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Physics and Historic question:

derivation of kinetic/fluid equations from particles motion

Maxwell and Boltzmann XIX century
Hilbert’s sixth problem (ICM 1900 Paris):
Mathematical Treatment of the Axioms of Physics ?

That means : how to derive rigorously the equations of continuum fluid
mechanics (as well as and before, kinetic equations) from the first principle
(Newton first law of motion)
(for many-particle dynamics) ?

In other words: can we rigorously derive the mesoscopic
(= statistic) dynamics and the macroscopic (= fluid) dynamics from the
description of miscroscopic dynamics ?
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Boltzmann-Grad limit to Boltzmann equation

“Boltzmann-Grad” limit (Grad 50s) formally derive the Boltzmann
equation from particle systems

Best (and astonishing result) to this date: Lanford 1974 proves
rigorously the limit for very short time (shorter than the free mean
path). Idea: use Bogoliubov (or BBGKY) hierarchy

Why is it hard? Reversible dynamics on the particle system,
irreversible dynamics at the Boltzmann level (“H-theorem”)!

Related to the mysterious and still poorly understood
“stosszahlansatz” (molecular chaos assumption)

Making the Boltzmann-Grad limit rigorous for arbitrary large time
remains a major open problem 1

From Boltzmann to Navier-Stokes by Bardos, Golse, Levermore,
Lions, Masmoudi, Saint-Raymond (90’-2001)
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mean-field limit to Vlasov equation

Derive the Vlasov-Poisson equation from Newton first principle (N
particles evolve according to Hamiltonian dynamic associated to
Coulombian potential) in the “mean-field” limit

Neunzert, Braun & Hepp 70s derive the Vlasov equation for smooth
and bounded potential, improved by Hauray, Jabin 2007 allowing
(too) soft singularity.

idea: use empirical measures

∀Y = (y1, ..., yN ) ∈ EN define µN
Y (dy) :=

1

N

N∑

i=1

δyi
(dy)

Y (t) solution to an edo ⇒ µN
Y (t) solution to the associated transport

equation. One has to prove (Lipschitz) stability in the probability space
P(E ) (for a weak distance)

However, making that mean field limit rigorous for the true singular
potential remains a major open problem 2
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Less ambitious Kac program (1956)

Derive the (space homogeneous) Boltzmann equation from a jump (collisional)
process. First rigorous mathematic treatment of the deduction of Boltzmann
equation from microscopic dynamics.
Kac introduced the notion of chaos

Kac stressed two open questions

- Hard spheres model: “The above proof suffers from the defect that it works only if the
restriction on time is independent of the initial distribution. It is therefore inapplicable to the
physically significant case of hard spheres because in this case our simple estimates yield a time
restriction which depends on the initial distribution. A general proof that Boltzmann’s property
propagates in time is still lacking”

→ proved by Sznitman 1984 (nonlinear martingale approach, compactness and
uniqueness arguments)

- Uniform spectral gap: Deduce spectral gap/exponential trend to equilibrium for
the nonlinear Boltzmann eq from the spectral gap for the family of Master eqs

→ proved by a direct way by Mouhot 2006 (using : linearized L2 spectral gap

Grad 63; L1 moments Povzner 1965, quantitative H-theorem: Carlen, Carvalho

1992)
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Four key-notions

Mean field limit for a system of particles:

◮ N undistinguishable particles, any of them undergoes the action of

order
1

N
from the N − 1 other particles

◮ N particles evolve according to a Markov (collisional) process

◮ prove the LLN for the N particles when N → ∞

propagation of chaos (= “weak” independence of coordinates of a
stochastic vector)

chaos quantification: rate of convergence depending on the number N of
particles

uniform in time mean field limit
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Deterministic N-particle system

N-particle system. We consider a states or admissible configurations space E .
We take E ⊂ Rd .

The configuration of a deterministic N-particle system is described by a point in
the phases state, and thus by

its state variable Y = (y1, ..., yN) ∈ EN .

A physical system is then described as

Ȳ = optimal solution to a stationary problem ∈ EN ,

Y (t) = solution to a evolution problem ∈ EN .

When particles are undistinguishable the phase space becomes EN/SN and the
system is equivalently described by

the associated empirical µN
Y ∈ P(E ),

with

µN
Y (dy) :=

1

N

N∑

i=1

δyi (dy) ∈ P(E ).
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Stochastic N-particle system

When the system is stochastic the above state variable is a random variable. One
can choose to describe the system thanks to a probability density (= law of the
above mentioned random variable). In that case, the system is described by

the law f N ∈ P(EN)/Psym(EN) of the random variable Y ,

and physical system as

f̄ N = optimal solution to a stationary problem ∈ P(EN)/Psym(EN),

f N(t) = solution to a evolution problem ∈ P(EN)/Psym(EN),

where Psym(EN) stands for the space of symmetric probabilities on EN , i.e.
invariant under coordinates permutations. The fact that we deal with Psym(EN),
instead of P(EN), comes from that we assume the particles undistinguishable.
In that case, we can also describe the system by

the law f̂ N = πN
P f N ∈ P(P(E )) of the random varibale µN

Y .

Notice that randomness may be the result of:
- the evolution dynamic itself;
- the initial datum which is not known with certainty, the evolution dynamic being
deterministic
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The limit (or mean field or of the typical particle) equation

Law of the typical particle: that is a probability measure f (t) ∈ P(E ) defined as
the solution of a nonlinear PDE equation (or a stochastic process Y (t) defined as the

solution of a nonlinear martingale problem, and then f (t) := L(Y (t)).

