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Underlying Physics question

How to derive rigorously the (kinetic) equations for the mesoscopic
/statistic dynamics from the description of miscroscopic dynamics
(Newton first law of motion for many-particle dynamics) ?

Grad ∼ 1950 : Formal derivation of the nonhomogeneous Boltzmann
equation from deterministic dynamic (= “Boltzmann-Grad” limit)

Lanford 1974 proves rigorously the limit for very short time (shorter
than the free mean path) by using Bogoliubov (or BBGKY) hierarchy
→ King, Illner, Pulvirenti, Cercignani

Neunzert, Braun & Hepp 70s derive the nonlinear Vlasov equation for
smooth and bounded potential from Newton first principle (N
particles evolve according to Hamiltonian dynamic associated to
Coulombian potential) in the “mean-field” limit

improved by Hauray, Jabin 2007 allowing (too) soft singularity
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Aim of the talk: the Kac’s program as a less ambitious goal

describe the Kac’s result in 1956

◮ derive the space homogeneous Boltzmann equation as the mean-field
limit of a N-particle Markov jump (collisional) process

◮ but first rigorous mathematic treatment of the deduction of Boltzmann
equation from microscopic dynamics!

◮ based on the notion of “Kac chaos”
◮ beginning with simpler models (Vlasov and McKean-Vlasov)

formulate the ”Kac’s program” : two open questions in 1956

and we add two others question (as intermediate steps)

give an answer to that four questions (and thus “partially achieve”
the Kac’s program)
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the results are taken from

M., Mouhot, Wennberg, “A new approach to quantitative chaos
propagation estimates for drift, diffusion and jump processes”,
arxiv 2011

M., Mouhot, “Quantitative uniform in time chaos propagation for
Boltzmann collision processes”, arxiv 2010

M. “Introduction aux limites de champs moyen pour les systèmes de
particules” (graduate school notes), on my web page

M. ”Programme de Kac sur les limites de champ moyen”, EDP-X
seminary publication, on my web page

Hauray, M., Mouhot, work in progress
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Example 1: ODE / Vlasov / empirical measure method

Consider a system of N indistinguishable particles which position
X = (x1, ..., xN) ∈ EN , E = Rd , in the phases space evolves (deterministically)
according to a system of ODEs

(edo) ẋi = Ai (X ), xi (0) given, 1 ≤ i ≤ N , in EN

Assume that the interactions term Ai writes

Ai (X ) =
1

N

∑

j 6=i

a(xj − xi )=
1

N

∑

j

a(xj − xi ) = (a ∗ µN
X )(xi )

where a is smooth, a(0) = 0, and the empirical measure µN
X is defined by

∀X µN
X (dz) :=

1

N

N∑

i=1

δxi (dz) ∈ P(E ) = probabilities space.

At the statistical level, consider a density f := f (t, x) ∈ P(E ) which dynamics is
driven by the (mean-field) Vlasov equation

(V ) ∂t f = Q(f ) := −div((a ∗ f ) f ), f (0) = f0, in P(E)
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Theorem (Dobrushin 1979)

For any f0 ∈ P(E ) and X0 ∈ EN the solution X (t) of (edo) and the solution f (t)
of (V) satisfies

sup
[0,T ]

W1(µ
N
X (t), f (t)) ≤ eLT W1(µ

N
X0

, f0).

As a consequence, if FN
0 ∈ P(EN) is the initial density of the particles which all

evolve according to (edo), the density FN(t) at time t ≥ 0 satisfies

(1) sup
[0,T ]

∫

EN

W1(µ
N
X , f (t))FN

t (dX ) ≤ eLT

∫

EN

W1(µ
N
X , f0)FN

0 (dX )

For any F , G ∈ P(E j) we define the MKW distance Wp , p = 1, 2, by

W p
p (F , G) := inf

π∈Π(F ,G)

∫

E j×E j

dp
E j (X , Y )π(dX , dY )

Π(F , G) := {π ∈ P(E j × E j); π(A × E j) = F (A), π(E j × B) = G(B)}

dp
E j (X , Y ) :=

1

j

j
∑

i=1

dE (xi , yi )
p
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Example 2: SDE / McKean-Vlasov / Coupling method

Stochastic trajectories X (t) ∈ EN , E = Rd , driven by Brownian SDE plus
quadratic and smooth interaction ((B i

t) independent Brownian motions)

(eds) dxi = Ai (X ) dt + dB i
t , Ai (X ) = (a ⋆ µN

X )(xi ).

The associated mean field equation is the McKean-Vlasov equation

(McKV ) ∂t f = Q(f ) :=
1

2
∆f − div((a ∗ f ) f ), f (0) = f0.

Theorem (Sznitman 1989)

Consider f0 ∈ P(E ), FN
0 ∈ P(EN) and take X0 ∼ FN

0 . Then the law FN(t) of the
solution X (t) of (eds) and the solution f (t) of (McKV) satisfy

(2) sup
[0,T ]

W1(F
N(t), f ⊗N(t)) ≤ CT

(

W1(F
N(0), f ⊗N(0)) +

1√
N

)

.

