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Orders of magnitude, perfect gas

•For a monatomic gas at room temperature and atmospheric pressure,
about 1020 gas molecules with radius ' 10−8cm are to be found in any
volume of 1cm3

•Excluded volume (i.e. the total volume occupied by the gas molecules if
tightly packed): 1020 × 4π

3 × (10−8)−3 ' 5 · 10−4cm3 � 1cm3

EXCLUDED VOLUME NEGLIGEABLE⇒ PERFECT GAS

•Equation of state for a perfect gas:

p = kρθ, where k =Boltzmann’s constant= 1.38 · 10−23J/K



Notion of mean-free path

•Roughly speaking, the average distance between two successive colli-
sions for any given molecule in the gas

•Intuitively, the higher the gas density, the smaller the mean-free path;
likewise, the bigger the molecules, the smaller the mean-free path; this
suggests

mean-free path ≈ 1
N×A

where N =number of gas molecules per unit volume and A =area of the
section of any individual molecule



•For the same monatomic gas as before (at room temperature and atmo-
spheric pressure), N = 1020 molecules/cm3, while A = π × (10−8)2 '
3 · 10−16cm2; hence the mean-free path is ≈ 1

3 · 10−4cm� 1cm.

SMALL MEAN-FREE PATH REGIMES CAN OCCUR IN PERFECT GASES

•While keeping the same temperature, lower the pressure at 10−4atm;
then N = 1016 molecules/cm3 and the mean-free path becomes ≈ 1

3cm
which is comparable to the size of the 1cm3 container

DEGREE OF RAREFACTION MEASURED BY KNUDSEN NUMBER

Kn :=
mean free path

macroscopic length scale



Kinetic vs. fluid regimes

•Kinetic regimes are characterized by Kn = O(1) ; since the gas is more
rarefied, there are not enough collisions per unit of time for a local thermo-
dynamic equilibrium to be reached. However, also because of rarefaction,
correlations are weak ⇒ state of the gas is adequately described by the
distribution function:

F ≡ F (t, x, v) single-particle phase-space density

The density (with respect to the Lebesgue measure dxdv) of particles
which, at time t, are to be found at the position x with velocity v.



Macroscopic observables

•Macroscopic quantities (observables) are computed by averaging the cor-
responding quantity for a single particle w.r.t. the measure F (t, x, v)dxdv:

density =
∫
F (x, t, v)dv = ρ(x, t)

momentum =
∫
vF (t, x, v)dv = ρ(x, t)u(x, t),

energy-temperature =
∫

1
2|v|

2F (t, x, v)dv = ρ(x, t)(
1

2
|u(x, t)|2 +

3

2
θ(x, t))



The Boltzmann equation

•The number density F is governed by the Boltzmann equation: in the
absence of external force

∂tF + v · ∇xF = B(F, F )

where B(F, F ) is the Boltzmann collision integral.

•Because of rarefaction, collisions other than BINARY are neglected.

•At the kinetic level of description, the size of particles is neglected every-
where but in the expression of the mean-free path: collisions are LOCAL
and INSTANTANEOUS

⇒ B(F, F ) operates only on the v-variable in F



The collision integral -hard potential.

B(F, F )(v)=
∫∫

R3×S2

(
F (v′)F (v′∗)− F (v)F (v∗)

)
b(v − v∗, ω)dωdv∗

where the velocities v′ and v′∗ are defined in terms of v, v∗ and ω by

v′ ≡ v′(v, v∗, ω) = v − (v − v∗) · ωω
v′∗ ≡ v′∗(v, v∗, ω) = v∗+ (v − v∗) · ωω

(F∗, F ′ and F ′∗) = (F (v∗), F (v′) and F (v′∗)

b(ω, v − v∗) = |v − v∗|βb̂(ω.n) , n =
(v − v∗)
|v − v∗|

Grad cutt off
∫
S2
b̂(ω.n)dω <∞ . hard spheres b(ω, v − v∗) = |(v − v∗) · ω|



Pre- to post-collision relations

•Given any velocity pair (v, v∗) ∈ R6, the pair (v′(v, v∗, ω), v′∗(v, v∗, ω))

runs through the set of solutions to the system of 4 equations

v′+ v′∗ = v + v∗ conservation of momentum

|v′|2 + |v′∗|2 = |v|2 + |v∗|2 conservation of kinetic energy

as ω runs through S2.