N-particle system is described by

X (t) ∈ EN ↔ µN
X ∈ P(E )

f N(t) ∈ P(EN)

f̂ N(t) ∈ P(P(E )) ↔ f N
k (t) ∈ P(E k)∀ k ≤ N

where f N
k is the k-th marginal of f N defined by

f N
k :=

∫

EN−k

f N(., dxk+1...dxN) ∈ P(E k).

How to deduce the behavior of the typical particle from the behavior of the
N-particle system ?

Pb 1: Law of large numbers: µN
X (t) ⇀ f (t) or f N

1 ⇀ f (t) when N → ∞
Pb 2: propagation of chaos: f N

k ⇀ f (t)⊗k when N → ∞
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Example 1: ODE / Vlasov

In E = Rd , we consider a system of N undistinguishable deterministic particles in
interaction which dynamic is given by

ẋi = Ai (X ), xi (0) = initial datum, 1 ≤ i ≤ N ,

with a interaction term of “mean field” type

Ai (X ) =
1

N

∑

j 6=i

a(xj − xi ) =
N − 1

N
(a ⋆ µN−1

X̂ i
)(xi )

=
1

N

N∑

j=1

a(xj − xi ) = (a ⋆ µN
X )(xi ) =: A(xi , µ

N
X ),

if a : E → E is smooth, and we can then choose a(0) = 0.

The system is therefore described by the trajectory

XN(t) = (xN
1 (t), ..., xN

N (t)) =: Tt(X ) ∈ EN

obtained as the solution of a ODE.
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Alternatively; one can introduce the empirical measure

f N(t, dx) :=
1

N

N∑

i=1

δxN
i (t)(dx) ∈ P(E ),

which solves the Vlasov equation (the associated mean field equation)

∂t f = Q(f , f ) := −div(A(x , f ) f ) (0,∞) × E .

Other possibility consist in introducing

FN(t, dY ) := δXN (t)(dY ) ∈ P(EN),

which solves the Master (Liouville) equation

∂tF = ANF := −
N∑

i=1

divi (Ai (X )F ) (0,∞) × EN .

That last equation can also be solved in Psym(EN) for any initial law FN
0 (dY )

which correspond to deterministic or random initial datum.
In that case FN(t, .) := Tt♯F

N
0 with (mass transport formula)

∫

EN

ϕ(V ) (Tt♯F
N
0 )(dV ) :=

∫

EN

ϕ(Tt(V ))FN
0 (dV )
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Method 1: empirical measure

f N solves the Vlasov equation

∂t f
N = −div(A(x , f N) f N), f N

0 = µN
XN

0
.

If D1 is a distance onP(E ), for instance D1 = Wp is the
Monge-Kantorovich-Wasserstein distance, if D1(f

N
0 , f0) → 0 and if f solves the

Vlasov equation
∂t f = −div(A(x , f ) f ), f (0, .) = f0,

then
sup
[0,T ]

D1(f
N , f ) ≤ CT D1(f

N
0 , f0) → 0.

Remark. That is not the chaos propagation, but we may deduce of it a quantified chaos
propagation

sup
[0,T ]

D∞(FN , δf ) ≤ CT D∞(FN , δf ) → 0.
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Example 2: SDE / McKean-Vlasov

In E = Rd , we consider a system of N undistinguishable particles

XN(t) = (xN
1 (t), ..., xN

N (t)) ∈ EN

in stochastic interaction

dxi = (a ⋆ µN
X )(xi ) dt + dB i

t

for a family B1
t , ... BN

t of independent Brownian motions.

Ito formula implies

FN(t, dY ) = law of XN(t)

salsifies the Master (Kolomogorov) equation

∂tF = ANF := −
N∑

i

∆iF −
N∑

i=1

divi (Ai (X )F ) (0,∞) × EN

and the associated mean field equation is the McKean-Vlasov equation

∂t f = Q(f , f ) := −1

2
∆f + div(A(x , f ) f ) = 0 (0,∞) × E
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Method 2: coupling

We introduce Y the solution to a subsidiary problem such that the coordinates
Y1, ... YN are independent stochastic processes and we prove

sup
[0,T ]

E
( 1

N

N∑

j=1

|Xj(t) − Yj(t)|
︸ ︷︷ ︸

=:distance in EN

)

≤ CT√
N

That implies

sup
[0,T ]

E

∣
∣
∣
∣

∫

E

ϕ(z)µN
X (t)(dz) −

∫

E

ϕ(z)µN
Y (t)(dz)

∣
∣
∣
∣
≤ CT ‖ϕ‖Lip√

N

The Yj are built in such a way that L(Yj ) is the solution to the McKean-Vlasov
equation. That implies µN

Y ⇀ f if µN
Y0

⇀ f0 with f solution to the McKean-
Vlasov equation associated to the initial datum f0, and moreover when Yj,0 ∼ f0
the above convergence may be quantified and is of order 1/N (LLN)
Thanks to a triangular inequality, we conclude with

sup
[0,T ]

E

∣
∣
∣
∣

∫

E

ϕ(z)µN
X (t)(dz) −

∫

E

ϕ(z) ft(dz)

∣
∣
∣
∣
≤ CT√

N
.
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Example 3: N-particle Boltzmann-Markov process

N-particle system V = (v1, ..., vN), vi ∈ E = R3 undergoing random Boltzmann
type collisions.
Markov process (Vt)t≥0 defined step by step as follows:
(i) draw randomly ∀ (vi ′ , vj′ ) collision time Ti ′,j′ ∼ Exp(Φ(|vi ′ − vj′ |)); then
select the post-collisional velocity (vi , vj) such that

Ti ,j = min
(i ′,j′)

Ti ′,j′ .

