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Bayesian Model Choice

Introduction

Setup

Choice of models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Bayesian Model Choice

Bayesian resolution

Bayesian resolution

Bayesian Framework

Probabilises the entire model/parameter space

This means:

allocating probabilities pi to all models Mi

defining priors πi(θi) for each parameter space Θi
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Bayesian resolution

Formal solution

Resolution

1. Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj
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Bayesian Model Choice

Bayesian resolution

Formal solution

Resolution

1. Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj

2. Take largest p(Mi|x) to determine ‘‘best’’ model,

or use averaged predictive

∑

j

p(Mj |x)

∫

Θj

fj(x
′|θj)πj(θj|x)dθj
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averaging = estimation = non-parsimonious = no-decision
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Bayesian Model Choice

Problems

Several types of problems

Concentrate on selection perspective:

averaging = estimation = non-parsimonious = no-decision
how to integrate loss function/decision/consequences
representation of parsimony/sparcity (Occam’s rule)
how to fight overfitting for nested models

Which loss function?
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Bayesian Model Choice

Problems

Several types of problems (2)

Choice of prior structures

adequate weights pi:
if M1 = M2 ∪ M3, p(M1) = p(M2) + p(M3) ?
priors distributions

πi(θi) defined for every i ∈ I

πi(θi) proper (Jeffreys)
πi(θi) coherent (?) for nested models

Warning

Parameters common to several models must be treated as separate
entities!
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Bayesian Model Choice

Problems

Several types of problems (3)

Computation of predictives and marginals

- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over (too) many models (2k)

[MCMC resolution = another talk]
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Bayesian Model Choice

Bayes factors

A function of posterior probabilities

Definition (Bayes factors)

Models M1 vs. M2

B12 =
Pr(M1|x)

Pr(M2|x)

/
Pr(M1)

Pr(M2)

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

[Good, 1958 & Jeffreys, 1961]

Goto Poisson example
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Bayesian Model Choice

Bayes factors

Self-contained concept

eliminates choice of Pr(Mi)

but depends on the choice of πi(θi)

Bayesian/marginal likelihood ratio

Jeffreys’ scale of evidence
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Bayes factors

A difficulty

Improper priors not allowed here

If ∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be normalised uniquely
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Bayesian Model Choice

Bayes factors

A difficulty

Improper priors not allowed here

If ∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be normalised uniquely but the
normalisation matters in the Bayes factor Recall Bayes factor
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Bayesian Model Choice

Bayes factors

Constants matter

Example (Poisson versus Negative binomial)

If M1 is a P(λ) distribution and M2 is a N B(m,p) distribution,
we can take

π1(λ) = 1/λ
π2(m, p) = 1

M I{1,··· ,M}(m) I[0,1](p)
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Bayesian Model Choice

Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (2))

then

B12 =

∫ ∞

0

λx−1

x!
e−λdλ

1

M

M∑

m=1

∫ ∞

0

(
m

x − 1

)
px(1 − p)m−xdp

= 1

/
1

M

M∑

m=x

(
m

x − 1

)
x!(m − x)!

m!

= 1

/
1

M

M∑

m=x

x/(m − x + 1)
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different answer, ten times larger!
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Bayesian Model Choice

Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!

same thing when both priors are improper

Note

Improper priors on common (nuisance) parameters do not matter
(so much)
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Bayesian Model Choice

Bayes factors

Vague proper priors are not the solution

To compatible priors

Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley’s paradox)

If testing H0 : θ = 0 when observing x ∼ N (θ, 1), under a normal
N (0, α) prior π1(θ),

B01(x)
α−→∞
−→ 0
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Bayesian Model Choice

Bayes factors

Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m − x + 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α + x)

x! Γ(α)
β−x

/
1

M

∑

m

x

m − x + 1

=
(x + α − 1) · · ·α

x(x − 1) · · · 1
β−x

/
1

M

∑

m

x

m − x + 1
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Bayesian Model Choice

Bayes factors

Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m − x + 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α + x)

x! Γ(α)
β−x

/
1

M

∑

m

x

m − x + 1

=
(x + α − 1) · · ·α

x(x − 1) · · · 1
β−x

/
1

M

∑

m

x

m − x + 1

depends on choice of α(β) or β(α) −→ 0
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Compatible priors for variable selection

2 Compatible priors

1 Bayesian Model Choice

2 Compatible priors for variable selection
Principle
Linear regression
Variable selection
Application

3 k-nearest-neighbour classification

[Joint work with C. Celeux, G. Consonni and J.M. Marin]
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Compatible priors for variable selection

Principle

Principle

Difficult to simultaneously find priors on a collection of models Mi

(i ∈ I)
Easier to start from a single prior on a “big” model and to derive
the other priors from a coherence principle

[Dawid & Lauritzen, 2000]
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Compatible priors for variable selection