Geometric interpretation of collision relations

The geometric interpretation of these formulas is as follows: in the ref-
erence frame of the center of mass of the particle pair, the velocity pair
before and after collisions is made of two opposite vectors, ±1

2(v′ − v′∗)
and ±1

2(v − v∗).

Conservation of energy implies that |v − v∗| = |v′ − v′∗|.

•Hence v − v∗ and v′ − v′∗ are exchanged by some orthogonal symmetry,
whose invariant plane is orthogonal to ±ω.



Symmetries of the collision integral

•The collision integrand is invariant if one exchanges v and v∗:∫
R3
B(F, F )φdv =

∫∫∫
(F ′F ′∗ − FF∗)φb(v − v∗, ω)dωdv∗dv

=
∫∫∫

(F ′F ′∗ − FF∗)
φ+ φ∗

2
b(v − v∗, ω)dωdv∗dv

•The collision integrand is changed into its opposite if, given ω ∈ S2, one
exchanges (v, v∗) and (v′, v′∗) (in the center of mass reference frame, this
is a symmetry, and thus an involution).

•Further, (v, v∗) 7→ (v′, v′∗) is an isometry of R6 (conservation of kinetic
energy), so that dvdv∗ = dv′dv′∗ .



Symmetries of the collision integral 2

Theorem. Assume that F ∈ L1(R3) is rapidly decaying at infinity, i.e.

F (v) = O(|v|−n) as |v| → +∞ for all n ≥ 0

while φ ∈ C(R3) has at most polynomial growth at infinity, i.e.

φ(v) = O(1 + |v|m) as |v| → +∞ for some m ≥ 0

Then, one has:

∫
R3
B(F, F )φdv =

∫∫∫
FF∗

φ+ φ∗ − φ′ − φ′∗
2

|(v − v∗) · ω|dωdv∗dv

=
∫∫∫

R3×R3×S2
(F ′F ′∗ − FF∗)

φ+ φ∗ − φ′ − φ′∗
4

|(v − v∗) · ω|dωdv∗dv



Collision invariants

•These are the functions φ ≡ φ(v) ∈ C(R3) such that

φ(v) + φ(v∗)− φ(v′)− φ(v′∗) = 0 for all (v, v∗) ∈ R3 and ω ∈ S2

Theorem. Any collision invariant is of the form

φ(v) = a+ b1v1 + b2v2 + b3v3 + c|v|2 , a, b1, b2, b3, c ∈ R

•If φ is any collision invariant and F ∈ L1(R3) is rapidly decaying, then∫
R3
B(F, F )φdv = 0



Proof of the Theorem (Perthame).

Assume φ ≥ 0 with (1 + |vl2)φ ∈ L1(R3) with

φ′φ′∗ = φφ∗ for a.e. (v, v∗, ω) ∈ R3 ×R3 × S2

Normalize with ∫
R3

φ(v)dv = 1
∫
R3

vφ(v)dv = 0

Fourier transform (with ω fixed) of φφ∗ is continuous.

φ̂(ξ)φ̂(ξ∗) =
∫∫

R3×R3
φ(v)φ(v∗)e−iξv−iξ∗v∗dvdv∗

=
∫∫

R3×R3
φ(v′)φ(v′∗)e

−iξv−iξ∗v∗dvdv∗

=
∫∫

R3×R3
φ(v)φ(v∗)e−iξv

′−iξ∗v′∗dv′dv′∗

=
∫∫

R3×R3
φ(v)φ(v∗)e−iξv−iξ∗v∗ei((ξ−ξ∗)·ω)((v−v∗)·ω)dvdv∗



Since the first term is independant of ω differentiating with respect to ω

gives for (ξ − ξ∗)⊥ω

0 =
∫∫

R3×R3
φ(v)φ(v∗)e−iξv−iξ∗v∗(v − v∗) · ωdvdv∗

for any ξ 6= ξ∗ and ω ∈ S2 such that ω⊥(ξ−ξ∗)

ω⊥(ξ − ξ∗)⇒ (∇ξ −∇ξ∗)φ̂(ξ)φ̂(ξ∗)⊥ω
⇒ (∇ξ −∇ξ∗)φ̂(ξ)φ̂(ξ∗)||(ξ − ξ∗)
ˆφ(0) = 1 ,∇ξ ˆφ(0) = 0⇒ ∇ξφ(ξ)||ξ ⇒ φ(ξ) = ψ(|ξ|2)