(ii) draw randomly σ ∈ S2 according to the density law b(cos θ) with
cos θ = σ · (vi − vj)/|vi − vj | and define the post-collisional velocities (v∗

i , v
∗
j )

thanks to

v∗
i =

vi + vj

2
+

|vj − vi |
2

σ, v∗
j =

vi + vj

2
− |vj − vi |

2
σ.

Observe that momentum and energy are conserved

v∗
i + v∗

j = vi + vj , |v∗
i |2 + |v∗

j |2 = |vi |2 + |vj |2.
Finally, this two bodies collisions jump process satisfies

∑

i=1

vi (t) = cst,
∑

i=1

|vi (t)|2 = cst.
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Example 3: Master equation for the N-particle system

Equivalently, after time rescaling, the motion of the N-particle system is
given through the master equation on the law FN

t ∈ P(EN) which in dual
form reads

∂t〈Ft , ϕ〉 = 〈FN
t ,G

Nϕ〉 ∀ϕ ∈ Cb(E
N)

with GN = (AN)∗ given by

(GNϕ)(V ) =
1

N

N∑

i ,j=1

Φ(|vi − vj |)
∫

S2

b(cos θij) [ϕ∗
ij − ϕ] dσ,

where ϕ = ϕ(V ), ϕ∗
ij = ϕ(V ∗

ij ), V ∗
ij = (v1, .., v

∗
i , .., v

∗
j , .., vN).

Maxwell interactions with cut-off: Φ = 1, b = 1;

Maxwell interactions without cut-off: Φ = 1, b /∈ L1 ;

Hard spheres interactions: Φ(z) = |z |, b = 1.
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The nonlinear Boltzmann equation

Nonlinear homogeneous Boltzmann equation on P(R3) defined by

∂t ft = Q(ft , ft), f0 ∈ P2(R
3)

with

〈Q(f , f ), ϕ〉 :=

∫

R6×S2

|w1 − w2| b(θ) (φ(w ′
2) − φ(w2)) dσ f (dw1) f (dw2)

where

w ′
2 =

w1 + w2

2
+

|w2 − w1|
2

σ.

The equation generate a nonlinear semigroup

∀ f0 ∈ P2(R
3) St f0 := ft .
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Method 3: Kac and BBGKY hierarchy

Naive idea: 1-marginal
∂t f

N = AN f N

implies

∂t f
N
1 = (AN f N)1 = AN,2f

N
2 → ∂tπ1 = A2π2 and ? ...

We carry on the idea by taking ℓ-th marginal

Start from a N-particle system

∂t f
N = AN f N or f N(t) = et AN f N

0 =
∞∑

k=0

tk

k!
Ak

N f ⊗N
0

Write the equation for the ℓ-th marginal distribution

∂t f
N
ℓ = AN,ℓ+1 f N

ℓ+1 or f N
ℓ (t) =

∞∑

k=0

tk

k!
(Ak

N f ⊗N
0 )ℓ

Unclosed equation when ℓ < N .
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Kac’s method: 2-marginal and Wild sum (for Maxwell molecules)

Kac’s argument: take ϕ ∈ Cb(E
ℓ) and write the dual identity

〈f N
ℓ (t), ϕ〉 =

∞∑

k=0

tk

k!
〈f ⊗N

0 ,Ak
N(ϕ⊗ 1⊗N−ℓ)〉

Pass now to the limit N → ∞

〈πℓ(t), ϕ〉 =

∞∑

k=0

tk

k!
〈f ⊗k+ℓ

0 , ϕk〉, ϕk ∈ C (E k+ℓ).

For ϕ,ψ ∈ C (E ) Kac proves

(ϕ⊗ ψ)k =

k∑

i=0

k!

i ! (k − i)!
ϕi ⊗ ψk−i

so that we may recognize

〈π2(t), ϕ⊗ψ〉 =
∑

i≤k

tk

i ! (k − i)!
〈f ⊗k+2

0 , ϕi⊗ψk−i 〉 = 〈π1(t), ϕ〉 〈π1(t), ψ〉.
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BBGKY hierarchy method

We come back to the family of equations on the marginals of order ℓ

∂t f
N
ℓ = AN,ℓ+1 f N

ℓ+1,

which (again) are unclosed equations if ℓ < N .

We pass to the limit N → ∞

(∗) ∂tπℓ = Aℓ+1 πℓ+1.

We obtain a family of solutions (πℓ)ℓ≥1 to an infinite hierarchy of equations

We remark that π̄ℓ(t) = f (t)⊗ℓ is a solution of (∗). we also remark that if
we are able to prove that (∗) admits a unique solution then πℓ = π̄ℓ. We
conclude by establishing the uniqueness of the solution of (∗).

