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Aim of the talk

The aim of the talk is to present some remarks about

“quantitative chaos”

the statistical solutions of a BBGKY hierarchy

and their relations with some recent result about “quantitative and
uniform in time propagation of chaos”.

Underlying problem: How to derive rigorously mesoscopic/statistic
dynamics (Boltzmann and Vlasov equations) from microscopic dynamics
(Newton first law of motion) ?
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the results are taken from

M., Mouhot, Wennberg, “A new approach to quantitative chaos
propagation estimates for drift, diffusion and jump processes”,
arxiv 2011

M., Mouhot, “Quantitative uniform in time chaos propagation for
Boltzmann collision processes”, arxiv 2010

M. “Introduction aux limites de champs moyen pour les systèmes de
particules” (graduate school notes)

M. ”Programme de Kac sur les limites de champ moyen”, EDP-X
seminary publication

Hauray, M., Mouhot, work in progress
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Very short historical introduction

Newton - Philosophiæ Naturalis Principia Mathematica (XVII century)

Maxwell and Boltzmann - Boltzmann equation (XIX century)

Hilbert’s sixth problem (ICM 1900 Paris):

Grad ∼ 1950 : Formal derivation of the nonhomogeneous Boltzmann
equation from deterministic dynamic (= “Boltzmann-Grad” limit)

Kac (1959) : space homogeneous Kac-Boltzmann equation as the
mean-field limit of a N-particle Markov jump process

Lanford (1973) : Rigorous proof of the “Boltzmann-Grad” limit for
very short time. Idea: use Bogoliubov (or BBGKY) hierarchy

Sznitman (1984) : Kac’s program for hard spheres Boltzmann model

Hauray, Jabin (2007) : Rigorous derivation of the Vlasov equation for
(not too) singular interaction potential
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Main open problems in the “mean-field limit theory”

Derive the Vlasov-Poisson equation from Newton first principle (N
particles evolve according to Hamiltonian dynamic associated to
Coulombian potential) in the “mean-field” limit

Derive the nonhomogeneous Boltzmann equation from Newton first
principle (N particles evolve according to deterministic Hamiltonian
dynamic) in the “Boltzmann-Grad” limit for large time

Achieve the Kac’s program
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Less ambitious Kac program (1956)

Derive the (space homogeneous) Boltzmann equation from a jump (collisional)
process. First rigorous mathematic treatment of the deduction of Boltzmann
equation from microscopic dynamics.
Kac introduced the notion of chaos

Kac stressed two open questions

- Hard spheres model: “The above proof suffers from the defect that it works only if the
restriction on time is independent of the initial distribution. It is therefore inapplicable to the
physically significant case of hard spheres because in this case our simple estimates yield a time
restriction which depends on the initial distribution. A general proof that Boltzmann’s property
propagates in time is still lacking”

→ proved by Sznitman 1984 (nonlinear martingale approach, compactness and
uniqueness arguments)

- Uniform spectral gap: Deduce spectral gap/exponential trend to equilibrium for
the nonlinear Boltzmann eq from the spectral gap for the family of Master eqs

→ proved by a direct way by Mouhot 2006 (using : linearized L2 spectral gap

Grad 63; L1 moments Povzner 1965, quantitative H-theorem: Carlen, Carvalho

1992)
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Kac’s definition of chaos

E = a locally compact polish space (E = Rd)
P(E ) = the space of probability measures
Psym(EN) = probabilities which are invariant under indexes permutations.

A sequence FN ∈ Psym(EN) is f -chaotic, f ∈ P(E ), iff

∀ϕ1, ..., ϕj ∈ Cb(E )

∫

EN

ϕ1 ⊗ ...⊗ ϕj FN(dX ) →
j
∏

i=1

∫

E
ϕi f

or equivalently

(def-1) ∀ j ≥ 1 FN
j ⇀ f ⊗j weakly in P(E j ),

where FN
j stands for the j-th marginal of FN defined by

FN
j :=

∫

EN−j

FN dxj+1 ... dxN .
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Alternative formulation

To any FN ∈ Psym(EN) we may associate F̂N ∈ P(P(E )) by setting

∀Φ ∈ Cb(P(E )) 〈F̂N ,Φ〉 =

∫

EN

Φ(µN
X )FN(dX ),

where the empirical measure µN
X is defined by

X = (x1, ..., xN) ∈ EN 7→ µN
X :=

1

N

N∑

i=1

δxi ∈ P(E ).

