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2.1 Afirst hypergeometric model

Hypergeometric distribution
2 The capture-recapture models (N, n,p)

when the population size, [V, rather than p, is unknown

PN\ (1—p)N
prob(X — z) = Lo) Cn’s’)
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Numerous applications: Example 26 VCR98054 - Birdwood Mammal Trapping Data, Charlottesville, VA,

e biology and ecology (herds, fish, &tc.), 1974-1978

o sociology and demography (populations at risk, homeless, prostitutes, &tc.), Trapping records for 10x10 trapping grids with 7.6m (25 foot) trap spacing. Up to 4
captures of an individual may be recorded on each line of data.

o official statistics and economics (U.S. Census undercounts),
Trapping used modified Fitch live traps with a # 10 tin can as the main chamber.

* fraud detection and document authentification Traps were baited with cracked corn or hen scratch and run for 3 sequential nights in

e software debuggin each trapping session.
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Variable description

GRID Grid

TAG Eartag number

SPECIES Species Darroch Model
FATEL Fate at capture 1
ROW1 Row of capture

COL1 Grid Column of capture

BMASS  Body Mass niy ~ Jf'(i\“, na, ILL/;N)
SEX Sex

TESTES Testes Condition

VAGINA Condiion of vagina Classical (MLE) estimator of NV

NIPPLES Size of Nipples
PUBIC Pubic symphysis width

& n
PREG Pregnant? N = 71,
FATE2 Fate at 2nd capture (nu/ng)

ROW2 Row of capture

COL2 Grid Column of Capture

FATE3 Fate at 3rd Capture Important drawback:
ROW3 Row of capture

COL3 Grid Column of Capture

FATE4 Fate at 4th Capture

ROW4 Row of capture

COL4 Grid Column of Capture

WEEK Week number since start of study
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Example 27 Deers

Herd of deer on an island of Newfoundland (Canada) w/o any predator.

Culling necessary for ecological equilibrium.

Annual census too time-consuming, but birth and death patterns for the deer imply

that the number of deer varies between 36 and 50. Prior:

N ~ % ({36,...,50})

EXL/MCIMCMC
Table 4: Posterior distribution of the deer population size, 7(N |n11).
N\njiy 0 1 2 3 4 5
36 0.058 0.072 0.089 0.106 0.125 0.144
37 0.059 0.072 0.085 0.098 0.111 0.124
38 0.061 0.071 0.081 0.090 0.100 0.108
39 0.062 0.070 0.077 0.084 0.089 0.094
40 0.063 0.069 0.074 0.078 0.081 0.082
41 0.065 0.068 0.071 0.072 0.073 0.072
42 0.066 0.068 0.067 0.067 0.066 0.064
43 0.067 0.067 0.065 0.063 0.060 0.056
44 0.068 0.066 0.062 0.059 0.054 0.050
45 0.069 0.065 0.060 0.055 0.050 0.044
46 0.070 0.064 0.058 0.051 0.045 0.040
47 0.071 0.063 0.056 0.048 0.041 0.035
48 0.072 0.063 0.054 0.045 0.038 0.032
49 0.073 0.062 0.052 0.043 0.035 0.028
50 0.074 0.061 0.050 0.040 0.032 0.026
Ex1/MC/MCMC
Different loss function
10(6 — N) ifd > N,
N -9 otherwise,
in order to avoid overestimation
Bayes estimator is (1/11)-quantile of m(N|n11),
Table 6: Estimated deer population
ni1 0 1 2 3 4 5
0™(n11) | 37 | 37 | 37 | 36 | 36 | 36
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Posterior distribution

(

niy no
nii ng — N1

)/ (.

Jrr =m)

W(N:n\nn): 50 p
2 (o) () /()=
poge \11/ \N2 — 711 n2
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Table 5: Posterior mean of the deer population size, V.
n11 0 1 2 3 4 5
E(N|nip) | 43.32 | 42.77 | 42.23 | 41.71 | 41.23 | 40.78
Ex1/MC/MCMC

Darroch model (2)

Unknown capture probability p

L(N.p|2) = [[T] " (1 = p)* 0
t 7

with d;¢ capture indicator
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Equivalent to
N
L(N,[)l.@) — < >pn1+...+TnT(1 7p)TN—n1—...—TnT
ny...nr

N
P (I-p

TN—n®
x (N —nt )