The following result is a “quantified version” of the above method
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Main result 1 - vague version

Theorem (Uniform in time chaos convergence (in the sense of
convergence in law of any k-marginals))

sup
t∈[0,T )

∣
∣
∣
∣

∫

EN

(

f N
t − f ⊗N

t

)

ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

T ∈ (0,+∞],

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

f0 = fin ∈ P(E ) with enough moments bounded,
ft = evolution of one typical particle in the mean-field limit,
f ⊗N
t (V ) = ft(v1) ... ft(vN),

f N
0 = f ⊗N

in , f N
t = evolution of N-particle system ∈ Psym(EN),

ϕ = ϕ1 ⊗ ...⊗ ϕk , ϕj ∈ F ⊂ Cb(E ), ex: F = W 1,∞ or Hs ,

N ≥ 2 k.
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Main result 2 - for Boltzmann model

Theorem (Chaoticity of the N-particle steady states)
∣
∣
∣
∣

∫

EN

(

γN − γ⊗N
)

ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

γN := steady state for the N-particle system
. = meas(SdN−1(

√
N))−1 δSdN−1(

√
N) ∈ P(EN),

γ(v) := (2π)−d/2 exp(−|v |2/2),
ϕ = ϕ1 ⊗ ...⊗ ϕk , ϕj ∈ Hs ,

N ≥ 2 k,

f N
0 = [f ⊗N

in ]SdN−1(
√

N) = conditioned product measure.

In other words,
γN is γ-chaotic
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Main result 3 - Boltzmann model for Maxwell molecules

Theorem (Uniform in N spectral gap (in the sense of convergence in
law of any k-marginals))

sup
t≥T

sup
N

∣
∣
∣
∣

∫

EN

(

f N
t − γN

)

ϕ dV

∣
∣
∣
∣
≤ εk(T ) −→

T→∞
0,

≈ f N
t −→

t→∞
γN uniformly in N.

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

f N
0 = [f ⊗N

in ]SdN−1(
√

N),

f N
t = evolution of N-particle system ∈ Psym(EN),

ϕ = ϕ1 ⊗ ...⊗ ϕk , ϕj ∈ F ⊂ Cb(E ), ex: F = W 1,∞ or Hs ,

k ∈ N
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Main features

We prove propagation of chaos with quantitative rates

Most importantly and new: estimates are uniform in time

⇒ N → ∞ limit and t → ∞ limit commute!

We may deal with mixtures of Vlasov, McKean and Boltzmann models.

Two important physical collision models: hard spheres and Maxwell
molecules without cutoff ⇒ Give quantitative estimates of previous
non-constructive convergence result (Sznitman 1984)

The method is “almost” new. It is strongly inspired by Grünbaum work
(1971) where he claimed he proved convergence result for the hard spheres
model. But his proof is definitively wrong ! He essentially recovered the
non-constructive convergence result for the Maxwell cut-off model by Kac &
McKean.

The underlining philosophy is a numerical analyst intuition: identity (1)
consistency estimates and (2) stability estimates on the limit PDE and
refuse any compactness and probability arguments
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Main features again

We follow, complete and improve Grunbaum’s program;

analysis argument (no probability!). The cornerstone of the proof: to
prove accurate “stability estimates” on the nonlinear 1-typical particle
flow;

consistency of order O(1/N1−ε) ∀ ε ∈ (0, 1);

error of order O(1/N1/2), ∼ O(1/N1/d ) or worst because we write
the equation in P(P(R3)) and we use some results from the theory of
the concentration of measure (at time t = 0): the worse error is made
at time t = 0 (and then it is not deteriorated by the flow);
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Main result - Remarks

(a) For k = 1 we deduce that

f N
1 (t) :=

∫

EN−1

f N
t dv2 ... dvN −→

N→∞
f (t).

The density f N
1 (t) of one typical particle of the N-particle system behaves

as f (t) the solution of the mean-field (nonlinear) equation. That proves
the mean-field convergence ≈ law of large numbers.

(b) The assumption f N
0 = f ⊗N

in (or ≈ f ⊗N
in in the sense that f N

0 is
fin-chaotic) is strong. The mean-field limit only holds when molecular
chaos holds at the initial time.
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Main result - Remarks

(c) The conclusion is also stronger than a mere law of large number
because for any k ≥ 1

f N
k (t) −→

N→∞
f (t)⊗k .

That is the Kac’s definition of chaos.

Definition (Chaos - Kac 1956)

A sequence f N ∈ Psym(EN) is f -chaotic, f ∈ P(E ), if for any k ≥ 1

f N
k ⇀

N→∞
f ⊗k weakly in P(E k),

where the k-th marginal f N
k of f N is defined by

f N
k :=

∫

EN−k

f Ndvk+1 ... dvN ,

and the convergence is the the weak ∗ σ(M1(E k),Cb(E k)) convergence.
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Main result - Remarks

(d) In other words, f N
0 is f0-chaotic implies f N

t is ft -chaotic.

(e) The notion of chaos is closed (wider) to the notion of independence in
probability theory. If V is a stochastic variable in EN such that the
coordinates are independent variables and have same law f ∈ P(E ) then
V ∼ f ⊗N . In the case of chaos the tensorization structure is required only
asymptotically when N → ∞.