Lemma: FN is f -chaotic iff

(def-2) F̂N ⇀ δf weakly in P(P(E ))

It is (for instance) a consequence of Hewitt-Savage theorem:
~
w
�

• (πj )j≥1 ∈ Psym(E j) compatible, i.e. πj+1|E j = πj

• π̂ ∈ P(P(E )),

by setting πj :=

∫

P(E)

ρ⊗j π̂(dρ).
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A third formulation

For any F ,G ∈ P(E j) we define the MKW distance Wp , p = 1, 2, by

W p
p (F ,G) := inf

π∈Π(F ,G)

∫

E j×E j

dp
j (X ,Y )π(dX , dY )

with

Π(F ,G) := {π ∈ P(E j × E j); π(A × E j) = F (A), π(E j × B) = G(B)}

dp
j (X ,Y ) :=

1

j

j
∑

i=1

dE (xi , yi )
p

≥ inf
σ∈SN

1

j

j
∑

i=1

dE (xi , yσ(i))p = Wp(µ
N
X , µ

N
y )p

Lemma: FN is f -chaotic if

(def-3) W1(F
N , f ⊗N) → 0 when N → ∞

Are these three definitions equivalent ?
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A positive answer

Theorem ((I-1) Equivalence of chaos measures)

∀M, ∀ k > 1 ∃ γi , C > 0
∀ f ∈ P(E ), ∀FN ∈ Psym(EN) with Mk(F

N
1 ),Mk(f ) ≤ M

∀ j , k ∈ {0, 2, ...,N} Dj ≤ C

(

Dγ1

k +
1

Nγ2

)

.

Here
Dj := W1(F

N
j , f

⊗j), 1 ≤ j ≤ N ,

D0 := WW1(F̂
N , δf )

where for α, β ∈ P(P(E )) and D a distance on P(E ) we define

WD(α, β) := inf
π∈Π(α,β)

∫

P(E)×P(E)

D(ρ, η)π(dρ, dη).

Remark 1: Π(F̂N , δf ) = {F̂N ⊗ δf } ⇒ WD(F̂N , δf ) =
∫

EN D(µN
X , f )FN(dX ).

Remark 2: For FN := f ⊗N we find Dj = 0, 1 ≤ j ≤ N ,
but DN+1 ≈ 1

N
1
d′
, d ′ = d ∨ 2, ⇐ W‖.‖2

H−s
= Cf

N (quadratic miracle!)
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About the proof

• W1(F
N
j , f

⊗j) ≤ 2 W1(F
N , f ⊗N) for any 1 ≤ j ≤ N

• for the negative Sobolev norm ‖ · ‖H−s , s > d/2, we prove (quadratic miracle
again!)

W‖·‖2
H−s

(F̂N , δf ) / W1(F
N
2 , f

⊗2) + ‖FN
1 − f ‖2

H−s +
1

N

and we conclude by comparing the distance W1 and the norm ‖ · ‖H−s in E

• two steps:

W †
1 (FN , f ⊗N)

Def
:= inf

π∈Π

∫

EN×EN

W1(µ
N
X , µ

N
Y )π(dX , dY )

Lemma(∗)
= W1(F

N , f ⊗N)

and

W †
1 (FN , f ⊗N)

Lemma≈ WW1(F̂
N , δf ).

(*) Density argument + when E is finite, we define

π
∗(X , Y ) :=

π({(X ′, Y ′) ∼ (X , Y )})

♯{dN(X ′, Y ′) = W1(µN
X , µN

Y )}
if dN(X , Y ) = W1(µ

N
X , µ

N
Y ), := 0 else.
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Entropic chaos - a definition

Definition: FN ∈ Psym(EN) is entropic f -chaotic, f ∈ P(E ),
if

• FN is (weakly) f -chaotic (in the sense of Kac)

• H(FN) → H(f ) when N → ∞

Here the entropy H(G ) of G ∈ Psym(E j) is defined by

H(G )
Def
:=

1

j

∫

E j

G log G .

Notice that if FN is f -chaotic, then

H(f ) ≤ lim inf H(FN ).
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Entropic chaos - Another definition by

[CCLLV] Carlen, Carvalho, Loss, Le Roux, Villani, Kinet. Relat. Models (2010)

Definition′: Assume E = R and define σN := uniform probability

on SN−1(
√

N) the sphere of RN of radius
√

N.

We say that FN ∈ Psym(EN) with supp FN ⊂ SN−1(
√

N) is entropic

f -chaotic, f ∈ P(E ), if

• FN is (weakly) f -chaotic (in the sense of Kac)

• H(FN |σN) → H(f |γ) when N → ∞

Here the relative entropy H(g |G) of g ,G ∈ Psym(E j) is defined by

H(g |G)
Def
:=

1

j

∫

E j

g

G
log

g

G
G

where g/G stands for the Radon-Nykodym derivative of g with respect to G ,
and γ is the normalized Gaussian

γ(dx) = γ(x) dx :=
e−x2/2

√
2π

dx .
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A sufficient condition of entropic chaos in EN

Theorem ((I-2) Fisher bound condition for entropic chaos)

Consider (FN) a sequence of Psym(EN). Then
(i) FN is weakly f -chaotic;
(ii) I (FN) is bounded;
(iii) FN

1 is bounded in Pk (E ), k > 2;

⇒ FN is entropic f -chaotic : H(FN) → H(f ).