ξψ′(|ξ|2)ψ(|ξ∗|2)− ξ∗ψ(|ξ|2)ψ′(|ξ∗|2)||(ξ − ξ∗)
⇒ ψ′(|ξ|2)ψ(|ξ∗|2) = ψ(|ξ|2)ψ′(|ξ∗|2)

⇒ ψ′(|ξ|2) = βψ(|ξ|2)



Local conservation laws

•In particular, if F ≡ F (t, x, v) is a solution to the Boltzmann equation that
is rapidly decaying in the v-variable∫

R3
B(F, F )dv =

∫
R3

vkB(F, F )dv =
∫
R3

1
2|v|

2B(F, F )dv = 0

for k = 1,2,3.

•Therefore, one has the local conservation laws:

∂t

∫
R3

Fdv + divx
∫
R3

vFdv = 0 , (mass)

∂t

∫
R3

vFdv + divx
∫
R3

v⊗2Fdv = 0 , (momentum)

∂t

∫
R3

1
2|v|

2Fdv + divx
∫
R3

v1
2|v|

2Fdv = 0 , (energy)



Boltzmann’s H Theorem

•Assume that 0 < F ∈ L1(R3) is rapidly decaying and such that lnF has
polynomial growth at infinity. Then∫

R3
B(F, F ) lnFdv =

− 1
4

∫∫∫
R3×R3×S2

(F ′F ′∗ − FF∗) ln

(
F ′F ′∗
FF∗

)
|(v − v∗) · ω|dωdvdv∗ ≤ 0

•The following conditions are equivalent:∫
R3
B(F, F ) lnFdv = 0 ⇔ B(F, F ) = 0 a.e. ⇔ F is a Maxwellian

i.e. F (v) is of the form

F (v) = Mρ,u,θ(v) :=
ρ

(2πθ)3/2
e−
|v−u|2

2θ for some ρ, θ > 0 and u ∈ R3



Implications of conservation laws + H Theorem

•If F ≡ F (t, x, v) > 0 is a solution to the Boltzmann equation that
is rapidly decaying and such that lnF has polynomial growth in the v-
variable, then

∂t

∫
R3

Fdv + divx
∫
R3

vFdv = 0 , (mass)

∂t

∫
R3

vFdv + divx
∫
R3

v⊗2Fdv = 0 , (momentum)

∂t

∫
R3

1
2|v|

2Fdv + divx
∫
R3

v1
2|v|

2Fdv = 0 , (energy)

∂t

∫
R3

F lnFdv + divx
∫
R3

vF lnFdv ≤ 0 , (entropy)

The last differential inequality bearing on the entropy density is reminiscent
of the Lax-Friedrichs entropy condition that selects admissible solutions of
hyperbolic systems of conservation laws.



Dimensionless form of the Boltzmann equation

•Choose macroscopic scales of time T and length L, and a reference
temperature Θ; this defines 2 velocity scales:

V =
L

T
(macroscopic velocity) , and c =

√
Θ (thermal speed)

Finally, set N to be the total number of particles.

•Define dimensionless time, position, and velocity variables by

t̂ =
t

T
, x̂ =

x

L
, v̂ =

v

c
and a dimensionless number density

F̂ (t̂, x̂, v̂) =
L3c3

N
F (t, x, v)



Dimensionless form of the Boltzmann equation 2

•One finds that

L

cT
∂t̂F̂ + v̂ · ∇x̂F̂ =

N r2

L2

∫∫
(F̂ ′F̂ ′∗ − F̂ F̂∗)|(v̂ − v̂∗) · ω|dωdv̂∗

•The pre-factor multiplying the collision integral is

L×
N r2

L3
=

L

π ×mean free path
=

1

πKn

•The pre-factor multiplying the time derivative is

1
T × L
c

= St , (kinetic Strouhal number)

St∂t̂F̂ + v̂ · ∇x̂F̂ =
1

πKn

∫∫
R3×S2

(F̂ ′F̂ ′∗ − F̂ F̂∗)|(v̂ − v̂∗) · ω|dωdv̂∗



Compressible Euler scaling

•This scaling limit corresponds to St = 1 and πKn =: ε� 1 , leading
to the singular perturbation problem

∂tFε+v ·∇xFε =
1

ε
B(Fε, Fε) =

1

ε

∫∫
(F ′εF

′
ε∗−FεFε∗)|(v−v∗) ·ω|dωdv̂∗

•One expects that, as ε → 0, Fε → F and B(Fε, Fε) → B(F, F ) = 0;
hence F (t, x, ·) is a Maxwellian for all (t, x), i.e.

