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Abstract

Nicolas Chopin and Christian P. Robert! have proposed tests of nested
sampling’s response to dimensionality, response to shape, and conver-
gence. The tests are well chosen but, regrettably, their results are wrong
in every case.

They report a bias with dimension, which cannot and does not occur.
They report a bias with shape, which likewise cannot and does not occur.
They find a failure of convergence which again cannot and does not occur.
They do not offer explanations, but invite the reader to believe their
programming rather than the mathematical properties of nested sampling.

I have programmed the same tests, and find none of the reported
biasses. My programs and results are in the accompanying files.

1 Example 1: Dimensionality

The first example has a Gaussian likelihood in various dimensions, de-centred
with respect to the Gaussian prior. The prioris §; =0+ 1 fori = 1,2,...,d,
explicitly the Gaussian

d 2
o =1 5

The data are y; = 6; £ 1 with all data values y; = 3, so the likelihood is

Pr(Data | §) = f[ exp = \(?;_W_ 31/2)

Analytically, the evidence for this problem is

7 = Pr(Data) = (%\_/;/4))(1

and the information is

H = (7/8 +1ogV2)d

The nested-sampling program “Examplel.c” codes this problem. The di-
mension d is hardwired as DIM in line 8, and the main program uses R runs of
N objects, terminating after a number M of iterates known analytically to be
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more than adequate. (Practical programs have to guess M, but I can avoid that
guesswork here by knowing H and setting M > NH.) I usually use my own
random-number library ranlib. [ch] in my codes, and the program starts by
seeding this generator with the dimension, which avoids any question of correla-
tion between runs at different dimension. (For user convenience, this generator
can also be seeded with a negative number, in which case it uses the positive
current time as seed, to enable different but reproducible random sequences.)

The main program continues with standard nested sampling, with explo-
ration within the likelihood constraint delegated to the Explore procedure. As
programmed, the form of likelihood used internally is the proxy

d

log L(0) = — Y (6; — 3)°

i=1

which is only modulated to Pr(Data | §) when the sequence is sent to store.
Explore starts by translating the log-likelihood bound Lstar to the radius-
squared RR = —log L of the spherical domain of currently allowed 6. It then
runs 10 cycles of Gibbs exploration, each time taking the DIM coordinates in
random order, as controlled by the Ranperm random permutation procedure.
At each step, only one coordinate u is changed, inside the range (ul, u2) that
lies within the constraining radius. Procedure sampleu returns a random sample
from the prior, within this range. On completion of an iterate, the worst (lowest
likelihood) object is written to its stored sequence.

When each run is finished, procedure Evidence calculates its Z and H.
Actually, Z is calculated and printed as the difference AlogZ between log Z
and the known, analytic truth. It is printed along with its uncertainty, as
calculated “properly” by simulating the sequence of enclosed volumes X that
presumably accompanied the given likelihood values L. Because the X'’s are
known statistically but not exactly, I allow 1000 simulations to make (almost)
sure that the average and standard deviation of log Z reliably represent the
correct inference from the likelihood sequence. Using 1000 simulations is usually
ridiculously many, but this is a demonstration that nested sampling works, so I
play safe. The main program accumulates the statistics of the deviation Alog Z
for final output.

Results for dimensions DIM of 5,10,15,...,50 are given in files gibbs5.txt
to gibbsb50.txt. Being the results of random floating-point exploration, such
results may differ in detail when compiled and run on different hardware.

e The mean Alog Z should be close to zero, within a standard deviation or so
of the inferred average. Correctly, it is.

e The individual standard deviation should be typical of the variation computed
for each individual run. Correctly, it is.

e Because this is a simple problem, those individual standard deviations should
also be close to \/H/N. Correctly, they are.

e The 10%, 25%, 50%, 75% and 90% quantiles of Alog Z are also calculated
and printed, for display in box-and-whisker form. The median should show
no bias with dimension. Correctly, it doesn’t.

These results are plotted in figure 1. Nested sampling works in this example
just as mathematics insists that it must. How could it possibly be otherwise?



Chopin & Robert (their figure 1) report an upward bias of about d/5 in log Z.
Upward bias cannot be due to inadequate exploration, which necessarily biasses
likelihoods and hence evidence values downwards because the high-likelihood
region hasn’t been found. It can only be programming error, either keyboard
or conceptual.

2 Example 2: Shape

In the second example, the likelihood of each datum is averaged over two alter-
native models. There are six data

y = {0.25, 0.88, 2.16, 2.45, 2.84, 3.50}

Each is explicable as a sample from either A'(0,1) or N'(u, o), where the mean
1 could be anywhere uniformly distributed from —2 to 6, and the variance o2
could be anywhere from 0.001 to 16, uniformly distributed in the logarithm (i.e.
as Jeffreys). The mixture likelihood is thus

(p exp(-y;/2) +-p 2P (= (i - u)2/2a2)>

6
L(p,0) =Pr(y | p,o) =[]

i1 V2 V2no
in which p = 3. This can be re-written as
L=2Zye

where

6

1 exp(—y2/2) —12

o = H - = Bil% — 775398 x 10
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is a constant, and

6
_ L, (exp(=(yi — w)?/20%)) | V20
A—;bg(lﬂz), ti = DN

can be used as a proxy for L.

