C_3(M) \mathcal{F} + C_4(M).$$

Together with the classical bound

$$\mathcal{H}^+:=\mathcal{H}^+(f)=\int f(\log f)_+\leq \mathcal{H}+rac{1}{4}M_2+C_5(M),$$

we get

$$\mathcal{H}^+(f(t)) + M_2(f(t)) + C_3(M) \int_0^t \mathcal{D}_{\mathcal{F}}(f(s)) ds$$

 $\leq C_3(M) \mathcal{F}_0 + \frac{5}{4} M_2(t) + C_4(M) + C_5(M),$
 $\leq C(M, \mathcal{H}_0, M_{2,0}, T).$

Logarithmic HLS inequality and Entropy bound (a priori) Known

The Logarithmic Hardy-Littlewood Sobolev inequality: $\forall f \geq 0$

$$\int_{\mathbb{R}^2} f(x) \log f(x) dx + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| dx dy \ge C_2(M),$$

(Beckner, Carlen, Loss) implies that for subcritical mass $M < 8\pi$, there holds

$$\mathcal{H} := \mathcal{H}(f) = \int f \log f \leq C_3(M) \mathcal{F} + C_4(M).$$

Together with the classical bound

$$\mathcal{H}^+:=\mathcal{H}^+(f)=\int f(\log f)_+\leq \mathcal{H}+\frac{1}{4}M_2+C_5(M),$$

we get

$$\mathcal{H}^+(f), M_2(f) \in L^\infty(0, T), \quad \mathcal{D}_{\mathcal{F}}(f) \in L^1(0, T)$$

Fisher information bound (a priori) Known

We have

$$\frac{1}{2}I(f) \leq \mathcal{D}_{\mathcal{F}} + C(M, \mathcal{H}^+) \quad \Rightarrow \quad I(f) \in L^1(0, T).$$

In order to prove the first inequality, we write

$$\mathcal{D}_{\mathcal{F}}(f) = \int f |\nabla (\log f + \bar{\kappa})|^2 \ge \int f |\nabla \log f|^2 + 2 \int \nabla f \cdot \nabla \bar{\kappa} = I(f) - 2 \int f^2$$

Using the Cauchy-Schwarz inequality, the Gagliardo-Niremberg type inequality

$$\forall p \in [1, \infty), \quad \|f\|_{L^p(\mathbb{R}^2)} \le C_p M^{1/p} I(f)^{1-1/p}$$

with p=3, and the elementary inequality $f^2 \leq 2(f \wedge A)^2 + 2(f-A)_+^2$, we have

$$\int f^{2} \leq 2AM + 2 \int f^{2} \mathbf{1}_{f \geq A}
\leq 2AM + 2 \left(\int f \mathbf{1}_{f \geq A} \right)^{1/2} \left(\int f^{3} \right)^{1/2}
\leq 2AM + 2 \frac{\mathcal{H}^{+}(f)^{1/2}}{(\log A)^{1/2}} C_{3}^{3/2} M^{1/2} I(f) \leq C(M, \mathcal{H}^{+}) + \frac{1}{4} I(f)$$

L² bound (a priori and formal) Known

We easily compute

$$\frac{d}{dt} \int_{\mathbb{R}^2} f^2 \, dx + 2 \int_{\mathbb{R}^2} |\nabla_x f|^2 \, dx = \int_{\mathbb{R}^2} f^3 \, dx \le 8 \, M \, A^2 + 8 \, \int_{\mathbb{R}^2} (f - A)_+^3 \, dx$$

Thanks to the Gagliardo-Niremberg type inequality

$$\forall \ p \in [2, \infty) \quad \|f\|_{L^{p+1}(\mathbb{R}^2)} \leq C_p \|f\|_{L^1}^{1/(p+1)} \|\nabla(f^{p/2})\|_{L^2}^{2/(p+1)}$$

with p = 2, we deduce

$$\frac{d}{dt} \int_{\mathbb{R}^2} f^2 dx + 2 \int_{\mathbb{R}^2} |\nabla_x f|^2 dx \leq C_A + 8C_2^3 \|(f - A)_+\|_{L^1} \|\nabla f\|_{L^2}^2$$