Here the Fisher information I (G) of G ∈ Psym(E j) is defined by

I (G)
Def
:=

1

j

∫

E j

|∇G |2
G

Proof. Use the HWI inequality

H(FN |γ⊗N) ≤ H(f ⊗N |γ⊗N) + W2(F
N , f ⊗N)

√

I (FN |γ⊗N)

with

I (FN |γ⊗N) =
1

N

∫

EN

∣
∣
∣
∣
∇ log

FN

γ⊗N

∣
∣
∣
∣

2

γ⊗N ≤ C and W2(F
N , f ⊗N) → 0.
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A sufficient condition of entropic chaos in SN−1(
√

N)

Theorem ((I-3) Fisher bound condition for entropic chaos)

Consider (FN) a sequence of Psym(EN), E = R, with supp FN ⊂ SN−1(
√

N).
Then
(i) FN is weakly f -chaotic;
(ii) I (FN |σN) is bounded;
(iii) FN

1 is bounded in P4(E );

⇒ FN is entropic f -chaotic, i.e. H(FN |σN) → H(f |γ).

Same proof. Remark that the Ricci curvature of SN−1(
√

N) is
K = (N − 1)/N ≥ 0 and use HWI inequality in weak CD(K ,N) geodesic space
(Theorem 30.22, Optimal Transport, Old & New, C. Villani)
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Partial answer to Open Problem 11 in [CCLLV]

Theorem ((I-4) relative entropic chaos)

Consider (FN) a sequence of Psym(EN) and f ∈ P(E ), E = Rd . Then
(i) FN is weakly f -chaotic;
(ii) I (FN) is bounded;
(iii) FN

1 , f bounded in Pk (E ), k > 2;
(iii) I (f ) <∞, D2(− log f ) ≥ K ∈ R, |∇ log f | ≤ C 〈v〉k/2;

⇒ FN is relative entropic f -chaotic, i.e. H(FN |f ⊗N) → 0.

Similar proof. Use the HWI inequality

H(FN |f ⊗N) ≤ H(f ⊗N |f ⊗N) + W2(F
N , f ⊗N)

√

I (FN |f ⊗N) + (K−)W2(F
N , f ⊗N)2

so that
lim sup
N→∞

H(FN |f ⊗N) ≤ 0.

S.Mischler (CEREMADE & IUF) Chaos and Statistical solutions 2010 21 / 59



Some conclusions about chaos

The notion of chaos is close (wider) to the notion of independence in
probability theory. If V is a stochastic variable in EN such that the
coordinates are independent variables and have same law f ∈ P(E ) then
V ∼ f ⊗N . In the case of chaos the tensorization structure is required only
asymptotically when N → ∞.

The seemingly stronger notion of chaos W1(F
N |f ⊗N) → 0 and

H(FN) → H(f ) (because they involve all of variables) are (surprisingly?)

◮ equivalent to Kac’s definition of chaos for the first one;
◮ has a strong link with Kac’s definition of chaos for the second one.
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N-particle system / Mean-field limit

The N-particle system is described by

Y (t) ∈ EN deterministic/stochatstic trajectories ↔ µN
Y (t) ∈ P(E );

FN(t, ·) ∈ Psym(EN) the law of Y ,

Psym(EN) ≈ undistinguishable particles;

∂tF
N = ΩN FN Liouville or Kolmogorov equation

↔ F̂N(t) = πN
P FN ∈ P(P(E )) law of µN

Y (t).

↔ FN
k (t) ∈ P(E k )∀ k ≤ N

At the statistical (mean-field) limit the system is described by

f (t, ·) ∈ P(E ) the probability density of particles,

∂t f = Q(f ) nonlinear PDE equation
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Propagation of chaos

How to deduce the behavior of the typical particle from the behavior of the
N-particle system ?
Pb 1: Law of large numbers: µN

Y (t) ⇀ f (t) or FN
1 ⇀ f (t) when N → ∞

The density F
N
1 (t) of one typical particle of the N-particle system behaves as f (t) the

solution of the mean-field equation. Mean-field convergence ≈ law of large numbers.

Pb 2: propagation of chaos: FN
0 is f0-chaotic implies FN

t is ft -chaotic?
in the sense that in the large number of particles limit N → ∞:

FN
k (t) ⇀ f (t)⊗k , F̂N ⇀ δf (t) or FN ≈ f ⊗N

Even when FN
0 = f ⊗N

in we never have FN
t = g⊗N

t for a given N (except when
there is no interaction between the particles of the N-particle system!).

◮ we cannot expect independence
◮ we may expect recover “independence” at the limit (= chaos)

Why are we interested by chaos?

◮ chaos is a strong physically relevant information
◮ it may help to identify the mean field limit equation (as in Kac’s proof).

For the Boltzmann model, mean-field limit may only be established
when molecular chaos holds at the initial time and is propagated.
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Example 1: ODE / Vlasov / empirical measure method

Deterministic trajectories X (t) ∈ EN , E = Rd , driven by ODE with smooth
coefficients

ẋi = Ai (X ) = A(xi , µ
N−1
Xi

)=A(xi , µ
N
X ), 1 ≤ i ≤ N , Xi = X\{xi}

Its law FN satisfies the Master/Liouville equation

∂tF
N = ΩNFN := −

∑

i

divxi (A(xi , µ
N
X )FN)

We aim to prove that its (mean-field) limit (N → ∞) satisfies Vlasov equation

(∗) ∂t f = Q(f ) := −div(A(x , f ) f )

We prove: µN
X (t) is a solution of (∗) for any X (0) and for any other solution f (t)

W1(µ
N
X (t), f (t)) ≤ CT W1(µ

N
X (0), f (0)).