+

where n™ number of captured individuals and n“ number of captures

Also equivalent to cascade sampling:

ny ~ B(N,p), ng~ B(ni,p),...
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with conditionnal distributions

N—-1)!
7(Nlp, 7) o =D (1 Vs

(N - ’Vll)
m(p|N, Z) oc p"* THA(1 — p) TN 2

and
pIN, 2 ~ Be(n®+1/2, TN —n° +1/2),
) (N —1)! T(TN —n°+1/2)
N ~7w(N|2) « In>,
TN < T T N e
[Computable!!]
Ex1/MC/MCMC

Corresponding likelihood

I
N! _
Lipy,...,p1|N,n1,...,np) = W= Il pra=p)V e,
Ti=1

where I number of captures, n; number of captured animals during the ith capture,
and 7 is the total number of different captured animals.
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For a prior
m(N,p) = 1/ p(l-p)N

posterior
( ) ,]7

ne—1/2(1 _
(N —n*)! (

)A\'fu‘ —1/2

14
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2.2 A more advanced sampling model

Heterogeneous capture—recapture model :
Animals captured at time ¢ with both probability p; and size IV of the population

unknown.

Example 28 Northern Pintail ducks
Dataset
(n1,...,n11) = (32,20,8,5,1,2,0,2,1,1,0)
Number of recoveries over the years 1957-1968 of N = 1612 Northern Pintail
ducks banded in 1956
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Prior selection

If
N ~P()

and

o 25) =¥
T

[Normal logistic]
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Posterior distribution

then
NN L N
m(a,N|,ni,...,n5) o W—n M i:1(1+@ )
1
1 2
H exp {ami - ﬁ(ai — i) }
i=1
Just too hard to work with!!! ‘
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Fundamental theorem of simulation

Simulating
X~ f(x)

equivalent to simulating

X.U) ~uU{(z,u) : 0 <u < f(2)}

o5 o
L L

[}
L
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Validation of the Accept-Reject method

This algorithm produces a variable Y
distributed accordingto  f
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2.2.1 Accept-Reject Methods

e Many distributions from which difficult, or even impossible, to directly simulate.

o Another class of methods that only require us to know the functional form of the
density f of interest only up to a multiplicative constant.

e The key to this method is to use a simpler (simulation-wise) density g, the
instrumental density, from which the simulation from the target density f is

actually done.
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Accept-Reject method

Given a density of interest f, find a density g and a constant M such that

flz) < My(x)

on the support of f.
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- -2 0 2 4

Uniform repartition under the graph of  f of accepted points
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Two interesting properties:

o First, it provides a generic method to simulate from any density f that is known
up to a multiplicative factor
Property particularly important in Bayesian calculations: there, the posterior
distribution
m(0]z) o 7(6) f(x|6) .
is specified up to a normalizing constant

o Second, the probability of acceptance in the algorithm is 1 /M , e.g., expected
number of trials until a variable is accepted is M

Ex1/MC/MCMC

Take
Sp={z;,i=0,1,...,n+ 1} C supp(f)
such that 2(z;) = log f(;) known up to the same constant.
By concavity of i, line L; ;11 through (;, h(x;)) and (241, h(@iy1))
o below h in [z, z;+1] and

e above this graph outside this interval

Ex1/MC/MCMC

uniformly on the support of f, with
h,(z) = —00 and hy(2) = min(Lo(2), Lnni1 (7))
on [zg, Tp41]¢. Therefore, if
[, (@) = exph,(z) and fol) = exphy(z)

then
fo(@) < f(z) < Fo(a) = @n gule)

where to,, normalizing constant of f;,

149 Ex1/MC/IMCMC

Log-concave densities

Densities f whose logarithm is concave, for instance Bayesian posterior
distributions such that

log m(0]z) = log w(0) + log f(z]0) + ¢

concave

151 Ex1/MCIMCMC

log f(x)

Forz € [@i, ziq1), if
() = min{L;_1:(2), Liy1i2(2)} and b, (z) = Ly (),

the envelopes are
by (@) < h(z) < hn(2)

153 Ex1/MC/MCMC

Algorithm 29 —ARS Algorithm—

150

152
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Example 30 Northern Pintail ducks
For the posterior distribution

1
m(i|N,ny,...,ny) < exp {aim - E(ai - M)Q} /(1 +e)N |
the ARS algorithm can be implemented since

an; — (i — pi)® = N log(1 + e®7)

202

is concave in ;.