Coupling method: consider Y (t) solution to the subsidiary problem:

(yi (0)) i.i.d. according to f (0) and dyi = (a ⋆ f (t, .))(yi ) + dB i
t ,

so that Y (t) ∼ f (t)⊗N and prove that X (t) ≈ Y (t).
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Example 3: The Boltzmann-Kac model (trajectories) introdiced by Kac 1956

N-particle system V = (v1, ..., vN), vi ∈ E = R3 undergoing random Boltzmann
jumps (collisions).
Markov process (Vt)t≥0 defined step by step as follows:
(i) draw randomly ∀ (vi ′ , vj′ ) collision time Ti ′,j′ ∼ Exp(B(|vi ′ − vj′ |)); then
select the post-collisional velocity (vi , vj) such that

Ti ,j = min
(i ′,j′)

Ti ′,j′ .

(ii) draw randomly σ ∈ S2 according to the density law b(cos θ) with
cos θ = σ · (vi − vj)/|vi − vj | and define the post-collisional velocities (v∗

i , v∗
j )

thanks to

v∗
i =

vi + vj

2
+

|vj − vi |
2

σ, v∗
j =

vi + vj

2
− |vj − vi |

2
σ.

Observe that momentum and energy are conserved

v∗
i + v∗

j = vi + vj , |v∗
i |2 + |v∗

j |2 = |vi |2 + |vj |2.
Finally, this two bodies collisions jump process satisfies

∑

i=1

vi (t) = cst,
∑

i=1

|vi (t)|2 = cst.
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Example 3: Master equation for Boltzmann-Kac system

Equivalently, after time rescaling, the motion of the N-particle system is
given through the Master/Kolmogorov equation on the law FN

t ∈ P(EN)
which in dual form reads

(BKs) ∂t〈FN , ϕ〉 = 〈FN ,ΛNϕ〉 ∀ϕ ∈ Cb(E
N), FN(0) = FN

0 ,

with

(ΛNϕ)(V ) =
1

N

N∑

i ,j=1

B(vi − vj)

∫

S2

b(cos θij) [ϕ′
ij − ϕ] dσ,

where ϕ = ϕ(V ), ϕ′
ij = ϕ(V ′

ij ), V ′
ij = (v1, .., v

′
i , .., v

′
j , .., vN).

Maxwell interactions with Grad’s cut-off (MG): B = 1, b = 1;

Maxwell interactions without cut-off (M): B = 1, b /∈ L1 ;

Hard spheres interactions (HS): B(z) = |z |, b = 1.
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The nonlinear space homogeneous Boltzmann equation

Nonlinear homogeneous Boltzmann equation on P(R3) defined by

(Beq) ∂t f = Q(f ), f (0) = f0

with

〈Q(f ), ϕ〉 :=

∫

R6×S2

B(v − v∗) b(cos θ) (φ(v ′) − φ(v)) dσ f (dv) f (dv∗)

where again

v ′ =
v + v∗

2
+

|v − v∗|
2

σ.

The equation generate a nonlinear semigroup

∀ f0 ∈ P2(R
3) SNL

t f0 := ft .
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Kac’s definition of chaos

E = a locally compact polish space (E = Rd)
P(E ) = the space of probability measures
Psym(EN) = probabilities which are invariant under indexes permutations.

A sequence FN ∈ Psym(EN) is f -chaotic, f ∈ P(E ), iff

∀ϕ1, ..., ϕj ∈ Cb(E )

∫

EN

ϕ1 ⊗ ... ⊗ ϕj FN(dX ) →
j
∏

i=1

∫

E
ϕi f

or equivalently

(def-1) ∀ j ≥ 1 FN
j ⇀ f ⊗j weakly in P(E j ),

where FN
j stands for the j-th marginal of FN defined by

FN
j :=

∫

EN−j

FN dxj+1 ... dxN .
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Chaos propagation

Theorem (Kac, McKean, Graham et Méléard)

Assume (MG). Consider FN
0 ∈ Psym(EN) and FN(t) the solution to

(BKs). Consider f0 ∈ P(E ) and f (t) the solution to (Beq).
(a) If FN

0 is f0-chaotic, then FN
t is f (t)-chaotic.

(b) More precisely, if FN
0 = f ⊗N

0 , then for any 1 ≤ ℓ ≤ N

(3) sup
t∈[0,T ]

W1(F
N
ℓ (t), f (t)⊗ℓ) ≤ Cℓ,T

N
.