We deduce the propagation of chaos estimate

WW1(F̂
N(t), δf (t)) ≤ CT WW1(F̂

N(0), δf (0)) ≈ 1

N
1
d′

, d ′ = d ∨ 2
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Example 2: SDE / McKean-Vlasov / Coupling method

Stochastic trajectories X (t) ∈ EN , E = Rd , driven by Brownian SDE plus
quadratic and smooth interaction ((B i

t) independent Brownian motions)

dxi = Ai (X ) dt + dB i
t , Ai (X ) = (a ⋆ µN

X )(xi ).

Its law FN ∈ Psym(EN) satisfies the Master/Kolomogorov equation

∂tF
N = ΩNFN := −

N∑

i

∆iF
N −

N∑

i=1

divi (Ai (X )FN ) (0,∞) × EN

and the associated mean field equation is the McKean-Vlasov equation

∂t f = Q(f ) :=
1

2
∆f − div(A(x , f ) f ) (0,∞) × E .

For a given solution f (t), consider Y (t) solution to the subsidiary problem:

(yi (0)) i.i.d. according to f (0) and dyi = (a ⋆ f (t, .))(yi ) + dB i
t ,

so that Y (t) ∼ f (t)⊗N , we prove

W1(F
N(t), f ⊗N(t)) ≤ CT

(

W1(F
N(0), f ⊗N(0)) +

1√
N

)

S.Mischler (CEREMADE & IUF) Chaos and Statistical solutions 2010 27 / 59



idea of the proof of the estimate by coupling method

Notice that

W1(F
N(t), f ⊗N(t)) = inf

(Xt ,Yt);Xt∼FN(t),Yt∼f (t)⊗N
uXt ,Yt

with

uXt ,Yt = E
( 1

N

N∑

j=1

|xj (t) − xj(t)|
︸ ︷︷ ︸

=:distance dN in EN

)

Write a differential inequality on u(t) := uXt ,Yt

u̇ ≤ C u + A(t)

with

A(t)2 :=
1

N

N∑

i=1

∫

EN

[

(a ∗ (µN
Y − ft)(yi )

]2

f ⊗N
t (dY ) ≈ C

N
(quadratic miracle!)
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Example 3: N-particle Boltzmann-Kac trajectories

N-particle system V = (v1, ..., vN), vi ∈ E = R3 undergoing random Boltzmann
jumps (collisions).
Markov process (Vt)t≥0 defined step by step as follows:
(i) draw randomly ∀ (vi ′ , vj′ ) collision time Ti ′,j′ ∼ Exp(B(|vi ′ − vj′ |)); then
select the post-collisional velocity (vi , vj) such that

Ti ,j = min
(i ′,j′)

Ti ′,j′ .

(ii) draw randomly σ ∈ S2 according to the density law b(cos θ) with
cos θ = σ · (vi − vj)/|vi − vj | and define the post-collisional velocities (v∗

i , v
∗
j )

thanks to

v∗
i =

vi + vj

2
+

|vj − vi |
2

σ, v∗
j =

vi + vj

2
− |vj − vi |

2
σ.

Observe that momentum and energy are conserved

v∗
i + v∗

j = vi + vj , |v∗
i |2 + |v∗

j |2 = |vi |2 + |vj |2.
Finally, this two bodies collisions jump process satisfies

∑

i=1

vi (t) = cst,
∑

i=1

|vi (t)|2 = cst.
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Example 3: Master equation for Boltzmann-Kac system

Equivalently, after time rescaling, the motion of the N-particle system is
given through the Master/Kolmogorov equation on the law FN

t ∈ P(EN)
which in dual form reads

∂t〈Ft , ϕ〉 = 〈FN
t ,G

Nϕ〉 ∀ϕ ∈ Cb(E
N)

with GN = (ΩN)∗ given by

(GNϕ)(V ) =
1

N

N∑

i ,j=1

B(vi − vj)

∫

S2

b(cos θij) [ϕ′
ij − ϕ] dσ,

where ϕ = ϕ(V ), ϕ′
ij = ϕ(V ′

ij ), V ′
ij = (v1, .., v

′
i , .., v

′
j , .., vN).

Maxwell interactions with cut-off: B = 1, b = 1;

Maxwell interactions without cut-off: B = 1, b /∈ L1 ;

Hard spheres interactions: B(z) = |z |, b = 1.
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The nonlinear Boltzmann equation

Nonlinear homogeneous Boltzmann equation on P(R3) defined by

∂t ft = Q(ft), f0 ∈ P2(R
3)

with

〈Q(f ), ϕ〉 :=

∫

R6×S2

B(v − v∗) b(cos θ) (φ(v ′) − φ(v)) dσ f (dv) f (dv∗)

where again

v ′ =
v + v∗

2
+

|v − v∗|
2

σ.