F (t, x, v) = Mρ(t,x),u(t,x),θ(t,x)(v) =
ρ(t, x)

(2πθ(t, x))3/2
e
−|v−u(t,x)|2

2θ(t,x)

In other words, F is a local equilibrium.

•Problem: to find the governing equations for ρ(t, x), u(t, x) and θ(t, x).



Formal Euler limit by the moment method

•Assume that Fε is rapidly decaying and such that lnFε has polynomial
growth for large v’s; assume further that Fε → F , and that the decay
properties above are uniform in this limit.

•H Theorem implies that F is a local Maxwellian Mρ,u,θ:∫ +∞

0

∫∫
B(Fε, Fε) lnFεdvdxdt = ε

∫∫
Fε lnFε

∣∣∣
t=0

dxdv

− ε lim
t→+∞

∫∫
Fε lnFε

∣∣∣
t
dxdv → 0

as ε→ 0; hence ∫ +∞

0

∫∫
B(F, F ) lnFdvdxdt = 0



•Passing to the limit in the local conservation laws + the entropy differential
inequality leads to the system of conservation laws for (ρ, u, θ)

∂t

∫
R3

Mρ,u,θdv + divx
∫
R3

vMρ,u,θdv = 0

∂t

∫
R3

vMρ,u,θdv + divx
∫
R3

v⊗2Mρ,u,θdv = 0

∂t

∫
R3

1
2|v|

2Mρ,u,θdv + divx
∫
R3

v1
2|v|

2Mρ,u,θdv = 0

as well as the differential inequality

∂t

∫
R3

Mρ,u,θ lnMρ,u,θdv + divx
∫
R3

vMρ,u,θ lnMρ,u,θdv ≤ 0



•The following formulas for the moments of a Maxwellian∫
Mρ,u,θdv = ρ ,

∫
vMρ,u,θdv = ρu ,∫

v⊗2Mρ,u,θdv = ρ(u⊗2 + θI) ,
∫

1
2|v|

2Mρ,u,θdv = 1
2ρ(|u|2 + 3θ)

∫
v1

2|v|
2Mρ,u,θdv = 1

2ρu(|u|2 + 5θ)

and for its entropy and entropy flux∫
Mρ,u,θ lnMρ,u,θdv = ρ ln

(
ρ

(2πθ)3/2

)
− 3

2ρ∫
vMρ,u,θ lnMρ,u,θdv = ρu ln

(
ρ

(2πθ)3/2

)
− 3

2ρu

show that (ρ, u, θ) is an admissible solution of Euler’s system.



Compressible / Incompressible Navier -Stokes equation and scaling

The derivation of the compressble Euler equation is independent of the
cross section! Properties of the cross section appear in the compressible
Euler which is an higher order approximation with ε being the Knudsen
number

∂tρ+ divx(ρu) = 0

∂t(ρu) + divx(ρ(u)⊗2) +∇x(ρθ) = εdivx(µD(u))

∂t
(
ρ(1

2|u|
2 + 3

2θ)
)

+ divx
(
ρu(1

2|u|
2 + 5

2θ)
)

= εdivx(κ∇xθ)

+εdivx(µD(u) · u)



With m the Mach number : Small fluctuations

ρ = 1 +mρ̃, u = mũ , θ = 1 +mθ̃

and change of scale in time (adapted to ũ) t→ t/m

divx ũ = 0 ũ+ ρ̃ = 0

∂tũ+ divx(ũ⊗ ũ) +∇xp =
ε

m
µ∆xũ

5

2
(∂tθ̃ + divx(ũθ̃)) =

ε

m
κ∆xθ̃

Hence the Von Karman relation

Reynolds '
Mach

Knudsen



The incompressible Navier-Stokes scaling

•Consider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with St = πKn = ε� 1 :

ε∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε)

•Start with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = M1,0,1) with Mach number
Ma = O(ε) :

F inε = M1,0,1 + εf inε

•Example 1: pick uin ∈ L2(R3) a divergence-free vector field; then the
distribution function

F inε (x, v) = M1,εuin(x),1(v)

is of the type above.