(f) Be careful that even when f N
0 = f ⊗N

0 we never have f N
t = g⊗N

t for a
given N (except when there is no interaction between the particles of the
N-particle system!). The “independence” (in a weak sense) is recovered
only in the limit
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Main result - Remarks

(g) The θ function splits into

θ(N) = θ(k,N) = θ1(ϕ,N) + θ2(ϕ,T ,N) + θ3(ϕ,T ; f N
0 , f0),

- with θ1 ≈ C0/N, θ2 ≈ Cε/N
1−ε for any ε > 0, and never better than

θ3 ≤ C N−1/2, so that θ3 is the worst term;

- θ3 is the only term depending on the initial data;

- θ3(ϕ,T ; ·) behaves like a distance between f N
0 and its (possibly) chaos

limit f0;

- Our error estimate θ(N) makes sense for any given initial data f0 and
f N
0 . We do not ask the initial datum f N

0 to be f0-chaotic. Of course, more
f N
0 “is closed to chaoticity” more f N

t will be.
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Main result - Remarks

(h) We can remove the function ϕ and the integer k by defining

D(gN ; g) := sup
k≥1

sup
‖ϕi‖F≤1

1

k3

∣
∣
∣〈gN − g⊗N , ϕ⊗ 1⊗N−k〉

∣
∣
∣ ,

and proving
sup
[0,T )

D(f N
t ; ft) ≤ θ̃(N) → 0.

(i) We are not able to prove that

sup
[0,T ]

D(f N
t ; ft) ≤ C

(
1

Nα
+ D(f N

0 , f0)

)

for some “distance” D which measures how close to a chaos state
”g ∈ P(E )” is a probability gN ∈ Psym(EN) and C , α > 0.
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Main result - Remarks

(j) If we accept a bad estimate rate, we may deduce

sup
[0,T )

W1(f
N
k , (t), f (t)⊗k) ≤ θk(N)

(k) Our theorem applies to the Vlasov model and the McKean-Vlasov at
least for smooth and bounded coefficients, and for the space homogeneous
Boltzmann equation in the following cases:

- true Maxwell molecules (without cut-off) cross-section
- hard spheres cross-section
- hard potential with Grad’s cut-off cross-section

(l) For the Boltzmann equation and the McKean-Vlasov equation we can
chose T = +∞.
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Main result - Remarks

(m) It is worth mentioning that the result for k = 2 implies that f N
t is

ft-chaotic, that means the result for any k ≥ 2. However, if one proceeds
along this line the distance estimate θ(k,N) will be very bad (the decay
with respect to N will be very low).

(n) A stronger estimate (stronger topology and taking into account all the
N-particle distribution) should be

sup
[0,T ]

HN(f N
t ; ft) ≤ θH(N)

with

HN(gN ; g) :=
1

N

∫

EN

gN log
gN

g⊗N
dV .
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Main result - Remarks

(o) Open problems:

- T = +∞ with optimal rate θ(N) = O(N−1/2);

- more general cross-section (true hard or soft potential) and Landau
equation;

- Vlasov equation and McKean-Vlasov equation with singular interactions;

- the entropy convergence sup[0,T ] HN(f N
t ; ft) ≤ θH(N);

- quantification of the chaos for the equilibrium state (elastic or inelastic
Boltzmann model)

- rate of convergence to equilibrium for the nonlinear PDE from the
analysis of the N-particle system dynamic

- for the inelastic Boltzmann equation + diffuse excitation can we deduce
from the N → ∞ limit

d

dt
H(f (t)|g) ≤ 0

where g stands for the unique steady state?
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Proof of Theorem 3

• (1) Theorem 1 and 2 write (for N ≥ 2 k)

sup
[0,∞)

∣
∣
∣
∣

∫

E k

(
f N
k (t) − f (t)⊗k

)
ϕ dV

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

E k

(
γN

k − γ⊗k
)
ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

• (2) We know (from Carlen, Carvalho, and then Villani, Mouhot 90’-2006) that

‖ft − γ‖L1 ≤ Cf0 e−λ t .

• (3) Gathering these estimates, we get

∀N ≥ 2k

∣
∣
∣
∣

∫

(f N
k (t) − γN

k )ϕ

∣
∣
∣
∣
≤ 2 θ(N) + k Cf0 e−λ t

• (4) On the other hand, we know (from Kac, and then Carlen, Loss) that

∀N ≥ k

∣
∣
∣
∣

∫

(f N
k (t) − γN

k )ϕ

∣
∣
∣
∣
≤ CN,f N

0
e−λN t .

• (5) As a consequence of (3) and (4) we obtain the uniform (with respect to N)
convergence:

∣
∣
∣
∣

∫

(f N
k (t) − γN

k )ϕ

∣
∣
∣
∣
≤ min

(

2 θ(N) + k Cf0 e−λ t ,CN,f N
0

e−λN t
)

−→
t→∞

0
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Sketch of the proof of theorem 1 (spltting) - I -

We split

〈

f N
t − f ⊗N

t , ϕ ⊗ 1⊗N−k
〉

=

=
〈

f N
t , ϕ⊗ 1⊗N−k − Rϕ ◦ µN

V

〉

(= T1)

+
〈

f N
t ,Rϕ(µN

V )
〉

−
〈

f N
0 ,Rϕ(SNL

t µN
V )
〉

(= T2)

+
〈

f N
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

(SNL
t f0)

⊗k , ϕ
〉

(= T3)

where Rϕ is the “polynomial function” on P(R3) defined by

Rϕ(ρ) =

∫

Ek

ϕρ(dv1) ... ρ(dvk )

and SNL
t is the nonlinear semigroup associated to the nonlinear mean-field

limit by g0 7→ SNL
t g0 := gt .
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Sketch of the proof of theorem 1 (T1) - II -

T1 : A combinatory trick.