The equation generate a nonlinear semigroup

∀ f0 ∈ P2(R
3) SNL

t f0 := ft .
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Quantitative answer to Kac’s problem 1

Theorem ((II-1) Uniform in time Kac’s chaos convergence)

sup
t∈[0,T )

∣
∣
∣
∣

∫

Ek

(

FN
k (t) − f ⊗k

t

)

ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

T ∈ (0,+∞],

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

f0 = fin ∈ P(E ) with enough moments bounded,
ft = evolution of one typical particle in the mean-field limit,
f ⊗N
t (V ) = ft(v1) ... ft(vN),

FN
0 is fin-chaotic, FN

t = evolution of N-particle system ∈ Psym(EN),

ϕ = ϕ1 ⊗ ...⊗ ϕk , ϕj ∈ F ⊂ Cb(E ), ex: F = W 1,∞ or Hs ,

N ≥ 2 k.
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Main features 1

We prove propagation of chaos with quantitative rates

Most importantly and new: estimates are uniform in time for the Boltzmann
equation (and the McKean-Vlasov)

⇒ N → ∞ limit and t → ∞ limit commute!

We may deal with mixtures of Vlasov, McKean and Boltzmann models at
least for smooth and bounded coefficients

Our theorem applies to the space homogeneous Boltzmann equation in the
case of the two important physical collision models:

- true Maxwell molecules (without Grad’s cut-off) cross-section

- hard spheres cross-section (and hard potential with Grad’s cut-off )

⇒ give quantitative estimates of previous non-constructive convergence

result (Sznitman 1984)

- Maxwell molecules with Grad’s cut-off cross-section

with optimal rate ≤ CT/
√

N ⇒ recover Kac, McKean, Tanaka, Graham,
Méléard, Peyre ...
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Main features 2

Our method is strongly inspired by Grünbaum work (1971) where he
claimed he proved convergence result for the hard spheres model.
But his proof is definitively wrong ! He essentially recovered the
non-constructive convergence result for the Maxwell cut-off model by
Kac & McKean.

We follow, complete and improve Grunbaum’s program;

The underlining philosophy is a numerical analyst intuition: based on
(A3) consistency estimate and (A4) stability estimate on the limit
PDE and refuse any compactness and probability arguments

◮ “consistency error” of order O(1/N1−ε) ∀ ε ∈ (0, 1);
◮ “stability error” of order O(1/N1/2), ∼ O(1/N1/d) or worst because

we write the equation in P(P(R3)) and we use some results from the
theory of the concentration of measure (at time t = 0): the worse error
is made at time t = 0 (and then it is not deteriorated by the flow);
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Main features 3

The θ function splits into

θ(N) = θ(k ,N) = θ1(ϕ,N)
︸ ︷︷ ︸

O(1/N)

+ θ2(ϕ,T ,N)
︸ ︷︷ ︸

O(1/N1−ε)∀ ε

+ θ3(ϕ,T ; FN
0 , f0)

︸ ︷︷ ︸

≤O(1/N1/2)

,

- θ2 is the worst term with respect to ϕ;

- θ3 is the worst term with respect to N dependence;

- θ3 is the only term depending on the initial data;

We are not able to prove that

sup
[0,T ]

D(FN
t ; ft) ≤ C

(
1

Nα
+ D(FN

0 , f0)

)

for some “distance” D which measures how close to a chaos state
”g ∈ P(E )” is a probability gN ∈ Psym(EN) and C , α > 0, but we prove

sup
[0,T ]

W1(F
N(t), f (t)⊗N) ≤ CT

(

W1(F
N(0), f (0)⊗N)γ1 +

1

Nγ2

)
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Recover Poincaré Lemma (but it is not the simplest way!)

Theorem ((II-2) Chaoticity of the N-particle steady states)
∣
∣
∣
∣

∫

Ek

(

σN
k − γ⊗k

)

ϕ dV

∣
∣
∣
∣
≤ θ(N) −→

N→∞
0.

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

σN := steady state for the N-particle system
. = meas(SdN−1(

√
N))−1 δSdN−1(

√
N) ∈ P(EN),

γ(v) := (2π)−d/2 exp(−|v |2/2),
ϕ = ϕ1 ⊗ ...⊗ ϕk , ϕj ∈ Hs ,

N ≥ 2 k,

FN
0 = [f ⊗N

in ]SdN−1(
√

N) = conditioned product measure.

In other words,
σN is γ-chaotic
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Kac’s problem 2: a reverse side answer

Theorem ((II-3) Convergence to the equilibrium uniformly in N)

sup
N

W1

(

FN(t), σN
)

≤ ε(t) −→
t→∞

0

E = Rd , d = 3, V = (v1, ...., vN ) ∈ EN

FN
0 = [f ⊗N

in ]SdN−1(
√

N),

FN
t = evolution of N-particle system ∈ Psym(EN),
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Proof of Theorem II-3 : triangular inequality

• (1) On the one hand, we know (from Kac, and then Carlen, Loss, ...) that

∀N ≥ 1 W (FN
1 (t), σN(t)) ≤ ‖FNσN − σN‖TV

≤ ‖FN − 1‖L2(σN ) ≤ AN e−λN t , A > 1.

• (2) On the other hand, Theorem II-1 and II-2 write (for N ≥ 2)

sup
[0,∞)

W1(F
N(t), f (t)⊗N) + W1(σ

N , γ⊗N) ≤ θ(N) −→
N→∞

0.