The advantage of the latter form is that ordering can be retained, in the
sense that different (u,0) almost always lead to arithmetically-different values
of t;, which (with suitably careful coding of log(1 + t) as ¢ when ¢ is small),
give the arithmetically-different values of L that nested sampling requires. Oth-
erwise, there is a significant part of the domain in which the latter “(1—p)”
terms all submerge beneath the former “p” terms to 53-bit double-precision
accuracy, leading to apparently-equal likelihoods. With the natural coding of
nested sampling, that would bias the evidence value Z. Even so, 2% of the
domain has all the t’s extremely small, less than 27124 and underflowing the
usual double-precision arithmetical range. To retain proper representation even
in these corners where A would appear to be 0, I compute it as loglogL rep-
resenting log \. My apologies for the infelicity — problems aren’t usually this
sensitive to coding.



Program “Example2.c” runs nested sampling for N = 10000 objects, with
M = 100000 iterations being more than adequate. Exploration is by very simple
Gibbs sampling, allowing the controlling variables

z=(u+2)/8, y = log(1000 0?) / log(16000)

to move through the unit square (0, 1)? under uniform prior. The only random
generator that’s needed is for Uniform(0, 1), so I just use the language’s built-in
generator (which may give less portable results than my own).

Lazily using the average compression X; = e~#/" with the likelihood se-
quence L; gives an evidence log Z = —12.9006 £ 0.0154. For comparison, the
true value, as evaluated on an adequate 1000 x 1000 grid, is log Z = —12.8894.
Nested sampling’s estimate is correct.

The program then outputs 1000 histogram-equalised posterior samples, in
which point j (from 1 to 1000) is at a likelihood value that excludes a fraction
(7 — 3)/1000 of the posterior, as estimated by nested sampling. This plot gives
a more uniform sampling over the posterior than is obtained by selecting iid
random samples. The samples are printed out in file mixture.txt and plotted in
figure 2. Here the ordinate is logarithmic in o, to ensure that the prior is uniform
so that the visual patterns show the effect of likelihood alone. Contours exclude,
respectively, 0.0001%, 0.01%, 1%, 10%, 50% of the posterior, as calculated on
the 1000 x 1000 grid. The nested-sampling points are coded as

0to 1% = black, 1 to 10% = blue, 10 to 50% = green, 50 to 100% = red.

Because I used a large number of objects, the 1000 plotted points lie almost
perfectly within the exact contours.

Chopin & Robert claim that the narrow funnels leading down to the abscissa
data points (arrowed) are “attractors for nested sampling” which exhibit “a
fatal attraction” for the samples. Er, “fatal”’??! They plot such a picture in
their figure 7 (confusingly using a linear scale in ¢, on which the prior is non-
uniform). But the picture is quite wrong, and the appearance of the attractive
effect merely proves their program to be in error. Nested sampling has no way
of detecting the shape of the likelihood contours. It responds to volumes, but
is invariant to the shapes so it cannot possibly discover their corners. Indeed,
it doesn’t. Nested sampling’s distribution of points is correct.

Figure 3 plots the eight basins of attraction into which steepest-descent
algorithms for —L would fall. If nested sampling did show an attraction into
such basins, it might perhaps also show some such bias into the light-blue basin
around (p = 0.6, o = 0.3), as well as into the funnels related to individual data.
Of course, it doesn’t.



3 Example 3: Convergence

In the third example (a study of well usage in Bangladesh), the setting of
a switch is modelled as a function of seven variables. I find it difficult to
take this study seriously, but the dataset wells.txt downloaded from website
http://www.stat.columbia.edu/~gelman/arm/examples/arsenic has 3020
records, each including precursors for the following variables:

x1 = distance to nearest well, in units of 100 metres, relative to mean,
z2 = log, (arsenic concentration in water, in mg/l), relative to mean,
x3 = education level from 0 to 17, divided by 4, relative to mean,

T4 = x1x2 = correlation between distance and arsenic,

r5 = r1x3 = correlation between distance and education,

Te¢ = T2x3 = correlation between arsenic and education,

x7 = 1, to compensate for offsets relative to the means;

y = 0/1 switch for whether the individual has changed wells recently.

The aim seems to be to find a linear combination

7
s = E 23101
i=1

of these x’s which can be used to predict the corresponding y, by using a likeli-

hood defined as
3020

_ ®(sk) ify,=1
L(e)_kl:[l{l—é(sk) ify, =0
Arsenic poisoning is a serious problem, though I have doubts about the utility
of this model. Anyway, ® is the usual normal cumulant between 0 and 1, and
the prior is the conservatively wide Gaussian §; =0+ 10 for i =1,2,...,7.
My program readwells.c translates the given data to the 3020 records of
(y, 1, T2, x3) that are needed, writing them to wells.dat. It’s tedious but
possible to evaluate the 7-dimensional #-integrals by unambiguous brute force
to obtain
log Z = —1969.552 , H =34.208.