Principle

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1
⊥)) = inf

θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]
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Compatible priors for variable selection

Principle

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1
⊥)) = inf

θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

d(f(· |θ1), f(· |θ1
⊥))

[Goutis & Robert, 1998]
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Compatible priors for variable selection

Principle

Kullback proximity

Alternative solution

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫
Θ1

f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫
Θ2

f2(x|θ)π2(θ)dθ,
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Compatible priors for variable selection

Principle

Kullback proximity

Alternative solution

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫
Θ1

f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫
Θ2

f2(x|θ)π2(θ)dθ,

π2 = arg min
π2

∫
log

(
m1(x;π1)

m2(x;π2)

)
m1(x;π1) dx
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Compatible priors for variable selection

Principle

Difficulties

Does not give a working principle when M2 is not a submodel
M1

Depends on the choice of π1

Prohibits the use of improper priors

Worse: useless in unconstrained settings...
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Compatible priors for variable selection

Linear regression

Linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1 M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ
2 ∼ N

(
s1, σ

2n1(X
T
1 X1)

−1
)

where X1 is a (n × k1) matrix of rank k1 ≤ n

2 M2 :

y|β2, σ
2 ∼ N (X2β2, σ

2), β2|σ
2 ∼ N

(
s2, σ

2n2(X
T
2 X2)

−1
)

,

where X2 is a (n × k2) matrix with span(X2) ⊆ span(X1)
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Linear regression

Compatible g-priors

Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ

2; s1, n1) and m2(y|σ
2; s2, n2)
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Compatible priors for variable selection

Linear regression

Compatible g-priors

Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ

2; s1, n1) and m2(y|σ
2; s2, n2)

Theorem

Conditional on σ2, the conjugate compatible prior of M2 wrt M1 is

β2|X2, σ
2 ∼ N

(
s∗2, σ

2n∗
2(X

T

2 X2)
−1
)

with

s∗2 = (XT

2 X2)
−1XT

2 X1s1

n∗
2 = n1
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Compatible priors for variable selection

Variable selection

Variable selection

Regression setup where y regressed on a set {x1, . . . , xp} of p
potential explanatory regressors (plus intercept)

Corresponding 2p submodels Mγ , where γ ∈ Γ = {0, 1}p indicates
inclusion/exclusion of variables by a binary representation,
e.g. γ = 101001011
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Compatible priors for variable selection

Variable selection

Notations

For model Mγ ,

qγ variables included

t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} indices of those variables and
t0(γ) indices of the variables not included

For β ∈ Rp+1,

βt1(γ) =
[
β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

Xt1(γ) =
[
1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]
.
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Compatible priors for variable selection

Variable selection

Notations

For model Mγ ,

qγ variables included

t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} indices of those variables and
t0(γ) indices of the variables not included

For β ∈ Rp+1,

βt1(γ) =
[
β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

Xt1(γ) =
[
1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]
.

Submodel Mγ is thus

y|β, γ, σ2 ∼ N
(
Xt1(γ)βt1(γ), σ

2In

)
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Variable selection

Global and compatible priors

Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g
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Variable selection

Global and compatible priors

Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g

Resulting compatible prior

N

((
XT

t1(γ)Xt1(γ)

)−1
XT

t1(γ)Xβ̃, cσ2
(
XT

t1(γ)Xt1(γ)

)−1
)
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Compatible priors for variable selection

Variable selection

Global and compatible priors

Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g

Resulting compatible prior

N

((
XT

t1(γ)Xt1(γ)

)−1
XT

t1(γ)Xβ̃, cσ2
(
XT

t1(γ)Xt1(γ)

)−1
)

[Surprise!]
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Compatible priors for variable selection

Variable selection

Model index

For the hierarchical parameter γ, we use

π(γ) =

p∏

i=1

τγi

i (1 − τi)
1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model.
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Compatible priors for variable selection

Variable selection

Model index

For the hierarchical parameter γ, we use

π(γ) =

p∏

i=1

τγi

i (1 − τi)
1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model.
Typically, when no prior information is available,
τ1 = . . . = τp = 1/2, ie a uniform prior

π(γ) = 2−p



Model uncertainty and model choice: Bayesian tools

Compatible priors for variable selection

Variable selection

Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c+1)−(qγ+1)/2

[
yTy −

cyTP1y

c + 1
+

β̃TXTP1Xβ̃

c + 1
−

2yTP1Xβ̃

c + 1

]
−n/2

.
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Compatible priors for variable selection

Variable selection

Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c+1)−(qγ+1)/2

[
yTy −

cyTP1y

c + 1
+

β̃TXTP1Xβ̃

c + 1
−

2yTP1Xβ̃

c + 1

]
−n/2

.