• (3) We know (from Carlen, Carvalho, and then Villani, Mouhot 90’-2006) that

W1(f (t)⊗N , γ⊗N) ≤ ‖ft − γ‖L1
1
≤ Cf0 e−λ t .

• (4) Gathering estimates (2) and (3), we get

∀N ≥ 2 W1(F
N(t), σN(t)) ≤ θ(N) + Cf0 e−λ t

• (5) As a consequence of (1) and (4) we obtain the uniform (with respect to N)
convergence:

W1(F
N(t), σN (t)) ≤ min

(

2 θ(N) + Cf0 e−λ t ,CN,FN
0

e−λN t
)

−→
t→∞

0

(choose (1) if ε t ≥ N and (4) if ε t ≤ N).
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Sketch of the proof of theorem II-1 (splitting) - proof I -

We split

〈

FN
t − f ⊗N

t , ϕ⊗ 1⊗N−k
〉

=

=
〈

FN
t , ϕ⊗ 1⊗N−k − Rϕ(µN

V )
〉

(= T1)

+
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

(= T2)

+
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

f ⊗k
t , ϕ

〉

(= T3)

where Rϕ is the “polynomial function” on P(R3) defined by

Rϕ(ρ) =

∫

Ek

ϕρ(dv1) ... ρ(dvk )

and SNL
t is the nonlinear semigroup associated to the nonlinear mean-field

limit equation by g0 7→ SNL
t g0 := gt .
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Estimate of (T1) thanks to a (A.F. Grunbaum’s?) combinatory trick - proof II -

|T1| =
∣
∣
∣

〈

FN
t , ϕ⊗ 1⊗(N−k)(V ) − Rϕ(µN

V )
〉∣
∣
∣

=

∣
∣
∣
∣

〈

FN
t ,

˜ϕ⊗ 1⊗(N−k)(V ) − Rϕ(µN
V )

〉∣
∣
∣
∣

≤
〈

FN
t ,

2 k2

N
‖ϕ‖L∞(Ek )

〉

=
2 k2

N
‖ϕ‖L∞(Ek)

≤ 2 k3

N
‖∇ϕ‖L∞(Ek ) M1(F

N
1 (t)),

where we use that FN is symmetric and a probability and we introduce the
symmetrization function associated to ϕ⊗ 1⊗(N−k) by

˜ϕ⊗ 1⊗(N−k)(V ) =
1

♯SN

∑

σ∈SN

ϕ⊗ 1⊗(N−k)(Vσ).
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Estimate of (T3) ≈ final argument of empirical measure method - proof III -

|T3| =
∣
∣
∣

〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

−
〈

(SNL
t f0)

⊗k , ϕ
〉∣
∣
∣

=
∣
∣
∣

〈

FN
0 ,Rϕ(SNL

t µN
V ) − Rϕ(SNL

t f0)
〉∣
∣
∣

≤ [Rϕ]C0,1

〈

FN
0 ,W1(S

NL
t µN

V ,S
NL
t f0)

〉

≤ k ‖∇ϕ‖L∞(Ek) CT

〈

FN
0 ,W1(µ

N
V , f0)

〉

≤ k ‖∇ϕ‖L∞(E) CT WW1
(F̂N

0 , δf0)

where
[Rϕ]C0,1 := sup

W1(ρ,η)≤1
|Rϕ(η) − Rϕ(ρ)| = k ‖∇ϕ‖L∞

and we assume that the nonlinear flow satisfies

(A5) W1(ft , gt) ≤ CT W1(f0, g0) ∀ f0, g0 ∈ P(E )
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

FN
0 ,T

N
t (Rϕ ◦ µN

V ) − (T∞
t Rϕ)(µN

V )
〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
FN

0 7→ FN
t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 : We write

T2 =
〈

FN
t ,Rϕ(µN

V )
〉

−
〈

FN
0 ,Rϕ(SNL

t µN
V )
〉

=
〈

FN
0 ,T

N
t (Rϕ ◦ µN

V ) − (T∞
t Rϕ)(µN

V )
〉

=
〈

FN
0 , (T

N
t πN − πNT∞

t )Rϕ

〉

with

TN
t = dual semigroup (acting on Cb(E

N)) of the N-particle flow
FN

0 7→ FN
t ;

T∞
t = pushforward semigroup (acting on Cb(P(E ))) of the nonlinear

semigroup SNL
t defined by (T∞Φ)(ρ) := Φ(SNL

t ρ);

πN = projection C (P(E )) → C (EN) defined by (πNΦ)(V ) = Φ(µN
V ).
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Rewrite of (T2) : the cornerstone of the proof - proof IV -

T2 =
〈

FN
0 , (T

N
t πN − πNT∞

t )Rϕ

〉

=

〈

FN
0 ,

∫ T

0
TN

t−s (GNπN − πNG∞)T∞
s ds Rϕ

〉

=

∫ T

0

〈

FN
t−s , (G

NπN − πNG∞) (T∞
s Rϕ)

〉

ds

where

GN is the generator associated to TN
t and G∞ is the generator

associated to T∞
t .