Program Example3.c generates the nested-sampling sequence of likelihood
values, using N objects. Exploration is simplest when set up over a prior that is
uniform over the unsigned-integer hypercube [0,2%2)7, in which each coordinate
u; ranges from 0 to 23?2 —1. These u coordinates are transformed to @ values by
a large 2%°-element lookup table THETA of normal cumulants, the lowest 7 bits
being ignored.

¥ exp(—2?/2)
o V27

Then, with s evaluated for a record, its contribution ® or 1—® (according to
the setting of y) is obtained by another lookup table LOGPHI. The range of s is
in principle unbounded, so I squeeze it into (—1, 1) by defining z = s/v/1 + s2
before digitising « into the lookup table. These tables considerably accelerate
the computation, while being big enough to retain better than 1-in-10° accuracy
without interpolation.

u=2% dx



Procedure Explore proposes trial moves in which all the u’s change simul-
taneously, through randomisation of their low-order bits. At first, only one
high-order bit is preserved, but if that fails two such bits are preserved, then
three, and so on until a move is eventually accepted. This integer-based slice-
sampling procedure obeys detailed balance, and about ten successful moves are
enough to avoid detectable bias in log Z from 100 runs.

The main program controls 100 runs, each of which produces a sequence of
likelihood values L;, to be accompanied by enclosed volumes X;. As before,
I allow 1000 simulations of the X’s to construct log Z, its uncertainty, and H.
These estimates are printed out as the result of the program. File arsenicl.txt
tabulates 100 runs with N = 1 object, file arsenic10.txt tabulates 100 runs
with N = 10 objects, file arsenic100.txt tabulates 100 runs with N = 100
objects, and file arsenic1000. txt tabulates 100 runs with N = 1000 objects.

Figure 4 displays these as box-and-whisker plots. Specifically, these 100 runs
with different numbers of objects gave the following results for log Z:

# objects 1 10 100 1000
mean —1970.40 —-1969.72 —1969.57 —1969.55
+std.dev. +6.12 +1.64 +0.63 +0.18

90% quantile —1962.78 —1967.24 —1968.83 —1969.36
75% quantile —1965.76 —1968.61 —1969.13 —1969.44
50% quantile —1970.58 —1969.70 —1969.55 —1969.55
25% quantile —1974.83 —1970.85 —1970.01 —1969.66
10% quantile —1978.59 —1971.77 —1970.45 —1969.82

These results are straightforwardly consistent with the standard log Z + \/H/N
= —1969.552 + 1/34.208 /N prediction of nested sampling.

Chopin & Robert obtain a bias of +1.1 upwards in log Z, as shown in their
figure 8. They call it “small”, but it’s an obvious and unacceptable 3-sigma-
significant systematic over-estimate of Z by a factor of three. Once again, their
result is wrong. As they themselves try to prove, nested sampling converges to
the truth as the number of objects increases, so even on their own view there
can be no such bias.

4 Nested sampling’s convergence

The nested sampling estimate of log Z converges in mean square to the true
value as the number of objects N — oo, provided only that Z and H are both
bounded. A proof is in Skilling (2007)2, reproduced here as Convergence.pdf
in a manuscript that also improves the presentation of nested sampling. Chopin
& Robert attempted a related proof under more restrictive conditions including
differentiability which (because the algorithm is independent of the shape and
even the topology of the likelihood function) can not be and are not needed.

28killing J. (2007) Nested Sampling’s Convergence, comprehensively rejected by Biometrika
as inappropriate, unclear, ambiguous, too difficult, unmathematical, actually mistaken, and
lacking utility in statistics. It’s odd, sometimes, how other people’s opinions can mirror one’s
own. ..
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Figure 1:

EXAMPLE 1: Quantiles of log Z excess at 10%, 25%, 50%, 75%, 90% for 100
runs of 100 objects, for various dimensions up to 50. Sampling is 10 cycles of
Gibbs.



Figure 2:

EXAMPLE 2: 1000 histogram-equalised sample points, superposed on contours
enclosing 0.0001%, 0.01%, 1%, 10%, 50% of the posterior. The lowest 1% of
points are black, then 1-10% blue, then 10-50% green, then the top 50% red.
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Figure 3:

EXAMPLE 2: The eight basins of attraction, with local maxima shown as dots.
Six funnel down to the data points (arrowed), one (light blue) is minor, while
the major basin (yellow) covers most of the posterior.
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Figure 4:

EXAMPLE 3: Quantiles of log Z at 10%, 25%, 50%, 75%, 90% for 100 runs
of N objects. The dashed line shows the truth. The variation agrees with the
predicted standard deviation /34.208/N.