$$\leq C(M, \mathcal{H}^+) + \|\nabla f\|_{L^2}^2.$$

We conclude with

$$\frac{d}{dt} \int_{\mathbb{R}^2} f^2 dx + \int_{\mathbb{R}^2} |\nabla_x f|^2 dx \leq C(M, \mathcal{H}^+)$$

$$\leq C(M, M_{2,0}, \mathcal{H}_0, T) \Rightarrow f \in L^{\infty}_{loc}(L^2)$$

More estimates (from Fisher bound) and renomalization New

From the Gagliardo-Niremberg type inequality

$$\forall p \in [1, \infty), \quad \|f\|_{L^p(\mathbb{R}^2)} \le C_p \, M^{1/p} \, I(f)^{1-1/p},$$

$$\forall q \in [1, 2), \quad \|\nabla f\|_{L^q(\mathbb{R}^2)} \le C_q \, M^{1/q-1/2} \, I(f)^{3/2-1/q}$$

and the bound $I(f) \in L^1(0, T)$, we get

$$f \in L^{p/(p-1)}(0, T; L^p(\mathbb{R}^2)), \quad \forall \ p \in (1, \infty),$$

 $\bar{\mathcal{K}} \in L^{p/(p-1)}(0, T; L^{2p/(2-p)}(\mathbb{R}^2)), \quad \forall \ p \in (1, 2),$
 $\nabla_x \bar{\mathcal{K}} \in L^{p/(p-1)}(0, T; L^p(\mathbb{R}^2)), \quad \forall \ p \in (2, \infty).$

As a consequence,

$$\partial_t f - \Delta_x f = \bar{\mathcal{K}} \cdot \nabla_x f + f^2$$

with
$$f^2, |\nabla_x \bar{\mathcal{K}}| f \in L^1((0, T) \times \mathbb{R}^2)$$

 \Rightarrow weak solutions are renormalized solutions (thanks to DiPerna-Lions renormalization Theorem)

We have

$$\partial_t \beta(f) - \Delta_x \beta(f) + \beta''(f) |\nabla f|^2 = \bar{\mathcal{K}} \cdot \nabla_x \beta(f) + \beta'(f) f^2$$

and then

$$\frac{d}{dt} \int_{\mathbb{R}^2} \beta(f) \, dx + \int_{\mathbb{R}^2} \beta''(f) \, |\nabla f|^2 \le \int_{\mathbb{R}^2} [\beta'(f) f^2 - f \, \beta(f)]$$

for any renormalizing function $eta:\mathbb{R} o\mathbb{R}$ convex, piecewise C^1 and

$$|\beta(u)| \leq C (1+u(\log u)_+), \quad (\beta'(u) u^2 - \beta(u) u)_+ \leq C (1+u^2) \quad \forall u \in \mathbb{R}.$$

We choose

$$\beta_K(u) := u^2 \text{ if } u \leq K, \quad \beta_K(u) := \frac{K}{\log K} u \log u \text{ if } u \geq K,$$

and we pass to the limit $K \to \infty$.

Optimal estimate for $t \to 0$ (a posteriori) New

Thanks to Nash inequaliy

$$||f||_{L^2}^2 \leq C M ||\nabla f||_{L^2}$$

and the differential inequality

$$\frac{d}{dt}\|f\|_{L^{2}}^{2}+\|\nabla f\|_{L^{2}}^{2}\leq C(M,M_{2,0},\mathcal{H}_{0})$$

we have for some short time $t_0 \in (0,1]$

$$||f(t)||_{L^2}^2 \leq C/t \quad \forall t \in (0, t_0).$$

Interpolating with

$$\mathcal{H}^+(f(t)) \leq C \quad \forall \ t \in (0, t_0),$$

we obtain

$$t^{1/4} \|f\|_{L^{4/3}} \le C (\log 1/t)^{-1/2} \to 0 \text{ as } t \to 0.$$

Uniform in time bound (a posteriori) New

We remark that

$$\mathcal{H}^+(g(t)) + \frac{1}{4}M_2(g(t)) \le C_3(M)\,\mathcal{E}(g(t)) + C_6(M) \le C_3(M)\,\mathcal{E}_0 + C_6(M)$$

and then

$$I(g)\in L^1(0,\infty)+L^\infty(0,\infty).$$

We make the same computation as before and we get

$$\frac{d}{dt} \int g^2 + 2 \int |\nabla g|^2 + \int g^2 = \int g^3$$

$$\frac{d}{dt}\int g^2 + \int |\nabla g|^2 + \int g^2 \leq C(M, \mathcal{H}^+) \leq C(M, \mathcal{H}_0, M_{2,0})$$