Now we have to make some assumptions

(A1) FN
t has enough bounded moments;

(A2) G∞Φ(ρ) = 〈Q(ρ),DΦ(ρ)〉;
(A3) (GNπNΦ)(V ) = 〈Q(µN

V ),DΦ(µN
V )〉 + O([Φ]C1,a/N)

(A4) SNL
t ∈ C 1,a(P(E );P(E )).
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A parentesis: the C 1,a space, a ∈ (0, 1]

Φ ∈ C 1,a(P(E ); R) if Φ ∈ C (P(E )) and ∃DΦ : P(E ) → C (E )

∀µ, ν ∈ P(E )
∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣ ≤ C ‖ν − µ‖1+a

TV .

We define

[Φ]a = sup
µ,ν∈P(E)

∣
∣
∣Φ(ν) − Φ(µ) − 〈ν − µ,DΦ[µ]〉

∣
∣
∣

‖ν − µ‖1+a
TV

.

Remark. For any ϕ ∈ W 2,∞(E k), Rϕ ∈ C 1,1(P(E )) and

[Rϕ]1 ≤ k2 ‖ϕ‖W 2,∞(Ek ).
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Estimate of (T2) : the cornerstone of the proof - proof V -

T2 ≤
∫ T

0
M0(F

N
t−s) ‖(GNπN − πNG∞) (T∞

s Rϕ)‖L∞(EN ) ds

(A3)

≤
∫ T

0

C

N
[T∞

s Rϕ]C1,a ds

≤ C

N

∫ T

0
[Rϕ ◦ SNL

t ]C1,a ds

≤ C

N

∫ T

0
[Rϕ]C1,1 [SNL

t ]C1,a ds

≤ C

N
k2 ‖ϕ‖W 2,∞

∫ T

0
[SNL

t ]C1,a ds
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A possible conclusion is :

〈

FN
k (t) − f (t)⊗N , ϕ

〉

≤

≤ Ck

(‖∇ϕ‖L∞

N
+ C

(A4)
T

‖ϕ‖W 2,∞

Na
+ C

(A5)
T ‖∇ϕ‖L∞ WW1

(F̂N
0 , δf0)

)

and

sup
[0,T )

sup
‖ϕ‖

W 2,∞≤1

〈

FN
k (t) − f (t)⊗N , ϕ

〉

≤

≤ Ck

(

1

N
+

C
(A4)
T

Na
+ C

(A5)
T WW1

(F̂N
0 , δf0)

)

with T = ∞ if

sup
t≥0

[SNL
t ]

C0,1
W1

+

∫ ∞

0
[SNL

t ]
C1,a

TV
dt <∞.
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Checking the hypothesis (A2) and (A3)

(A2) The nonlinear semigroup SNL
t and operator Q are C 0,a for the total variation

norm. As a consequence ∀Φ ∈ C 1,a(P(E )), ∀f0 ∈ P2(E )

(G∞Φ)(f0) =
d

dt
(T∞

t Φ)(f0)|t=0 =
d

dt
Φ(ft)|t=0 = lim

t→0

Φ(ft) − Φ(f0)

t

= lim
t→0

{〈
ft − f0

t
,DΦ[f0]

〉

+ O
(‖ft − f0‖1+a

TV

t

)}

=

〈
dft
dt

|t=0,DΦ[f0]

〉

= 〈Q(f0),DΦ(f0)〉

(A3) Consistency: ∀Φ ∈ C 1,a(P(E )), set φ = DΦ[µN
V ], and compute

GN(Φ ◦ µN
V ) =

1

2N

N∑

i ,j=1

B(vi − vj )

∫

S2

b [Φ(µN
V ′

ij
) − Φ(µN

V )] dσ

=
1

2N

∑

i ,j

B(vi − vj )

∫

S2

b 〈µN
V ′

ij
− µN

V , φ〉 dσ = 〈Q(µN
V ), φ〉

+
1

2N

∑

i ,j

B(vi − vj )

∫

S2

O(‖µN
V ′

ij
− µN

V ‖1+a
TV ) dσ = O(1/Na)
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Checking the hypothesis (A4) and (A5)

(A4) The Boltzmann flow SNL
t is C 1,a in total variation norm:

∀ ρ ∈ Pk (Rd), ∀ t ≥ 0 there exists Lt [ρ] ∈ C (R3) ∀ η ∈ Pk (Rd )

SNL
t (η) = SNL

t (ρ) + Lt [ρ](η − ρ) + O( ‖η − ρ‖1+a
TV )

= SNL
t (ρ) + Lt [ρ](η − ρ) + O(e−λ t ‖η − ρ‖1+a

TV )

(A5) The Boltzmann flow SNL
t is C 0,1 in weak distance (Tanaka, Toscani-Villani,

Fournier-Mouhot): ∀ ρ, η ∈ Pk (Rd ), ∀ t ≥ 0 there holds

W1(S
NL
t (η), SNL

t (ρ)) ≤ CT W1(η, ρ)

≤ Ω(W1(η, ρ)) uniform in time
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Method 3: Kac method and BBGKY hierarchy

Naive idea: 1-marginal
∂tF

N = ΩN FN

implies

∂tF
N
1 = (ΩN FN)1 = ΩN,2F

N
2 → ∂tπ1 = Ω∞

2 π2 and ? ...