Question 1 by Kac. “The above proof suffers from the defect that it works only if the
restriction on time is independent of the initial distribution. It is therefore inapplicable to the
physically significant case of hard spheres because in this case our simple estimates yield a time
restriction which depends on the initial distribution. A general proof that Boltzmann’s property
propagates in time is still lacking”

Positive answer for (HS) by Sznitman 1984 thanks to a nonlinear martingale
approach, compactness and uniqueness arguments, and by Arkeryd, Caprino,
Ianiro 1991 thanks to a BBGKY hierarchy approach
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Propagation of chaos again

How to deduce the behavior of the typical particle from the behavior of the N-particle
system ?

Pb 1: Law of large numbers: µN
Y (t) ⇀ f (t) or F

N
1 ⇀ f (t) when N → ∞

The density F
N
1 (t) of one typical particle of the N-particle system behaves as f (t) the

solution of the mean-field equation. Mean-field convergence ≈ law of large numbers.

Pb 2: propagation of chaos: FN
0 is f0-chaotic implies FN

t is ft -chaotic?
in the sense that in the large number of particles limit N → ∞:

(3) : FN
ℓ (t) ⇀ f (t)⊗ℓ in P(E ℓ),

(1) : F̂N ⇀ δf (t) in P(P(E )),

(2) : FN ≈ f ⊗N in P(EN)

Even when FN
0 = f ⊗N

in we never have FN
t = g⊗N

t for a given N (except when
there is no interaction between the particles of the N-particle system!).

◮ we cannot expect independence
◮ we may expect recover “independence” at the limit (= chaos)
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Propagation of chaos again

How to deduce the behavior of the typical particle from the behavior of the N-particle
system ?
Pb 1: Law of large numbers: µN

Y (t) ⇀ f (t) or F
N
1 ⇀ f (t) when N → ∞

The density F
N
1 (t) of one typical particle of the N-particle system behaves as f (t) the

solution of the mean-field equation. Mean-field convergence ≈ law of large numbers.

Pb 2: propagation of chaos: FN
0 is f0-chaotic implies FN

t is ft -chaotic?
in the sense that in the large number of particles limit N → ∞:

(3) : FN
ℓ (t) ⇀ f (t)⊗ℓ in P(E ℓ),

(1) : F̂N ⇀ δf (t) in P(P(E )),

(2) : FN ≈ f ⊗N in P(EN)

Why are we interested by chaos?

◮ chaos is a strong physically relevant information
◮ it may help to identify the mean field limit equation (as in Kac’s proof).

For the Boltzmann model, mean-field limit may only be established
when molecular chaos holds at the initial time and is propagated.
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Question 2: Time relaxation to the equilibrium uniformly in the number of particles

Kac claimed that his main motivation was to understand the H-theorem
and the time relaxation to the equilibrium for the nonlinear Boltzmann
equation from the corresponding properties for the high (and increasing!)
dimension linear Boltzmann-Kac system
Question 2. Is-it possible to prove something of that kind?

Theorem (Kac, Janvresse, Carlen, Carvalho, Loss)

Assume (MG). Define σN as the uniform measure on the sphere SN of EN

of radius
√

N. ∃ δ > 0 such that for any N ≥ 1

∆N := inf{ − 〈h,ΛNh〉L2 , 〈h, 1〉L2 = 0, ‖h‖2
L2} ≥ δ > 0,

where 〈·, ·〉L2 and ‖ · ‖L2 stand for the scalar product and the norm in
L2(SN ; dσn). As a consequence, for any FN

0 = h0 σN ∈ Psym(EN), h0 ∈ L2,
the solution FN to (BK) writes FN = h(t)σN and

(4) ‖hN(t) − 1‖L2 ≤ e−δ t ‖hN
0 − 1‖L2 .
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• That result does not answer the question 2 because if FN
0 = hN

0 σN is
f0-chaotic then ‖hN

0 − 1‖L2 ≥ AN , with A > 1, and we need to wait some
time proportional to N in order that (1) implies any convergence to the
equilibrium.

• The spectral gap associated to the entropy (which is better adapted to a
N → ∞ limit) has been studied resently. Defining

∆′
N := inf{ − 〈(log G )/N,ΛNG 〉/H(G )}, H(G ) :=

1

N

∫

EN

G log G ,

Villani proved ∆′
N ≥ 1/N and Carlen, Carvalho, Le Roux, Villani proved

lim sup∆′
N = 0. Again, that results does not answer Kac’s problem.

• On the other hand, exponential trend to equilibrium for the nonlinear
Boltzmann equation has been proved by another (direct way), namely for
any f0 ∈ P(E ) there holds

(5) D(f (t), γ) ≤ Cf0 e−λ t

for some distance D on P(E ) and where γ is the Maxwell function
associated to f0.
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Questions

Question 1′. May we generalize the result of propagation of chaos to some
model mixing derive, diffusion and collisions? May we prove “quantified”
version of propagation of chaos (as in (1), (2) and (3)) for realistic physical
Boltzmann-Kac model? May we ”quantify” the distance to the chaos at
time t as a function of the distance to the chaos at time 0?

Question 2′. May we prove convergence of FN to its equilibrium σN

uniformly in the number of particles N?

Question 3. May we prove uniform in time propagation of chaos?