Define the symmetrical function associated to ϕ⊗ 1⊗(N−k) by

˜ϕ⊗ 1⊗(N−k)(V ) =
1

♯SN

∑

σ∈SN

ϕ⊗ 1⊗(N−k)(Vσ).

Lemma (A.F. Grunbaum)

N ≥ 2k sup
V∈R3N

∣
∣
∣
∣

˜ϕ⊗ 1⊗(N−k)(V ) − Rϕ(µN
V )

∣
∣
∣
∣
≤

2 k2 ‖ϕ‖C(Ek )

N

Because f N is symmetric and a probability we get

|T1| ≤ θ1(N) :=
2 k2 ‖ϕ‖C(Ek )

N
.
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Proof of Grunbaum’s lemma - III -

With AN,k := {(i1, ..., ik ); iℓ 6= iℓ′ ∀ ℓ 6= ℓ′}, BN,k := Ac
N,k

Rϕ(µ̂N
X ) =

1

Nk

N∑

i1,...,ik=1

ϕ(xi1 , ..., xik )

=
1

Nk

∑

(i1,...,ik)∈AN,k

ϕ(xi1 , ..., xik ) +
1

Nk

∑

(i1,...,ik)∈BN,k

ϕ(xi1 , ..., xik )

=
1

Nk

1

(N − k)!

∑

σ∈SN

ϕ(xσ(1), ..., xσ(k)) + O
(

k2

N
‖ϕ‖∞

)

=
1

N!

∑

σ∈SN

ϕ(xσ(1), ..., xσ(k)) + O
(

2
k2

N
‖ϕ‖∞

)

S.Mischler (CEREMADE & IUF) Quantitative Chaos Propagation 2010 44 / 63



Sketch of the proof of theorem 1 (T3) - IV -

T3 : Assume that the nonlinear flow satisfies

(A5) W1(ft , gt) ≤ CT W1(f0, g0) ∀ f0, g0 ∈ P(E )

Then

|T3| =
∣
∣
∣

〈

f N
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

(SNL
t f0)

⊗k , ϕ
〉∣
∣
∣

=
∣
∣
∣

〈

f N
0 ,Rϕ(SNL

t µN
V ) − Rϕ(SNL

t f0)
〉∣
∣
∣

≤ [Rϕ]C0,1

〈

f N
0 ,W1(S

NL
t µN

V ,S
NL
t f0)

〉

≤ [Rϕ]C0,1 CT

〈

f N
0 ,W1(µ

N
V , f0)

〉

and we have to estimate

ΩN(f0) :=
〈

f ⊗N
0 ,W1(µ

N
V , f0)

〉

.
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Sketch of the proof of theorem 1 (T3) - V -

Rachev and Rüschendorf establish (functional LLN)

〈
f ⊗N
0 ,W 2

2 (µN
V , f0)

〉
≤ C (f0)

N2/(d+4)

We also establish
〈
f ⊗N
0 , ‖µN

V − f0‖2
H−d/2−1/2

〉
≤ C (f0)

N

More generally we may recognize

〈
f N
0 ,W1(µ

N
V , f0)

〉
=

∫

P(E)×P(E)

W1(g , h) f̂ N
0 (dg) δf0(dh)

= inf
π∈Π(f̂ N

0 ,δf0
)

∫

P(E)×P(E)

W1(g , h)π(dg , dh) = W1(f̂
N
0 , δf0)

where f̂ N
0 , δf0 ∈ P(P(E )) and f̂ N

0 (Φ) = 〈f N
0 ,Φ(µN)〉.

We conclude thanks to : (f N
0 is f0-chaotic) ⇔ (f̂ N

0 → δf0) (Hewitt-Savage theorem)
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Sketch of the proof of theorem 1 (T2) - VI -

T2 : We write

T2 =
〈

f N
t ,Rϕ(µN

V )
〉

−
〈

f N
0 ,Rϕ(SNL

t µN
V )
〉
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Sketch of the proof of theorem 1 (T2) - VI -

T2 : We write

T2 =
〈

f N
t ,Rϕ(µN

V )
〉

−
〈

f N
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

f N
0 ,T

N
t (Rϕ ◦ µN

V ) − (T∞
t Rϕ)(µN

V )
〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
f N
0 7→ f N

t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);
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Sketch of the proof of theorem 1 (T2) - VI -

T2 : We write

T2 =
〈

f N
t ,Rϕ(µN

V )
〉

−
〈

f N
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

f N
0 ,T

N
t (Rϕ ◦ µN

V ) − (T∞
t Rϕ)(µN

V )
〉

=
〈

f N
0 , (T

N
t πN − πNT∞

t )Rϕ

〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
f N
0 7→ f N

t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);

πN = projection C (P(E )) → C (EN) defined by (πNΦ)(V ) = Φ(µN
V ).
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Sketch of the proof VI

T2 =
〈

f N
0 , (T

N
t πN − πNT∞

t )Rϕ

〉

=

〈

f N
0 ,

∫ T

0
TN

t−s (GNπN − πNG∞) (T∞
s Rϕ) ds

〉

=

∫ T

0

〈

f N
t−s , (G

NπN − πNG∞) (T∞
s Rϕ)

〉

ds

where

GN is the generator associated to TN
t and G∞ is the generator

associated to T∞
t .