Moreover, since $||g||_{L^2} \in L^2(0,\infty) + L^\infty(0,\infty)$, we deduce

$$\forall \, \varepsilon > 0, \, \, \exists \, \mathcal{C}_{\varepsilon} \quad \sup_{t > \varepsilon} \|g(t)\|_{L^{2}}^{2} \leq \mathcal{C}_{\varepsilon}.$$

with C_{ε} only depending on ε , M, \mathcal{H}_{0} , $M_{2.0}$ (or equivalently ε , \mathcal{E}_{0})

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- 5 Sketch of the proof : estimates
- 6 Sketch of the proof : uniqueness
- Sketch of the proof : long time behaviour

The mild/Duhamel formulation of the Keller-Segel equation writes

$$f_i(t) = e^{t\Delta} f_0 + \int_0^t e^{(t-s)\Delta} \nabla(V_i(s) f_i(s)) ds, \quad V_i = \mathcal{K} * f_i,$$

for two solutions f_1 and f_2 with same initial datum f_0 .

The difference $F := f_2 - f_1$ satisfies

$$F(t) = \int_0^t \nabla \cdot e^{(t-s)\Delta}(V_2(s) F(s)) ds + ... = I_1 + I_2,$$

For any t > 0, we define

$$Z_i(t) := \sup_{0 < s \le t} s^{1/4} \, \|f_i(s)\|_{L^{4/3}}, \quad \Delta(t) := \sup_{0 < s \le t} s^{1/4} \, \|F(s)\|_{L^{4/3}}.$$

We recall the regularization estimate of the heat equation

$$\|\nabla(e^{t\Delta}g)\|_{L^{4/3}} \leq \frac{C}{t^{3/4}} \|g\|_{L^1}$$

and the Hardy-Littlewood-Sobolev inequality

$$||h \mathcal{K} * g||_{L^1} \le C ||h||_{L^{4/3}} ||g||_{L^{4/3}}$$

We estimate $\Delta(T)$ in the following way:

$$\begin{array}{lcl} t^{1/4} \, \| \mathit{I}_{1}(t) \|_{\mathit{L}^{4/3}} & \leq & t^{1/4} \int_{0}^{t} \| \nabla \cdot e^{(t-s)\Delta}(\mathit{V}_{2}(s) \, \mathit{F}(s)) \|_{\mathit{L}^{4/3}} \, \mathit{ds} \\ \\ \text{[heat eq regularization]} & \leq & t^{1/4} \int_{0}^{t} \frac{\mathit{C}}{(t-s)^{3/4}} \, \| \mathit{V}_{2}(s) \, \mathit{F}(s) \|_{\mathit{L}^{1}} \, \mathit{ds} \\ \\ \text{[HLS inequality]} & \leq & t^{1/4} \int_{0}^{t} \frac{\mathit{C}}{(t-s)^{3/4}} \, \| \mathit{f}_{2}(s) \|_{\mathit{L}^{4/3}} \, \| \mathit{F}(s) \|_{\mathit{L}^{4/3}} \, \mathit{ds} \\ \\ & \leq & \int_{0}^{1} \frac{\mathit{C}}{(1-u)^{3/4}} \, \frac{\mathit{du}}{\mathit{u}^{1/2}} \, \mathit{Z}_{2}(t) \, \Delta(t), \end{array}$$