Question 4. What is the relationship between the different distances to the
chaos in (1), (2) and (3)?
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Quantitative answer to Kac’s problem 1

Theorem ((Th-1) Uniform in time Kac’s chaos convergence)

(6) sup
[0,T ]

W1(F
N
t , f (t)⊗N) ≤ Θ1,T (W1(F

N
0 , f ⊗N

0 )) + Θ2,T

(
1

N

)

T ∈ (0,+∞]

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

f0 ∈ P(E ) with enough moments bounded,
f (t) = evolution of one typical particle in the mean-field limit,
f ⊗N
t (V ) = ft(v1) ... ft(vN),

FN
0 ∈ Psym(EN), FN(t) = evolution of N-particle system ∈ Psym(EN)

Θi(w) → 0 when w → 0,
with Θi ,T (w) = Ci w

αi , αi ∈ (0, 1), in some situations
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Main features 1: answers question 1′ and 3

We prove propagation of chaos with quantitative rates

Most importantly and new: estimates are uniform in time (we may choose
T = ∞) for Boltzmann-Kac system

⇒ N → ∞ limit and t → ∞ limit commute!

We may deal with mixtures of Vlasov, McKean and Boltzmann models at
least for smooth and bounded coefficients

Our theorem applies to the space homogeneous Boltzmann equation in the
case of the two important physical collision models:

- true Maxwell molecules (without Grad’s cut-off) cross-section

- hard spheres cross-section (and hard potential with Grad’s cut-off )

⇒ give quantitative estimates of previous non-constructive convergence

result (Sznitman 1984), (Arkeryd et al 1991)

- Maxwell molecules with Grad’s cut-off cross-section

with optimal rate ≤ CT/
√

N ⇒ recover Kac, McKean, Tanaka, Graham,
Méléard, Peyre ...
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Main features 2

We are not able to prove that

(7) sup
[0,T ]

D(FN
t ; ft) ≤ C

(
1

Nα
+ D(FN

0 , f0)

)

for some “distance” D which measures how close to a chaos state
”g ∈ P(E )” is a probability gN ∈ Psym(EN) and C , α > 0, but we prove

sup
[0,T ]

W1(F
N(t), f (t)⊗N) ≤ C

(

W1(F
N
0 , f ⊗N

0 )α1 +
1

Nα2

)

for the (M) and (MG) models
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Kac’s problem 2: a reverse side answer

Theorem ((Th-2) Convergence to the equilibrium uniformly in N)

sup
N

W1

(

FN(t), σN
)

≤ ε1(t) −→
t→∞

0

Consider (MG). Consider f0 such that Fisher information I (f0) < ∞ and
denote FN = hN(t)σN with hN(t) ∈ L1(SN). Then

sup
N

1

N

∫

SN

hN(t) log hN(t) dσN ≤ ε2(t) −→
t→∞

0

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

FN
0 = [f ⊗N

in ]SdN−1(
√

N),

FN
t = evolution of N-particle system ∈ Psym(EN),

we may take εi (t) = C/tai with ai ∈ (0, 1) when we consider (MG).
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Main steps of the proof

I - Very weak uniform in time quantitative chaos propagation

(8) sup
[0,T ]

‖FN
2 − f ⊗2‖F ′ ≤ CT

N1−ε
+ Θ2,T (WW1

(F̂N
0 , δf0))

in a weak dual norm ‖ · ‖F ′ , with F space of smooth functions ⊂ UCb(E
2)

- “dual projection” of the N-particle dynamic denoted TN
t πN and of the

mean-field dynamic denoted πNT∞
t as flows from Cb(P(E )) into Cb(E

N);
- comparison of the these two dynamics thanks to a time integral formula
involving the difference of the two associated generators applied on a
function Φt = Φ(T∞

t );
- consistency result: the difference of generator applied on ”smooth”
functions is of order 1/N;
- a stability result (expansion of order > 1) for the nonlinear semigroup
⇒ Φt is a “smooth” function;
- “smooth” function = expansion of Φ up to order 1 + a in each point of
P(E ) seen as an embedded manifold of F ′, much more simpler that the
“differential calculus” developed in “gradient flow theory”
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II - Uniform in time quantitative chaos propagation

(6) sup
[0,T ]

W1(F
N
t , f (t)⊗N) ≤ Θ1,T (W1(F

N
0 , f ⊗N

0 )) + Θ2,T

(
1

N

)

- finite dimensional interpolation inequality ”all the distance in P(E j ) are
equivalent” j = 1, 2;
- equivalence between the different notions of ”quantification of chaos”;
III - Weak convergence to the equilibrium uniformly in N

sup
N

W1

(

FN(t), σN
)

≤ ε1(t) −→
t→∞

0

- a triangular inequality
IV- Entropy convergence to the equilibrium uniformly in N

sup
N

1

N

∫

SN

hN(t) log hN(t) dσN ≤ ε2(t) −→
t→∞

0

- bound on Fisher information + HWI interpolation inequality (which is
independent of the dimension);
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Alternative formulation

To any FN ∈ Psym(EN) we may associate F̂N ∈ P(P(E )) by setting

∀Φ ∈ Cb(P(E )) 〈F̂N , Φ〉 =

∫

EN

Φ(µN
X )FN(dX ).