Now we have to make some assumptions

(A1) f N
t has enough bounded moments;

(A2) G∞Φ(ρ) = 〈Q(ρ),DΦ(ρ)〉;
(A3) (GNπNΦ)(V ) = 〈Q(µN

V ),DΦ(µN
V )〉 + O([Φ]C1,η/N)

(A4) SNL
t ∈ C 1,η(P(E );P(E )).

∣
∣
〈 〉 〈 〉∣

∣
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Semigroups SN
t , TN

t and T∞
t

The master equation generates a linear semigroup (SN
t )t≥0 on

P2,sym(R3N): SN
t p0 = pt for any p0 ∈ P2,sym(R3N), where pt is the

solution of the master equation with initial datum p0.

The unbounded operator GN is the generator of the dual semigroup (TN
t )

on C0,sym(R3N).

∀ϕ ∈ C0,sym(R3N),∀ p0 ∈ P2,sym(R3N) 〈p0,T
N
t ϕ〉 = 〈pt , ϕ〉.

We define the pull-back semigroup T∞
t on C (P(R3)) by setting

∀Φ ∈ C (P(R3)), ∀ p ∈ P(R3) (T∞
t Φ)(p) = Φ(Stp)

where St is the nonlinear semigroup.

Remark. A polynomial belongs to C (P(R3))
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The C 1,a space, a ∈ (0, 1]

Φ ∈ C 1,a(P(R3)) if Φ ∈ C (P(R3)) and ∃DΦ : P(R3) → C (R3)

∀µ, ν ∈ P(R3)
∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣ ≤ C ‖ν − µ‖1+a

TV .

We define

[Φ]a = sup
µ,ν∈P(R3)

∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣

‖ν − µ‖1+a
TV

.

Remark. For any ϕ ∈ C (R3k), Rϕ ∈ C 1,1(P(R3)) and

[Rϕ]1 ≤ k2 ‖ϕ‖C(R3k ).

S.Mischler (CEREMADE & IUF) Quantitative Chaos Propagation 2010 52 / 63



The pull-back semigroup and its generator

The generator G∞ is defined on C 1,a(P(R3)) by

∀Φ ∈ C 1,a(P(R3)) ∀ p0 ∈ P2(R
3) (G∞Φ)(p0) := 〈Q(p0, p0),DΦ(p0)〉

since

(G∞Φ)(p0) =
d

dt
(T∞

t Φ)(p0)|t=0 =
d

dt
Φ(pt)|t=0 = lim

t→0

Φ(pt) − Φ(p0)

t

= lim
t→0

{〈
pt − p0

t
,DΦ[p0]

〉

+ O
(

‖pt − p0‖1+a
TV

t

)}

=

〈
dpt

dt
|t=0,DΦ[p0]

〉

= 〈Q(p0, p0),DΦ[p0]〉 .
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Boltzmann model: Stability / expansion of T∞
t in total

variation norm

Lemma (The Boltzmann flow is C 1,1/2)

∀ ρ ∈ P2(R
3), ∀ t ≥ 0 there exists Lt [ρ] ∈ C (R3) ∀ ρ′ ∈ P2(R

3)

sup
[0,T ]

∥
∥
∥St(ρ

′) − St(ρ) − Lt [ρ](ρ
′ − ρ)

∥
∥
∥

TV
≤ CT ‖ρ′ − ρ‖3/2

TV

Φ ∈ C 1,1/2(P(R3)) implies T∞
t (Φ) ∈ C 1,1/2(P(R3)) for t ∈ [0,T ] and

[T∞
t (Φ)]1/2 ≤ CT [Φ]1/2 since :

(T∞
t Φ)(ρ′) = Φ(St(ρ

′))

= Φ
(

St(ρ) + Lt [ρ](ρ
′ − ρ) + O(‖ρ′ − ρ‖3/2

TV )
)

= Φ(St(ρ)) + DΦ[St(ρ)]
(
Lt(ρ)(ρ

′ − ρ)
)

+ O(‖ρ′ − ρ‖3/2
TV )

= (T∞
t Φ)(ρ) + DΦ[St(ρ)]

(
Lt(ρ)(ρ

′ − ρ)
)

+ O(‖ρ′ − ρ‖3/2
TV )
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Proof of the lemma

Denote by ft , gt , ht the unique solutions

∂t ft = Q(ft , ft), f0 = ρ ∈ L1(ea |v |),

∂tgt = Q(gt , gt), g0 = ρ′ ∈ L1(ea |v |),

∂tht = Q̃(ft , ht) := Q(ft , ht) + Q(ht , ft), h0 = g0 − f0 = ρ′ − ρ.

Classically, the following bounds hold

‖ht‖L1
2
≤ CT ‖ρ′ − ρ‖L1

2

‖gt − ft‖L1
2
≤ CT ‖ρ′ − ρ‖L1

2
,

with L1
2 := L1(R3, (1 + |v |2) dv).
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Introduce φt := gt − ft − ht which satisfy

∂tφt = Q̃(ft + gt , φt) + Q̃(gt − ft , ht), φ0 = 0.

The L1 norm yt := ‖φt‖L1
2

satisfies the differential inequality

y ′
t ≤ C yt + C ‖gt − ft‖L1

3
‖ht‖L1

3
, y0 = 0.

By interpolation using higher moments, and the previous estimates:

‖gt − ft‖L1
3
‖ht‖L1

3
≤ C ‖ρ′ − ρ‖3/2

L1 .