Ex1/MC/MCMC

1960

True distribution versus histogram of simulated sample

Ex1/MC/MCMC

If the 6;'s are generated from 7(6), the average

LS g1t

i=1
converges (almost surely) to J

Confidence regions can be derived from a normal approximation and the magnitude
of the error remains of order

1/vm,

whatever the dimension of the problem.

157
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Posterior distributions of capture log-odds ratios for the years 1957-1965.
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2.2.2 Monte Carlo methods
Approximation of the integral
7= [ a@)salo)m0) o,

should take advantage of the fact that f (:|@)7(6) is proportional to a density.
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Importance function

No need to simulate from 7 (+|x) or 7: if  is a probability density,

- [ 90)f(l0)7(0)
L g(0) f(x|0)7(0) db = / Wﬁ(()) de.

[Importance function]
An approximation to E™[g(6)|z] is given by

Z:Zl w(()f)

with w(f;) =

supp(h) C supp(f(z|-)m)
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The importance function may be 7

Example 31  Consider

Requirements 1,20~ C(0,1)

i - and 0 ~ N (1, 02), with known hyperparameters p and o
e Simulation from i must be easy

Since 7(6) is the normal distribution A/ (1, 0'2), it is possible to simulate a normal
° h(0) must be close enough to g(0)7r(0|w) sample 61, ..., 0 and to approximate the Bayes estimator by

S _ Et]\il O T (1 + (2 — 6,)%] 7
) = Zt]\il [T [+ (2 = 6)% 71 .

May be poor when the z;'s are all far from 1t

e the variance of the importance sampling estimator must be finite
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05

§ 31 Defensive sampling:
. h(0) = pm(0) + (1 - p)w(0lx)  p <1

[Newton & Raftery, 1994]

mu

90% range of variation for n = 10 observations from C(0, 1) distribution and
M = 1000 simulations of § froma A/ (p, 1) distribution.
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Case of the Bayes factor

Solutions
Models M vs. My compared via
e Bridge sampling:
By - PT(Ml‘.’I:)/PT(Ml) it
Pr(Mslz)/ Pr(Ms) m(01|z) o 7i(61|z)
ma(02]z) o @a(fa2|z)

/f1(1\91)7f1(91)d91 then
/fg(x\02)7r2(02)d92 Bia ~ 1 i w’lzg 0; ~ ma(0|)

[Good, 1958 & Jeffreys, 1961] [Chen, Shao & Ibrahim, 2000]
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o Umbrella sampling:

m(6) =m(6\) m(0) = mi(0]X2)
=71(0)/c(\) = m2(0)/c(A2)
Then
%log 7(dh)
¥ r(A) on [A1, Ao, log(c(A2)/c(M)) =E
m(A)
and
n (—Jlogir((ﬂz\-)
og(Bia) ~ L3 A Y
log(Bi2) n ; On)
Warranty:

if the Markov chains produced by MCMC algorithms are irreducible, then these
chains are positive recurrent with stationary distribution 7w (6|2:) and ergodic.

Translation:
For k large enough, 0k is approximately distributed from ﬂ(@\z), no matter what

the starting value 89 is.
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2.3.1 The Gibbs sampler
Takes advantage of hierarchical structures: if

w(0]x) = /7T1(6'|:v,>\)71'2()\\x) dA,
simulate from the joint distribution

m1(0]x, X) ma(A|z)

Ex1/MC/MCMC

2.3 Markov chain Monte Carlo methods

Given a density distribution  7(+| ), produce a Markov chain  (6(*)),

with stationary distribution 7 (-|2)
Practical use
e Produce an i.id. sample 61, . . . , 6, from 7(6|x), taking the current 6*) as

the new starting value

o Approximate E™[g(6)|z] as

1

1 (k)
7 2 90™)

M=

-~
Il

1

[Ergodic Theorem]
e Achieve quasi-independence by batch sampling

e Construct approximate posterior confidence regions

C;r ~ [a(aT/2)’ e(T—(yT/Z)]

Ex1/MC/MCMC

Example 32 Consider (6, A\) € N x [0,1] and
Tr(@,/\‘]:) x (Z‘) /\6+a—1(1 _ >\)n79+/}71

Hierarchical structure:

Olz, A ~ B(n,A), Az~ Be(a,§)
Then (
_ (n\Bla+0,3+n-0)
riok) = (5) 25

[beta-binomial distribution]
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Difficult to work with this marginal : For instance, computation of
E[0/(0 + 1)|z]

More advantageous to simulate
D~ Be(a, 8) and 09 ~ B(n, A?)
Then approximate E[f/(6 + 1)|z] as

1 m 9(,)
m > 0@ +1
i=1

MCMC 175

Example 33  For the capture-recapture model, the two conditional posterior
distributions are (1 < i < I)

pilt, N ~ Be(a+xz;,+ N —ux;)
N—zyle,p ~ Neg(zy, o),
with

0=1-—

=

(1 —pi).
1

r

1

i

MCMC 177

Example 34 (Example 32 continued) The conditional distributions are

Olz, A ~ B(n,\), Az,0~Be(a+6,8+n—0)
%
Histograms for samples of size 5000 from the beta-binomial with n = 54,

a=34and f=5.2
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Conditionals

Usually 72 (A|2) not available/simulable

More often, both conditional posterior distributions,
10|z, ) and wo(\|z, 0)

can be simulated.
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Data augmentation algorithm

Initialization: ~ Start with an arbitrary value A(©)
Iteration ¢: Given A(*=1), generate

a. 0 according to 1 (A]x, A\¢=1))

b. A" according to a2 (|2, 01)

(60, \|x) is a stationary distribution for this transition

MCMC 178

Rao-Blackwellization

Conditional structure of the sampling algorithm and the dual sample,

should be exploited.

E™[g(0)|x] approximated as

13
— s (m)
2= 1 L E IO X,
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Ex1/MC/MCMC
instead of The general Gibbs sampler
1 & ;
- = (@)
o1 m 2; 9(0™). Consider several groups of parameters, 6, A1, ..., A, such that
i=
Approximation of 7(0|z) by m(0|z) = / .. / (0, A1, .. Aplz) dAy - dAy
1 & ) . .
- Z (8], \;) or simply divide € in
i=1 (01,...,6p)
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This model stems from sampling according to

Example 35 Consider a multinomial model,
T ~ Mo(n;a1p, by, azpe, by, azn, by, asn, by, c(1 — p — 1)),

y ~ Ms (n;a1p+ by, asp + ba, agn + bz, agn + by, c(1 — p— 1)),
and aggregating some coordinates:

parametrized by 1 and 1), where

4 Y1 =21+ T2, Y2 =2T3+ T4, Y3=T5+2Te, Y4 =TT+ T, Y5 = To.

OSa1+a2:a3+a4:172bi:c§1
i=1

For the prior

™ o prpee = (1 — g — )Tl
and ¢, a;, b; > 0 are known. (1,m) o n ( U »
the posterior distribution of (14, 77) cannot be derived explicitly.
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Introduce z = (1, 3, Z5, T7), which is not observed and
Moreover,
a(m,ply,z) = w(n,plw) aspt
i .
x [Lzlﬂz27]23’l’]z4 (1 —n— M)95+H3*1H(11*1na2*1 , Zz‘lyy 1225/ A (yzv m) ( =1, 2)7
i i
: a;n
where we denote the coordinates of z as (21, 22, 23, 24). Therefore, zlypn ~ B <y71., a.n1+1 - ) (i = 3,4).
i i

1|y, 2 ~ D(21 4 22 + a1, 23 + 24 + a2, Y5 + az).



The Gibbs sampler

For a joint distribution 71'(9) with full conditionals 7y, . . . , T,
Given (9%07 e 0,(,t)), simulate

1 08D (04168, ..., 6,
2. 9§t+1) ~ 71_2(02|0§t+1)’0:(;t),.“701()t))y

p. 05D ~ (6,168, 80D,
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Associated conditionals
ﬂ(p‘N, q,D) x anr—l/Z(l _ p)N—nl—l/Q(l 7pq)n1—nk
7T((]|N,p., D) o qwz+—n1+a—1 (1 _ q)/i—l (1 7pq)"17nk

