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Introduction

e Consider a standard Bayesian model

m(0ly) o< f(y|0)m (0)
where 7 (@) denotes the prior and f(y|6) is the likelihood.

e Assume f(y|f) is expensivelimpossible to calculate.

e Therefore, can be difficult to compute posterior expectations:

/ h(6)m(6]y)db,
Q)

e.g. via MCMC methods.
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ABC Approximation

e Consider the approximated posterior:

_ m(0) f(x|0)l4, ,(x)
Ja. vom(0)f(x]0)dxdd

e (0, z|y) (1)

e with
— € > 0 atolerance level
— I (+) the indicator function
- Ay ={2€D:p(n(z),n(y)) <e
— 1 : D — & represents some summary statistics
- p: S xS —RT adistance metric.

e For € small and 7 sufficient, integrating o, we recover the posterior.
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e The choice of summary statistic is important; see the later talks. It is assumed 7, p are
given.

e We focus on trying to simulate from (1) with € as small as possible. This is to recover a
good approximation of the true posterior distribution.

e There exist other approximations, e.g. based upon kernel methods. The issue of which
may be preferable is not discussed.
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Simulation-Based Methods
Sampling from (1), when € is small, can be difficult.
Many methods proposed: rejection, MCMC, sequential Monte Carlo (SMC).
Focus upon SMC, which has been particularly controversial (Sisson et al. 2007).
Givenaset{€1,...,ep:00>€ > -+ >ep > 0};
Sequentially sample from 7, (asin (1)), then ¢, until 7.

At €7 it is easy simulate; 7., is well approximated. Then the idea is to try to use these
good approximations, to get to ., etc, and ultimately ...
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Simulation-Based Methods: Issues

SMC simulates a collection of NV samples, in parallel, sampling from ¢, then ¢, and
SO on.

Previous approaches have:

— Computational complexity, in IV, that is O(NN?) (e.g. Beaumont et al. 2009; Toni
et al. 2008).

— A deterministic sequence of €1, ..., €.

The first issue is computationally prohibitive. The second may be difficult to select in
realistic scenarios.
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e We present an SMC method that has the properties:
— a computational complexity that is O (V).

— it determines, in an automatic fashion, the sequence of tolerance levels to be
used.

— it determines, in an automatic fashion, the parameters of some proposals.

the latter is present in the method of Beaumont et al. (2009).
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SMC Samplers
Given a sequence of target distributions 71, ..., 7T, on the same space.
It is possible to sample from them, indirectly, using SMC samplers.

Use the sequence

where zg., := (20, .-, 2n).

{Ln}ogngT—l are a sequence of Markov kernels that act backward in time.

It is clear from Eq. (2) that {7,, } admit {m,, } as marginals.
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SMC Samplers: Algorithm

e Step 0. Setn = 0; fore = 1,..., N sample Z(()i) ~ 7o and compute Wéi) X
i i N '
m0(Z5”)/mo(Z5"), So3m, Wy = 1.

e Step 1. If ESS({WS)}) < N7 then resample N particles, also denoted{Zq(f)} and
setWT(f) = % Setn=n+1,ifn =1 4+ 1 stop.

e Step2.Forz =1,...,N, sample qui) ~ Kn(Z(i)

~’ 1,+), compute

Z\)
AR

(i) (i)
i (4) 71'n(Zn )Ln—l(Zn_17

W o« W,y 5 ©

Tn-1(Zy) ) Kn(Z

n—1»

(3)

and return to Step 1.
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SMC Samplers: Algorithm Settings

For ABC set

Te, (0, T1.01|y) o ( ZI[A )(Hf(a:kﬁ))w(ﬁ) (4)

for a given M € N.
This sequence admits the same marginal in 6 for any M.

It is more expensive to sample from 7, (6, x1.p7]y) than 7e, (6, x|y) when M > 1,
but has advantages, illustrated later.

Let €* be the smallest value of € we can select.
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SMC Samplers: Algorithm Settings
e The performance of SMC samplers depends upon
- {€n}
— the transition kernels { K, }
— backward transition kernels { L., }.

e Let {¢,} be fixed and K,,, an MCMC kernel of invariant density 7 . Take L, _1 as

e, (2 ) Kn (2, 2) |

bt ) = 2

e Then Eq. (3) becomes

7 M (7)
W(z) - W(z) ey, (Zézl) W(z) Zkzl HAen,y (Xk,n—l) (5)
S N ¢A00 B

1M i )
Zk:l I[Aen_l,y (Xlg,gv,—l)
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W, doesn't depend on {Zﬁf)} = {(97@, X@wn)} order of sampling and resam-
pling can be swapped.

A sample is ‘dead’ if Vk, p(n(X,gf) ),m(y)) > €n—1 (I/V?,(L’L._)1 = 0); there are a

n—1
random number of samples ‘alive’.

Resampling will bring dead particles back to life.
As €, < €,_1, some samples will die when sampling from 7.
Selecting the decay for {€,, } is important:

— Too fast, and the algorithm will collapse, with no alive particles

— Too slow, and the algorithm will take a long time.
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SMC Samplers: Adaptive {¢€,, }

Approach based upon fact that (5) for {quz)} does not depend on {Zﬁf)}.
Hence ¢,, is selected before the weight is calculated.

Define

SN L, soy (W)
N

PA{"}, e0) =
the proportion of alive particles.

The value of ¢,, is set via:
PA{W )}, ) = aPA({W, ), €0 1)

with o € (0, 1).

The { K, } can be adapted using adaptive MCMC ideas.
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Adaptive SMC Algorithm

Step 0. Setn = 0;fori = 1,..., N, sample Héi) ~ 7(-) and X,Sj?) ~ f(|9(()z))
k=1,..., M.

Stepl. Setn =n+1,ife,_1 = € stop, otherwise determine €,,, with qui) as (5).
If €,, < €* then sete¢,, = €.
Step 2. If ESS({WT(f)}) < N then resample N particles denoted {97(;11, Xﬁw 1}

and set Wy(f) = %

n—1»

Step 3. Fori = 1,..., N, sample (egi),X{%n) ~ Kn((ﬁ(i) X@w,n_l), ) if

Wr(f) > (0 and return to Step 1.
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Toy Example
Some parameters to be set and understood: M, o, IV.

Consider:
0 ~ U100, [ (z]0) =0.5¢(z;6,1) + 0.5¢ (z;6,1/100).

Uiq p) is the uniform on [a, b] and ¢ (:c; m, 02) is the normal density.
Random walk Metropolis kernels used for { K, }.

Found, unsurprisingly, better approximations of 7., for large M, N and a.
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Also looked at the trade-off of choosing M, [N and «.

For complex problems, want o, IV to be ‘large’ and M to be moderate.
Otherwise, one can keep « ‘small’, keeping M and N large.

Also compare a deterministic € schedule versus an adaptive one:

— Deterministic: €; = 10 and then falling linearly by 0.1 until €,, < 0.01; € =
0.01.

— Adaptive: o = 0.9 and €* = 0.01.
Whilst reasonable, the deterministic schedule leads to the ESS crashing close to €*.

Adaptive procedure has a consistent resampling rate and inferences are likely to be
more reliable.
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Summary
Presented an SMC method which is fully adaptive and computationally efficient.

Have compared with population Monte Carlo. Found that for a fixed computational effort
SMC samplers can perform better.

For real data and complex model (in epidemiology), found that SMC samplers can out-
perform MCMC (Bortot et al, 2007) when sampling from the model with small €*.

This latter aspect is the most important part of the algorithm.
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