As a a consequence of Hewitt-Savage theorem:

Lemma: FN is f -chaotic iff

(def-2) F̂N ⇀ δf weakly in P(P(E ))
equivalently WW1(F̂

N , δf ) → 0

where for α, β ∈ P(P(E )) and D a distance on P(E ) we define

WD(α, β) := inf
π∈Π(α,β)

∫

P(E)×P(E)

D(ρ, η)π(dρ, dη).

Remark 1: Π(F̂N , δf ) = {F̂N ⊗ δf } ⇒ WD(F̂N , δf ) =
∫

EN D(µN
X , f )FN(dX ).
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A third formulation

For any F , G ∈ P(E j) we define the MKW distance Wp , p = 1, 2, by

W p
p (F , G) := inf

π∈Π(F ,G)

∫

E j×E j

dp
E j (X , Y )π(dX , dY )

with

Π(F , G) := {π ∈ P(E j × E j); π(A × E j) = F (A), π(E j × B) = G(B)}

dp
E j (X , Y ) :=

1

j

j
∑

i=1

dE (xi , yi )
p

≥ inf
σ∈SN

1

j

j
∑

i=1

dE (xi , yσ(i))p = Wp(µ
N
X , µN

y )p

Lemma: FN is f -chaotic if

(def-3) W1(F
N , f ⊗N) → 0 when N → ∞

Q4: Are these three definitions equivalent ?
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Distances from chaos

Theorem ((I-1) Equivalence of chaos measures)

∀M, ∀ k > 1 ∃αi , C > 0
∀ f ∈ P(E ), ∀FN ∈ Psym(EN) with Mk(F

N
1 ), Mk(f ) ≤ M

∀ j , k ∈ {0, 2, ..., N} Dj ≤ C

(

Dα1

k +
1

Nα2

)

.

Here
Dj := W1(F

N
j , f ⊗j), 1 ≤ j ≤ N ,

D0 := WW1(F̂
N , δf ).

Remark 2: For FN := f ⊗N we find Dj = 0, 1 ≤ j ≤ N ,
but DN+1 ≈ 1

N
1
d′

, d ′ = d ∨ 2, ⇐ W‖.‖2
H−s

= Cf

N (quadratic miracle!)
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About the proof

• W1(F
N
j , f ⊗j) ≤ 2 W1(F

N , f ⊗N) for any 1 ≤ j ≤ N

• for the negative Sobolev norm ‖ · ‖H−s , s > d/2, we prove (quadratic miracle
again!)

W‖·‖2
H−s

(F̂N , δf ) / W1(F
N
2 , f ⊗2) + ‖FN

1 − f ‖2
H−s +

1

N

and we conclude by comparing the distance W1 and the norm ‖ · ‖H−s in E

• two steps:

W †
1 (FN , f ⊗N)

Def
:= inf

π∈Π

∫

EN×EN

W1(µ
N
X , µN

Y )π(dX , dY )
Lemma(∗)

= W1(F
N , f ⊗N)

and

W †
1 (FN , f ⊗N)

Lemma≈ WW1(F̂
N , δf ).

(*) Density argument + when E is finite, we define

π
∗(X , Y ) :=

π({(X ′, Y ′) ∼ (X , Y )})

♯{dN(X ′, Y ′) = W1(µN
X , µN

Y )}
if dN(X , Y ) = W1(µ

N
X , µ

N
Y ), := 0 else.
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Some conclusions about chaos

The notion of chaos is close (wider) to the notion of independence in
probability theory. If V is a stochastic variable in EN such that the
coordinates are independent variables and have same law f ∈ P(E ) then
V ∼ f ⊗N . In the case of chaos the tensorization structure is required only
asymptotically when N → ∞.

The seemingly stronger notion of chaos W1(F
N , f ⊗N) → 0 and

H(FN) → H(f ) (because they involve all of variables) are (surprisingly?)

◮ equivalent to Kac’s definition of chaos for the first one;
◮ has a strong link with Kac’s definition of chaos for the second one
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Strong version of Poincaré Lemma

Passing to the limit in theorem 1

Theorem ((Th3) Chaoticity of the N-particle steady states)

W1(σ
N , γ⊗N) ≤ θ(N) −→

N→∞
0.

σN := steady state for the N-particle system
. = meas(SdN−1(

√
N))−1 δSdN−1(

√
N) ∈ P(EN),

γ(v) := (2π)−d/2 exp(−|v |2/2),
FN

0 = [f ⊗N
in ]SdN−1(

√
N) = conditioned product measure.