R(Vlp.0. D) x (i (= T,

and

p|N.q,D ~ Be(ny +1/2, N —ny +1/2+4 q(ny — ny))
a|N,p, D ~ Be(ny —ni + o, B+ p(n1 — ny))
N —n1lp,q,D ~ Poi((1 - p)n1/p)

for substitution model

MC/AS model 189

2.4 An even more advanced capture-recapture model

2.4.1 Arnason-Schwarz model

Estimate movement and survival probabilities for individuals

Example 37 Study a zone K divided in kK = 3 strata a, b, ¢
Four possible capture-recapture histories:

a ¢ - - b a b ¢
a a c - - a a b
c a ¢ b a a

a a Cc a a
where “ - " denotes a failure of capture

Ex1/MC/MCMC

Example 36 Open population model

Probability g to leave the population each time
L(N,p/D*) = HHQE:(&,”(l — ey
p(l_ir,t)‘;'l,(l _ p)(l—m)(l—éu)
where go = ¢, ¢1 = 1, and €;; exit indicator.
Substitution model

ny ~ B(N,p), ng~ B(ni,pq), nz~ B(na,pq),...

Ex1/MC/MCMC

2.3.2 The impact of MCMC on Bayesian Statistics

e Radical modification of the way people work with models and prior assumptions

e Allows for much more complex structures:
— use of graphical models

— exploration of latent variable models
e Removes the need for analytical processing
e Boosted hierarchical modeling

e Enables (truly) Bayesian model choice

Ex1/MC/MCMC/AS model

Missing data structure

® z(;1) = 7 : the animal ¢ is (alive) in stratum 7 at time ¢;

® z(i,y) = T : the animal i is dead at time ¢.

® z; = (2(i,),t = 1,..,7) migration process related to 7.

® T(iy = 0 : failure of capture of 7 at time ¢ (the location Z(i,¢) is missing)
® 2; = (T(;),t =1,..,7) capture process related to i.

e 'y, capture-recapture history of animal .

186
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Parameters of the Arnason-Schwarz model

Capture probabilities

Example 38
=12 - P pt( ) Pr (z(i,t) = |Z(i,t) = T)
yi= 3 1

. . Transition probabilities
For this capture-recapture history we have P

X =110111000 qi(r,s) = Pr (Z(i‘t+1) =8|z = r) reK,se KU{{}

Survival and movement probabilities

A possible z; is

2;=12131111 qi(r,8) = ¢e(r) x Pue(r,s) re K,s € K

@1(r) =1 — q(r,T) survival probability. 3¢ (r, s) inter-strata movement
probability.
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2.4.2  Prior modelling
Example 39 Capture-recapture experiment on migrations between zones

Conjugate priors Prior information on capture and survival probabilities, p; and g;¢

pu(r) ~ Be(au(r), bu(r))  di(r) ~ Be(ai(r), Bu(r))

and Pt Mean 0.3 0.4 0.5 0.2 0.2

Time 2 3 4 5 6

Pi(r) ~ Dir(7e(r)) 95% cred.int.  [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.050.4] [0.050.4]
where ¥y (1) = (¢Pi(r,s);s = 1,..., k) with Site A B
k Time t=1,3,5 t=2,4 t=1,35 t=2,4
Zd’t(ra s)=1 gt Mean 07 0.65 07 0.7
o=t 95% cred. int. | [0.4,0.95] [0.35,0.9] | [0.4,0.95] [0.4,0.95]

and v,(r) = (n(r,8);s = 1,....k).

Ex1/MC/MCMC/AS model

Corresponding prior modeling

Ex1/MC/MCMC/AS model

2.4.3 Gibbs sampling

Time 2 4 5 6

Dist.  Be(6,14) Be(8,12) Be(12,12) Be(3.5,14) Be(3.5,14) Advantage of using the missing data structure

site A B m(ly,) o< L(ly,) x m()
Time =135 =24 =135 =24 simple and easily simulated, thanks to conjugacy
Dist. | Be(6.0,2.5) Be(6.5,3.5) | Be(6.0,2.5) Be(6.0,2.5)

196



Ex1/MC/MCMC/AS model 197 Ex1/MC/MCMC/AS model
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Example 40 Take K = {1,2}, m = 8 and, for y For instance, at step (I — 1), completed data (y,(~1))
11 1 11 1 2 1 1 2 f
1 1 1 2 1 11 1 2 1 1 1 2
2 1 1 2 1 21 2 1 2 1 1 1
1 1 2 1 1 2 12 1 1 2 1 1 2
Bayesian Case Studies/February 2, 2004 201

then simulation parameter phase as follows:

YOI ~ Be(1+2,1+2)
6P (@)|(y 1) ~ Be(1+4,1+0)
D,2)|(y,070) ~ Be(1+2,1+1)