We deduce from the resolution of differential inequality on yt that

sup
[0,T ]

yt ≤ CT ‖ρ′ − ρ‖3/2
L1

When ρ, ρ′ are true measures we make a regularization argument.
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Boltzmann model: Consistency

Take Φ ∈ C 1,1/2(P(R3)), set φ = DΦ[µ̂N
V ] and compute

GN(Φ ◦ µ̂N
V ) =

1

2N

N∑

i ,j=1

|vi − vj |
∫

S2

[Φ(µ̂N
V ∗

ij
) − Φ(µ̂N

V )] dσ

=
1

2N

N∑

i ,j=1

|vi − vj |
∫

S2

〈µ̂N
V ∗

ij
− µ̂N

V , φ〉 dσ (= I1)

+
1

2N

N∑

i ,j=1

|vi − vj |
∫

S2

O(‖µ̂N
V ∗

ij
− µ̂N

V ‖
3/2
TV ) dσ (= I2).
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On the one hand, we have

I2 =
1

2N

N∑

i ,j=1

|vi − vj |
∫

S2

O
(( 4

N

)3/2)

dσ

≤
[Φ]1/2

N




1

N2

N∑

i ,j=1

(1 + |vi |2 + |vj |2)



 ≤ C
[Φ]1/2 ‖µ̂N

V ‖M1
2

N1/2
.

On the other hand, we have

I1 =
1

2N2

N∑

i ,j=1

|vi − vj |
∫

S2

[φ(v∗
i ) + φ(v∗

j ) − φ(vi ) − φ(vj)] dσ

= 〈Q(µ̂N
V , µ̂

N
V ), φ〉 = (G∞Φ)(µ̂N

V ).
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Vlasov and McKean-Vlasov model: Consistency

To make the presentation simpler we assume d = 1.
The generator GN writes for any ϕ ∈ C 2(RN ; R), V ∈ RN

(GNϕ)(V ) =

N∑

i=1

∆iϕ+

N∑

i=1

FN
(

vi , µ
N−1

V̂i

)

· ∂vi
ϕ,

while the nonlinear meanfield McKean-Vlasov operator on P(R) is

Q(f ) = ∆f − ∂ (F (v , f ) f ) .

First, the map RN → H−s1(Rd), s1 > 5/2 := d/2 + 2, V 7→ µN
V is of class

C 2 with

∂vi
µN

V =
1

N
∂δvi

, ∆vi
µN

V =
1

N2
∂2δvi

.

We say that Φ : P(R) → R is of class C 2,1 if

Φ(ν) = Φ(µ) + 〈ν − µ,DΦ[µ]〉 + D2Φ[µ](ν − µ, ν − µ) + R

with
‖R‖H−s2 ≤ CΦ ‖ν − µ‖3

H−s1 , s2 := s1 + 2.
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Take Φ ∈ C 2,1
b . The map RN → R, V 7→ Φ(µN

V ) is C 2 and, denoting
φ = φV (·) = DΦ

[
µN

V

]
∈ (H−s1(Rd))′ = Hs1(Rd), we can write

∂vi
Φ
(

µN
V

)

=

〈

DΦ
[

µN
V

]

,
1

N
∂δvi

〉

=
1

N
∂φV (vi )

∆vi
Φ
(

µN
V

)

=
1

N
∆φV (vi ) +

1

N2
D2Φ

[

µN
V

]

(∂δvi
, ∂δvi

) .

Finally, we compute

GN Φ(µN
V ) =

N∑

i=1

∆i

(

Φ(µN
V )
)

+

N∑

i=1

FN
(

vi , µ
N
V

)

· ∂i

(

Φ(µN
V )
)

=

N∑

i=1

1

N

(

∆φV (vi) + FN() ∂φV (vi )
)

+

N∑

i=1

1

N2
D2Φ(..)

= 〈µN
V ,∆φ+ FN(v , µN

V ) ∂φ〉
︸ ︷︷ ︸

=〈Q(µN
v ),φ〉=:G∞Φ(µN

V )

+O(1/N)

S.Mischler (CEREMADE & IUF) Quantitative Chaos Propagation 2010 60 / 63



Plan

1 Historic introduction

2 Mathematics formalism

3 Statement of the main results

4 Outlined of the proofs

5 Checking the hypothesis

6 Conclusion and open problems

S.Mischler (CEREMADE & IUF) Quantitative Chaos Propagation 2010 61 / 63



Conclusion

We have proved a quantified version of chaos propagation which is furthermore
uniform in time (for the Boltzmann model)

The key point is to estimate the convergence of TN
t π

N to πN T∞
t as operators

acting from C (P(E )) with values in C (EN) which a consequence of
- a stability result (expansion of order > 1) for he nonlinear semigroup
- consistency result on the associated generators

That requires to develop a “differential calculus” on P(E ) seen as an embedded
manifold of F ′, F ⊂ UCb(E )
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Open problems

- T = +∞ with optimal rate θ(N) = O(N−1/2);

- more general cross-section (true hard or soft potential) and Landau
equation;

- Vlasov equation and McKean-Vlasov equation with singular interactions;

- the entropy convergence sup[0,T ] HN(f N
t ; ft) ≤ θH(N);

- quantification of the chaos for the equilibrium state (elastic or inelastic
Boltzmann model)

- rate of convergence to equilibrium for the nonlinear PDE from the
analysis of the N-particle system dynamic

- for the inelastic Boltzmann equation + diffuse excitation can we deduce
from the N → ∞ limit

d

dt
H(f (t)|g) ≤ 0

where g stands for the unique steady state?
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