In other words,
σN is γ-chaotic
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Proof of Theorem 2 part 1 : triangular inequality

• (a) On the one hand, we know from (4) (Kac, Janvresse, Carlen, Loss) that

∀N ≥ 1 W1(F
N(t), σN) ≤ ‖hNσN − σN‖TV

≤ ‖hN − 1‖L2(σN ) ≤ AN e−δ t , A > 1.

• (b) On the other hand, Theorem 1 and 2 write (for N ≥ 1)

sup
[0,∞)

W1(F
N(t), f (t)⊗N) + W1(σ

N , γ⊗N) ≤ θ(N) −→
N→∞

0.

• (c) We recall from (5) that

W1(f (t)⊗N , γ⊗N) ≤ ‖ft − γ‖L1
1
≤ Cf0 e−λ t .

• (d) Gathering estimates (b) and (c), we get

∀N ≥ 1 W1(F
N(t), σN(t)) ≤ θ(N) + Cf0 e−λ t

• (e) As a consequence of (a) and (d) we obtain the uniform (with respect to N)
convergence:

W1(F
N(t), σN (t)) ≤ min

(
2 θ(N) + Cf0 e−λ t , AN e−δ t

)
−→
t→∞

0

(choose (a) if ε t ≥ N and (d) if ε t ≤ N).
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Proof of Theorem 2 part 2 : interpolation inequality

• First, for (MG) we show that the relative Fisher information is
decreasing :

I (FN
t |σN) :=

1

N

∫

SN

|∇hN
t |2

hN
t

dσN ≤ I (FN
0 |σN)

• Next, because the Ricci curvature of SN is K = (N − 1)/N ≥ 0, we may
use the HWI inequality in weak CD(K ,N) geodesic space (Theorem 30.22,
Optimal Transport, Old & New, C. Villani), namely

H(FN
t |σN) ≤ I (FN

t |σN)

√

W2(F
N
t , σN)

≤ I (FN
0 |σN)C (W1(F

N
t , σN))1/4 → 0.

Remark. HWI is “similar” to the usual interpolation inequality

‖g‖L2 ≤ ‖g‖1/2
H1 ‖g‖1/2

H−1
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Quantitative answer to Kac’s problem 1

Theorem ((II-1) Uniform in time Kac’s chaos convergence)

sup
t∈[0,T )

∣
∣
∣
∣

∫

Ek

(

FN
k (t) − f ⊗k

t

)

ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

T ∈ (0,+∞],

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

f0 = fin ∈ P(E ) with enough moments bounded,
ft = evolution of one typical particle in the mean-field limit,
f ⊗N
t (V ) = ft(v1) ... ft(vN),

FN
0 is fin-chaotic, FN

t = evolution of N-particle system ∈ Psym(EN),

ϕ = ϕ1 ⊗ ... ⊗ ϕk , ϕj ∈ F ⊂ Cb(E ), ex: F = W 1,∞ or Hs ,

N ≥ 2 k.
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Main features 2

Our method is strongly inspired by Grünbaum work (1971) where he
claimed he proved convergence result for the hard spheres model.
But his proof is definitively wrong ! He essentially recovered the
non-constructive convergence result for the Maxwell cut-off model by
Kac & McKean.

We follow, complete and improve Grunbaum’s program;

The underlining philosophy is a numerical analyst intuition: based on
(A3) consistency estimate and (A4) stability estimate on the limit
PDE and refuse any compactness and probability arguments

◮ “consistency error” of order O(1/N1−ε) ∀ ε ∈ (0, 1);
◮ “stability error” of order O(1/N1/2), ∼ O(1/N1/d) or worst because

we write the equation in P(P(R3)) and we use some results from the
theory of the concentration of measure (at time t = 0): the worse error
is made at time t = 0 (and then it is not deteriorated by the flow);
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Main features 3

The θ function splits into

θ(N) = θ(k , N) = θ1(ϕ, N)
︸ ︷︷ ︸

O(1/N)

+ θ2(ϕ, T , N)
︸ ︷︷ ︸

O(1/N1−ε)∀ ε

+ θ3(ϕ, T ; FN
0 , f0)

︸ ︷︷ ︸

≤O(1/N1/2)

,

- θ2 is the worst term with respect to ϕ;

- θ3 is the worst term with respect to N dependence;

- θ3 is the only term depending on the initial data;
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Sketch of the proof of theorem II-1 (splitting) - proof I -

We split

〈

FN
t − f ⊗N

t , ϕ ⊗ 1⊗N−k
〉

=

=
〈

FN
t , ϕ ⊗ 1⊗N−k − Rϕ(µN

V )
〉

(= T1)

+
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

(= T2)