•Example 2: If in addition θin ∈ L2 ∩ L∞(R3), the distribution function

F inε (x, v) = M
1−εθin(x), εuin(x)

1−εθin(x)
, 1
1−εθin(x)

(v)

is also of the type above. (Pick 0 < ε < 1
‖θin‖L∞

, then 1− εθin > 0 a.e.).



FORMAL INCOMPRESSIBLE LIMITS

ε ∂tFε + v · ∇Fε = 1
εqB(Fε, Fε) q ≥ 1 (1)

Fε = MGε = M(1 + εgε) . (2)



The linearized collision operator

•Viscosity and heat diffusion given linearization at a Maxwellian M =
M1,0,1 (the centered, reduced Gaussian) of Boltzmann’s collision integral

LMφ = −2M−1B(M,Mφ)

=
∫∫

R3×S2
(φ+ φ∗ − φ′ − φ′∗)|(v − v∗) · ω|dωM∗dv∗

The operator LM takes the form

(LMφ)(v) = λM(|v|)φ(v)− (KMφ)(v)

where λ(|v|) is the collision frequency, while KM is an integral operator

λ(|v|) = 2π
∫
R3
|v − v∗|M∗dv∗ , KMφ = K1,M −K2,M



with
1
c(1 + |v|) ≤ λ(|v|) ≤ c(1 + |v|)

K1,Mφ = 2
∫∫

R3×S2
φ′|(v − v∗) · ω|dωM∗dv∗

K2,Mφ = 2π
∫
R3

φ∗|v − v∗|M∗dv∗

Theorem. The operator LM is a nonnegative, unbounded self-adjoint
Fredholm operator on L2(Mdv) (scalar product denoted 〈., .〉) with do-
main L2(λ(|v|)2Mdv). Further, its nullspace is the set of collision invari-
ants, i.e.

kerLM = span{1, v1, v2, v3, |v|2} .

Moreover, there exists c0 > 0 such that, for each φ ∈ L2(λ(|v|)Mdv):

φ⊥ kerLM ⇒ 〈φ, φ〉 =
∫
R3

φLMφMdv ≥ c0
∫
R3

φ2λ(|v|)Mdv .



•Fredholm’s alternative: Consider the (integral) equation LMφ = ψ. Either

• ψ⊥kerLM ⇒ there exists a unique solution φ0⊥ kerLM (denoted

by φ0 = cL−1
M ψ); all solutions are of the form φ0+n with n ∈ kerLM ;

• otherwise, there exists no solution φ to the above equation.

•Basic examples: Consider the vector fieldB and the tensor fieldA defined
by

A(v) = v⊗2 − 1
3|v|

2I , B(v) = 1
2v(|v|2 − 5)

Notice thatA⊥ kerLM ,B⊥ kerLM andA⊥B; there existL−1
M A⊥ kerLM

and L−1
M B⊥ kerLM



• Rotational invariance of B Let R ∈ O3(R); it acts on functions f on R3,
on vector fields U on R3, and on 2-contravariant tensors fields S on R3 as
follows:

fR(v) = f(RTv) , UR(v) = RU(RTv) , SR(v) = RS(RTv)RT

•The Boltzmann collision integral is rotationally invariant:

B(FR, FR) = B(F, F )R , therefore LM1,0,1
φR = (LM1,0,1

φ)R

since M1,0,1 is a radial function.

•One hasAR = A andBR = B; hence (L−1
M A)R = L−1

M A and (L−1
M B)R =

L−1
M B. Therefore, there exist α ≡ α(|v|) and β ≡ β(|v|) s.t.

L−1
M A(v) = α(|v|)A(v) , L−1

M B(v) = β(|v|)B(v)



〈f, g〉 =
∫
R3

f(v)g(v)M(v)dv =
1

(2π)
3
2

∫
R3

f(v)g(v)e−
|vl2

2 dv

Theorem. Let Fε(t, x, v) = MGε = M(1 + εgε) be a sequence of non-
negative solutions to the scaled kinetic equation (1) and (2) with “good,
reasonable" convergence properties then: Then the limiting g has the form

g = v · u+ (
1

2
|v|2 −

5

2
)θ ,

where the velocity u is divergence free and the density and temperature
fluctuations, ρ and θ, satisfy the Boussinesq relation

∇u = 0 , ∇x(ρ+ θ) = 0 .