We deduce

$$\begin{array}{lcl} \Delta(T) & \leq & \sup_{[0,T]} t^{1/4} \, \|\mathit{I}_{1}(t)\|_{\mathit{L}^{4/3}} + \sup_{[0,T]} t^{1/4} \, \|\mathit{I}_{2}(t)\|_{\mathit{L}^{4/3}} \\ \\ & \leq & \underbrace{\left(\mathit{Z}_{1}(T) + \mathit{Z}_{2}(T)\right)}_{\to 0 \, \text{ as } T \to 0} \, \mathit{C}' \, \Delta(T) \leq \frac{1}{2} \, \Delta(T) \quad \text{for } T \text{ small enough.} \end{array}$$

$$\Rightarrow \Delta(T) \equiv 0$$

Plan

- Introduction
- Wellposedness
- 3 Long time behaviour
- 4 Estimates
- Sketch of the proof : estimates
- 6 Sketch of the proof : uniqueness
- Sketch of the proof : long time behaviour

The linearized problem

Define the linearized Keller-Segel operator

$$\Lambda h := \operatorname{div}_{x} (\nabla h + x h + (\mathcal{K} * G) h + (\mathcal{K} * h) G).$$

Define the small (strong confinement/space localisation) Hilbert space $X = L^2(G^{-1/2})$ associated to scalar product

$$(f,g)_X := \int_{\mathbb{R}^2} f \, \bar{g} \, G^{-1} \, dx, \quad \|f\|_X^2 := (f,f)_X.$$

Define (the first eigenfunction) $h_{0,0} := \partial G_M / \partial M$ and

$$X_0^{\perp} := \{ f \in X; \ (f, h_{0,0})_X = 0 \}.$$

Define the quadratic form (obtained by linearization of the free energy \mathcal{E})

$$Q_1[f] := \int_{\mathbb{R}^2} f^2 G^{-1} dx + \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} f(x) f(y) \kappa(x - y) dx dy,$$

equivalent (as a norm) to $||f||_X^2$.

Theorem 7. Spectral analysis in the small space X

For any $g \in X_0^{\perp}$ which belongs to the domain of Λ , there holds

$$\langle \Lambda g, g \rangle \leq -Q_1[g].$$

Moreover, there exists $a^* < -1$ and C > 0 so that

$$\|e^{t\Lambda}h - e^{-t}\Pi_1h - \Pi_0h\|_X \le C e^{a^*t}\|h - (\Pi_1 + \Pi_0)h\|_X \qquad \forall t \ge 0, \ \forall h \in X,$$

where Π_0 is the (orthogonal) projection on $\text{Vect}(h_{0,0})$ and Π_1 is the (orthogonal) projection on $\text{Vect}(h_{1,1},h_{1,2})$ where $h_{1,i}:=\partial_{x_i}G$.

• Campos, Dolbeault (arXiv 2012)

 Nice calssical spectral analysis for self-adjoint operator (Schrödinger type operator, schwarz symmetrization, concentration-compactness, Rayleigh quotient) Define the large (weaker confinement) Banach $\mathcal{X} := L_k^{4/3}$ with k > 3/2 and a(k) := 1/2 - k.

Proposition 8. (Spectral analysis in the large space \mathcal{X})

For any $a > \bar{a} := \max(a^*, a(k))$, there exists a constant $C_{k,a}$ such that

$$\|e^{t\Lambda}h-e^{-t}\,\Pi_1h-\Pi_0h\|_{\mathcal{X}}\leq C\,e^{at}\,\|h-\Pi_1h-\Pi_0h\|_{\mathcal{X}}\quad\forall\,t\geq0,\;\forall\,h\in\mathcal{X},$$

where again

 Π_0 = projection on eigenspace Vect $(h_{0,0})$ associated to eigenvalue 0 Π_1 = projection on eigenspace Vect $(h_{1,1},h_{1,2})$ associated to eigenvalue -1

$$hickspace$$
 Split $\Lambda = \mathcal{A} + \mathcal{B}$, $\mathcal{A}g := N\chi_R g$, \mathcal{B} is dissipative, $\mathcal{A}\mathcal{S}_{\mathcal{B}} : \mathcal{X} \to X$.

Apply the extension of functional space for the spectral analysis developed in

 Gualdani, M., Mouhot, Factorization of Non-Symmetric Operators and Exponential H-Theorem,

as well as Theorem 7 by Campos-Dolbeault on the spectral analysis of $e^{t\Lambda}$ in the small space X.