+
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

f ⊗k
t , ϕ

〉

(= T3)

where Rϕ is the “polynomial function” on P(R3) defined by

Rϕ(ρ) =

∫

Ek

ϕρ(dv1) ... ρ(dvk )

and SNL
t is the nonlinear semigroup associated to the nonlinear mean-field

limit equation by g0 7→ SNL
t g0 := gt .
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Estimate of (T1) thanks to a (A.F. Grunbaum’s?) combinatory trick - proof II -

|T1| =
∣
∣
∣

〈

FN
t , ϕ ⊗ 1⊗(N−k)(V ) − Rϕ(µN

V )
〉∣
∣
∣

=

∣
∣
∣
∣

〈

FN
t , ˜ϕ ⊗ 1⊗(N−k)(V ) − Rϕ(µN

V )

〉∣
∣
∣
∣

≤
〈

FN
t ,

2 k2

N
‖ϕ‖L∞(Ek )

〉

=
2 k2

N
‖ϕ‖L∞(Ek)

≤ 2 k3

N
‖∇ϕ‖L∞(Ek ) M1(F

N
1 (t)),

where we use that FN is symmetric and a probability and we introduce the
symmetrization function associated to ϕ ⊗ 1⊗(N−k) by

˜ϕ ⊗ 1⊗(N−k)(V ) =
1

♯SN

∑

σ∈SN

ϕ ⊗ 1⊗(N−k)(Vσ).
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Estimate of (T3) ≈ final argument of empirical measure method - proof III -

|T3| =
∣
∣
∣

〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

(SNL
t f0)

⊗k , ϕ
〉∣
∣
∣

=
∣
∣
∣

〈

FN
0 ,Rϕ(SNL

t µN
V ) − Rϕ(SNL

t f0)
〉∣
∣
∣

≤ [Rϕ]C0,1

〈

FN
0 ,W1(S

NL
t µN

V ,SNL
t f0)

〉

≤ k ‖∇ϕ‖L∞(Ek) CT

〈

FN
0 ,W1(µ

N
V , f0)

〉

≤ k ‖∇ϕ‖L∞(E) CT WW1
(F̂N

0 , δf0)

where
[Rϕ]C0,1 := sup

W1(ρ,η)≤1
|Rϕ(η) − Rϕ(ρ)| = k ‖∇ϕ‖L∞

and we assume that the nonlinear flow satisfies

(A5) W1(ft , gt) ≤ CT W1(f0, g0) ∀ f0, g0 ∈ P(E )
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

FN
0 ,TN

t (Rϕ ◦ µN
V ) − (T∞

t Rϕ)(µN
V )
〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
FN

0 7→ FN
t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

FN
0 ,TN

t (Rϕ ◦ µN
V ) − (T∞

t Rϕ)(µN
V )
〉

=
〈

FN
0 , (TN

t πN − πNT∞
t )Rϕ

〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
FN

0 7→ FN
t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);

πN = projection C (P(E )) → C (EN) defined by (πNΦ)(V ) = Φ(µN
V ).
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 =
〈

FN
0 , (TN

t πN − πNT∞
t )Rϕ

〉

=

〈

FN
0 ,

∫ T

0
TN

t−s (ΛNπN − πNΛ∞)T∞
s ds Rϕ

〉

=

∫ T

0

〈

FN
t−s , (Λ

NπN − πNΛ∞) (T∞
s Rϕ)

〉

ds

where

ΛN is the generator associated to TN
t and Λ∞ is the generator

associated to T∞
t .

Now we have to make some assumptions

(A1) FN
t has enough bounded moments;

(A2) Λ∞Φ(ρ) = 〈Q(ρ),DΦ(ρ)〉;
(A3) (ΛNπNΦ)(V ) = 〈Q(µN

V ),DΦ(µN
V )〉 + O([Φ]C1,a/N)

(A4) SNL
t ∈ C 1,a(P(E );P(E )).
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A parentesis: the C 1,a space, a ∈ (0, 1]

“Differential calculus” on P(E ) :
- see P(E ) as an embedded manifold of F ′, F ⊂ UCb(E ),
- expansion of Φ up to order 1 + a in each point
- much more simpler that the “differential calculus” developed in “gradient
flow theory”

Φ ∈ C 1,a(P(E ); R) if Φ ∈ C (P(E )) and ∃DΦ : P(E ) → C (E )

∀µ, ν ∈ P(E )
∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣ ≤ C ‖ν − µ‖1+a

TV .

We define

[Φ]a = sup
µ,ν∈P(E)

∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣

‖ν − µ‖1+a
TV

.