We carry on the idea by taking ℓ-th marginal

Start from a N-particle system

∂tF
N = ΩN FN or FN(t) = et ΩN f N

0 =
∞∑

k=0

tk

k!
Ak

N f ⊗N
0

Write the equation for the ℓ-th marginal distribution

∂tF
N
ℓ = ΩN,ℓ+1 FN

ℓ+1 or FN
ℓ (t) =

∞∑

k=0

tk

k!
(Ak

N f ⊗N
0 )ℓ

Unclosed equation when ℓ < N .
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Kac’s method: 2-marginal and Wild sum (for Maxwell molecules)

Kac’s argument: take ϕ ∈ Cb(E
ℓ) and write the dual identity

〈FN
ℓ (t), ϕ〉 =

∞∑

k=0

tk

k!
〈f ⊗N

0 ,Ωk
N(ϕ⊗ 1⊗N−ℓ)〉

Pass now to the limit N → ∞

〈πℓ(t), ϕ〉 =

∞∑

k=0

tk

k!
〈f ⊗k+ℓ

0 , ϕk〉, ϕk ∈ C (E k+ℓ).

For ϕ,ψ ∈ C (E ) Kac proves

(ϕ⊗ ψ)k =

k∑

i=0

k!

i ! (k − i)!
ϕi ⊗ ψk−i

so that we may recognize

〈π2(t), ϕ ⊗ ψ〉=
∑

i≤k

tk

i ! (k − i)!
〈f ⊗k+2

0 , ϕi⊗ψk−i 〉=〈π1(t), ϕ〉 〈π1(t), ψ〉.
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BBGKY hierarchy method - convergence

We come back to the family of equations on the marginals of order ℓ

∂tF
N
ℓ = ΩN,ℓ+1 FN

ℓ+1,

which (again) are unclosed equations if ℓ < N .

We pass to the limit N → ∞

(∗) ∂tπℓ = Ω∞
ℓ+1 πℓ+1.

under some hypothesis

◮ (A1′) FN has bounded moments
◮ (A3′) GN,ℓ+1(ϕ) → G∞

ℓ+1ϕ ≈ 〈Q∗(ϕ),DRϕ〉

We obtain a family of solutions (πℓ)ℓ≥1 to an infinite hierarchy of equations
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BBGKY hierarchy method - uniqueness

We remark that π̄ℓ(t) = f (t)⊗ℓ is a solution of (∗)

Theorem ((III-1) Uniqueness of BBGKY hierachy)

Assume (A2) and (A4).
For a given initial datum π̂0 = (π0,ℓ)ℓ, there is equivalence between
• (πℓ(t))ℓ≥1 is a solution to (∗)
• π̂(t) ∈ P(P(E )) (linked by Hewitt-Savage theorem) is a solution to

(∗∗) ∂t π̂ = Ω∞π̂.

• π̂(t) = π̄(t) defined by

〈π̄(t),Rϕ〉 := 〈π̂0,T
∞
t Rϕ〉

As a consequence: π̂0 = δf0⇔π0,ℓ = f ⊗ℓ
0

implies that the solution of (∗∗)⇔(∗) is π̂t = δft⇔πℓ(t) = f (t)⊗ℓ

Proof inspired from Arkeryd, Caprino, Ianiro (1991)
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BBGKY hierarchy method - propagation of chaos

Theorem ((III-2) Propagation of chaos)

Assume (A1′), (A2), (A3′) and (A4).
If FN

0 is f0-chaotic then FN
ℓ (t) → πℓ(t) = f (t)⊗ℓ: FN(t) is f (t)-chaotic.
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Concluding remarks

We have proved a quantified version of chaos propagation which is furthermore
uniform in time (for the Boltzmann model)

That result can be seen as a “quantitative version” of BBGKY method

The key point is to estimate the convergence of TN
t π

N to πN T∞
t as operators

acting from C (P(E )) with values in C (EN) which a consequence of
- a stability result (expansion of order > 1) for he nonlinear semigroup
- consistency result on the associated generators

That requires to develop a “differential calculus” on P(E ) seen as an embedded
manifold of F ′, F ⊂ UCb(E )

S.Mischler (CEREMADE & IUF) Chaos and Statistical solutions 2010 58 / 59



Open problems

- T = +∞ with optimal rate θ(N) = O(N−1/2);

- more general cross-section (true hard or soft potential) and Landau
equation;

- Vlasov equation and McKean-Vlasov equation with singular interactions;

- (quantitative) propagation of entropy chaos sup[0,T ] H(FN
t |f ⊗t ) ≤ θH(N);

- quantification of the chaos for the equilibrium state (elastic or inelastic
Boltzmann model)

- rate of convergence to equilibrium for the nonlinear PDE from the
analysis of the N-particle system dynamic

- for the inelastic Boltzmann equation + diffuse excitation can we deduce
from the N → ∞ limit

d

dt
H(f (t)|g) ≤ 0

where g stands for the unique steady state?
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