Moreover, the functions ρ, u and θ are weak solutions of the equations

∂tu+ u∇u+∇p = µ∆u ,
5

2
(∂tθ + u · ∇θ) = κ∆θ , if q = 1 ;

∂tu+ u∇u+∇p = 0 , ∂tθ + u · ∇θ = 0 , if q > 1 ;

With µ and κ given by the formulas:

ν = 1
10

∫
α(|v|)A : AMdv , κ = 1

3

∫
β(|v|)B : BMdv . (3)

Proof. Start from

ε ∂tgε + v · ∇gε +
1

εq
L(gε) = ε1−q

1

2
M−1B(Mgε,Mgε)

Multiply by εq,

ε→ 0⇒ L(g) = 0⇒ g = ρ+ v · u+ (
1

2
|v|2 −

3

2
)θ



ε∂t〈gε〉+∇〈vgε〉 = 0⇒ ∇ · u = 0

ε ∂t〈vgε〉+∇〈v ⊗ vgε〉 = 0⇒ ∇(ρ+ θ) = 0 .

For the moments:

∂t〈vgε〉+
1

ε
∇x〈v ⊗ vgε〉 = 0

∂t〈vgε〉+
1

ε
∇x〈A(v)⊗ vgε〉+∇

1

ε
〈
1

3
|v|2gε〉 = 0

∂t〈
1

2
(|v|2 − 5)gε〉+

1

ε
∇x〈B(v)⊗ vgε〉 = 0



Use L−1A and L−1B

1

ε
〈A(v)gε〉 =

1

ε
〈L−1A(v)Lgε〉

= −εq〈L−1A(v)∂tgε〉 − εq−1∇x〈L−1A(v)vgε〉+ 〈L−1A(v)B(Mgε,Mgε)〉
1

ε
〈B(v)gε〉 =

1

ε
〈L−1B(v)Lgε〉

= −εq〈L−1B(v)∂tgε〉 − εq−1∇x〈L−1B(v)vgε〉+ 〈L−1B(v)B(Mgε,Mgε)〉

lim
ε→0

1

ε
〈A(v)gε〉 = − lim

ε→0
εq−1∇x〈L−1A(v)vg〉+ 〈L−1A(v)B(Mg,Mg)〉

lim
ε→0

1

ε
〈B(v)gε〉 = − lim

ε→0
εq−1∇x〈L−1B(v)vg〉+ 〈L−1B(v)B(Mg,Mg)〉



∫
α(|v|)Aij(v)Akl(v)Mdv = µ(δikδjl + δilδjk − 2

3δijδkl)∫
β(|v|)Bi(v)Bj(v)Mdv = κδij

For q ∈ kerLM

B(Mg,Mg) =
1

2
LM(g2)

⇒ 〈L−1A(v)B(Mg,Mg)〉 =
1

2
〈A(v)g2〉 = u⊗ u−

1

3
|u|2 ,

⇒ 〈L−1B(v)B(Mg,Mg)〉 =
1

2
〈B(v)g2〉 =

5

2
uθ



Convergence

•Let F inε ≥ 0 be any sequence of measurable functions satisfying the
entropy bound H(F inε |M) ≤ Cinε2, and let Fε be a renormalized solution
of the scaled Boltzmann equation

ε∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε) , Fε

∣∣∣
t=0

= F inε

•Let gε ≡ gε(x, v) be such that Gε := 1 + εgε ≥ 0 a.e.. We say that
gε → g entropically at rate ε as ε→ 0 iff

gε → g in w − L1
loc(Mdvdx) , and

1

ε2
H(MGε|M)→ 1

2

∫∫
g2Mdvdx

Theorem. Assume that

F inε (x, v)−M(v)

εM(v)
→ uin(x) · v



entropically at rate ε. Then the family of bulk velocity fluctuations

1

ε

∫
R3

vFεdv

is relatively compact in w−L1
loc(dtdx) and each of its limit points as ε→ 0

is a Leray solution of

∂tu+ divx(u⊗ u) +∇xp = ν∆xu , divx u = 0 , u
∣∣∣
t=0

= uin

H(F |M) =
∫ ∫

F log(
F

M
)− F +M)dxdv

=
∫ ∫

M((
F

M
) log(

F

M
)− (

F

M
) + 1)dxdv