Remark. For any ϕ ∈ W 2,∞(E k), Rϕ ∈ C 1,1(P(E )) and

[Rϕ]1 ≤ k2 ‖ϕ‖W 2,∞(Ek ).
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Estimate of (T2) : the cornerstone of the proof - proof V -

T2 ≤
∫ T

0
M0(F

N
t−s) ‖(ΛNπN − πNΛ∞) (T∞

s Rϕ)‖L∞(EN ) ds

(A3)

≤
∫ T

0

C

N
[T∞

s Rϕ]C1,a ds

≤ C

N

∫ T

0
[Rϕ ◦ SNL

t ]C1,a ds

≤ C

N

∫ T

0
[Rϕ]C1,1 [SNL

t ]C1,a ds

≤ C

N
k2 ‖ϕ‖W 2,∞

∫ T

0
[SNL

t ]C1,a ds
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A possible conclusion is :

〈

FN
k (t) − f (t)⊗N , ϕ

〉

≤

≤ Ck

(‖∇ϕ‖L∞

N
+ C

(A4)
T

‖ϕ‖W 2,∞

Na
+ C

(A5)
T ‖∇ϕ‖L∞ WW1

(F̂N
0 , δf0)

)

and

sup
[0,T )

sup
‖ϕ‖

W 2,∞≤1

〈

FN
k (t) − f (t)⊗N , ϕ

〉

≤

≤ Ck

(

1

N
+

C
(A4)
T

Na
+ C

(A5)
T WW1

(F̂N
0 , δf0)

)

with T = ∞ if

sup
t≥0

[SNL
t ]

C0,1
W1

+

∫ ∞

0
[SNL

t ]
C1,a

TV
dt < ∞.
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Checking the hypothesis (A2) and (A3)

(A2) The nonlinear semigroup SNL
t and operator Q are C 0,a for the total variation

norm. As a consequence ∀Φ ∈ C 1,a(P(E )), ∀f0 ∈ P2(E )

(Λ∞Φ)(f0) =
d

dt
(T∞

t Φ)(f0)|t=0 =
d

dt
Φ(ft)|t=0 = lim

t→0

Φ(ft) − Φ(f0)

t

= lim
t→0

{〈
ft − f0

t
, DΦ[f0]

〉

+ O
(‖ft − f0‖1+a

TV

t

)}

=

〈
dft
dt

|t=0, DΦ[f0]

〉

= 〈Q(f0), DΦ(f0)〉

(A3) Consistency: ∀Φ ∈ C 1,a(P(E )), set φ = DΦ[µN
V ], and compute

ΛN(Φ ◦ µN
V ) =

1

2N

N∑

i ,j=1

B(vi − vj)

∫

S2

b [Φ(µN
V ′

ij
) − Φ(µN

V )] dσ

=
1

2N

∑

i ,j

B(vi − vj)

∫

S2

b 〈µN
V ′

ij
− µN

V , φ〉 dσ = 〈Q(µN
V ), φ〉

+
1

2N

∑

i ,j

B(vi − vj)

∫

S2

O(‖µN
V ′

ij
− µN

V ‖1+a
TV ) dσ = O(1/Na)

S.Mischler (CEREMADE & IUF) Kac’s program March 16, 2011 51 / 55



Checking the hypothesis (A4) and (A5)

(A4) The Boltzmann flow SNL
t is C 1,a in total variation norm:

∀ ρ ∈ Pk (Rd), ∀ t ≥ 0 there exists Lt [ρ] ∈ C (R3) ∀ η ∈ Pk (Rd )

SNL
t (η) = SNL

t (ρ) + Lt [ρ](η − ρ) + O( ‖η − ρ‖1+a
TV )

= SNL
t (ρ) + Lt [ρ](η − ρ) + O(e−λ t ‖η − ρ‖1+a

TV )

(A5) The Boltzmann flow SNL
t is C 0,1 in weak distance (Tanaka, Toscani-Villani,

Fournier-Mouhot): ∀ ρ, η ∈ Pk (Rd ), ∀ t ≥ 0 there holds

W1(S
NL
t (η), SNL

t (ρ)) ≤ CT W1(η, ρ)

≤ Ω(W1(η, ρ)) uniform in time
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Concluding remarks

We have proved a quantified version of chaos propagation which is furthermore
uniform in time (for the Boltzmann model)

That result can be seen as a “quantitative version” of BBGKY hierarchy method

First ingredient to estimate the convergence of TN
t πN to πN T∞

t as operators
acting from C (P(E )) with values in C (EN) which is a consequence of

- a stability result (expansion of order > 1) for the nonlinear semigroup
- consistency result on the associated generators

That requires to develop a “differential calculus” on P(E ) seen as an embedded
manifold of F ′, F ⊂ UCb(E )

Second ingredient equivalent formulations of Kac chaos and interpolation
independent of the dimension (HWI)
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Open problems

- T = +∞ with optimal rate θ(N) = O(N−1/2);

- more general cross-section (true hard or soft potential) and Landau
equation;

- Vlasov equation and McKean-Vlasov equation with singular interactions;

- (quantitative) propagation of entropy chaos sup[0,T ] H(FN
t |f ⊗t ) ≤ θH(N);

- quantification of the chaos for the equilibrium state (elastic or inelastic
Boltzmann model)

- rate of convergence to equilibrium for the nonlinear PDE from the
analysis of the N-particle system dynamic

- for the inelastic Boltzmann equation + diffuse excitation can we deduce
from the N → ∞ limit

d

dt
H(f (t)|g) ≤ 0

where g stands for the unique steady state?
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