Nonlinear stability

The function h := g - G satisfies the NL equation

$$\partial_t h = \Lambda h + \operatorname{div}(h \mathcal{K} * h).$$

We introduce the splitting (in order to get the optimal rate)

$$h = h_0 + h_1 + h_2, \quad h_{12} = h_1 + h_2$$

with

$$h_0 := \Pi_0 h = \alpha_0 h_{0,0}, \quad h_1 = \Pi_1 h,$$

so that the evolution of h_1 and h_2 are given by

$$\partial_t h_1 = -h_1 + \mathcal{Q}_1, \quad \mathcal{Q}_1 := \Pi_1[\operatorname{div}(h\mathcal{K}*h)]$$

and

$$\partial_t h_2 = \Lambda h_2 + \mathcal{Q}_2, \quad \mathcal{Q}_2 := \Pi_2[\operatorname{div}(h \,\mathcal{K} * h)].$$

Thanks to the mass conservation, we have

$$0=\int h=\alpha_0+\int h_{12}$$

so that

$$||h_0||_{\mathcal{X}} = |\alpha_0| ||h_{0,0}||_{\mathcal{X}} \le C ||h_{12}||_{\mathcal{X}}$$

Multiplying the equation on h_1 by $h_1^* = h_1 |h_1|^{-1/3} \|h_1\|_{L^{4/3}}^{2/3}$, we have

$$\frac{d}{dt} \|h_1\|_{L_k^{4/3}}^2 = 2 \langle -h_1 + \Pi_1[\operatorname{div}(h \,\mathcal{K} * h)], h_1^* \rangle
\leq -2 \|h_1\|_{L_k^{4/3}}^2 + C \|h_1\|_{L_k^{4/3}} \|\operatorname{div}(h \,\mathcal{K} * h)\|_{L_k^{4/3}}.$$

By an interpolation argument, we have

$$\|\operatorname{div}(h\,\mathcal{K}*h)\|_{L_{k}^{4/3}} \leq C \underbrace{(\|h\|_{W^{2,\infty}} + \|h\|_{L_{4}^{1}})^{1-\alpha}}_{\text{bounded for } t>\varepsilon} \|h\|_{L_{k}^{4/3}}^{1+\alpha}$$

with $\alpha := 16/121 > 0$.

We define an equivalent norm to $\|\cdot\|_{\mathcal{X}}$ by

$$|||f|||^2 := \eta ||f||_{\mathcal{X}}^2 + \int_0^\infty ||e^{\tau \Lambda} e^{\tau} f||_{\mathcal{X}}^2 d\tau.$$

For an appropriate choice of $\eta > 0$

$$\frac{d}{dt} \||e^{t\Lambda}f||^2 \le -2 \, \|e^{t\Lambda}f\||^2 \quad \forall \, t \ge 0, \, \, \forall \, f \in R(I - \Pi_0 - \Pi_1).$$

With the notations $S_{ au}:=e^{ au\Lambda}\,e^{ au}$ and $\mathcal{Q}_2:=\Pi_2\mathrm{div}(h\,\mathcal{K}*h)$, we have

$$\frac{d}{dt} \|h_2\|^2 = \eta \langle h_2^*, \Lambda h_2 \rangle + \int_0^\infty \langle (S_\tau h_2)^*, S_\tau \Lambda h_2 \rangle d\tau
+ \eta \langle h_2^*, Q_2 \rangle + \int_0^\infty \langle (S_\tau h_2)^*, Q_2 \rangle d\tau
\leq -2 \|h_2\|^2 + C \|h_2\|_{L^{4/2}_{\nu}} \|\operatorname{div}(h \,\mathcal{K} * h)\|_{L^{4/2}_{\nu}}.$$

All together, the quantity

$$u(t) := \|h_1\|_{\mathcal{X}}^2 + \|h_2\|^2$$

satisfies the differential inequality

$$u' \le -2u + C \|h\|^{2+\alpha}$$
 on $(0, \infty)$

and we easily conclude recalling that $h = h_0 + h_1 + h_2$ that $u \le C e^{-2t}$.