Conditionally on γ, posterior distributions of β and σ2:

βt1(γ)|σ
2, y, γ ∼ N

[
c

c + 1
(U1y + U1Xβ̃/c),

σ2c

c + 1

(
XT

t1(γ)Xt1(γ)

)
−1
]

,

σ2|y, γ ∼ IG

[
n

2
,
yTy

2
−

cyTP1y

2(c + 1)
+

β̃TXTP1Xβ̃

2(c + 1)
−

yTP1Xβ̃

c + 1

]
.
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Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior
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Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:
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Compatible priors for variable selection

Variable selection

Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:

Taking β̃ = 0p+1 and c large does not work
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Compatible priors for variable selection

Variable selection

Influence of c

Erase influence

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]
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Compatible priors for variable selection

Variable selection

Influence of c

Erase influence

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]

True model: two predictors x1 and x2, i.e. γ∗ = 110. . .0,
(β0, β1, β2) = (5, 1, 3), and σ2 = 4.
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Compatible priors for variable selection

Variable selection

Influence of c2

t1(γ) c = 10 c = 100 c = 103 c = 104 c = 106

0,1,2 0.04062 0.35368 0.65858 0.85895 0.98222
0,1,2,7 0.01326 0.06142 0.08395 0.04434 0.00524
0,1,2,4 0.01299 0.05310 0.05805 0.02868 0.00336
0,2,4 0.02927 0.03962 0.00409 0.00246 0.00254
0,1,2,8 0.01240 0.03833 0.01100 0.00126 0.00126
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Compatible priors for variable selection

Variable selection

Noninformative case (cont’d)

In the noninformative setting,

π(γ|y) ∝
∞∑

c=1

c−1(c + 1)−(qγ+1)/2

[
yTy −

c

c + 1
yTP1y

]−n/2

converges for all y’s
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Compatible priors for variable selection

Variable selection

Casella & Moreno’s example

t1(γ)

106∑

i=1

π(γ|y, c)π(c)

0,1,2 0.78071
0,1,2,7 0.06201
0,1,2,4 0.04119
0,1,2,8 0.01676
0,1,2,5 0.01604
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Compatible priors for variable selection

Variable selection

Gibbs approximation

When p large, impossible to compute the posterior probabilities of
the 2p models.
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Compatible priors for variable selection

Variable selection

Gibbs approximation

When p large, impossible to compute the posterior probabilities of
the 2p models.
Use of a Monte Carlo approximation of π(γ|y)

Gibbs sampling

• At t = 0, draw γ0 from the uniform distribution on Γ

• At t, for i = 1, . . . , p, draw
γt

i ∼ π(γi|y, γt
1, . . . , γ

t
i−1, . . . , γ

t−1
i+1 , . . . , γt−1

p )
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Compatible priors for variable selection

Variable selection

Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N

(
β0 +

20∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
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Compatible priors for variable selection

Variable selection

Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N

(
β0 +

20∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
True model with n = 180, σ2 = 4 and seven predictor variables

x1, x3, x5, x6, x12, x18, x20,
(β0, β1, β3, β5, β6, β12, β18, β20) = (3, 4, 1,−3, 12,−1, 5,−6)
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Compatible priors for variable selection

Variable selection

Gibbs approximation (cont’d)

Example (Simulated data (2))

γ π(γ|y) π̂(γ|y)
GIBBS

0,1,3,5,6,12,18,20 0.1893 0.1822
0,1,3,5,6,18,20 0.0588 0.0598
0,1,3,5,6,9,12,18,20 0.0223 0.0236
0,1,3,5,6,12,14,18,20 0.0220 0.0193
0,1,2,3,5,6,12,18,20 0.0216 0.0222
0,1,3,5,6,7,12,18,20 0.0212 0.0233
0,1,3,5,6,10,12,18,20 0.0199 0.0222
0,1,3,4,5,6,12,18,20 0.0197 0.0182
0,1,3,5,6,12,15,18,20 0.0196 0.0196

Gibbs (T = 100, 000) results for β̃ = 021 and c = 100
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Compatible priors for variable selection

Application

Processionary caterpillar

Influence of some forest settlement characteristics on the
development of caterpillar colonies
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Compatible priors for variable selection

Application

Processionary caterpillar

Influence of some forest settlement characteristics on the
development of caterpillar colonies

Response y log-transform of the average number of nests of
caterpillars per tree on an area of 500 square meters (n = 33 areas)
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Compatible priors for variable selection

Application

Processionary caterpillar (cont’d)

Potential explanatory variables

x1 altitude (in meters), x2 slope (in degrees),

x3 number of pines in the square,

x4 height (in meters) of the tree at the center of the square,

x5 diameter of the tree at the center of the square,

x6 index of the settlement density,

x7 orientation of the square (from 1 if southb’d to 2 ow),

x8 height (in meters) of the dominant tree,

x9 number of vegetation strata,

x10 mix settlement index (from 1 if not mixed to 2 if mixed).
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Compatible priors for variable selection

Application

x1 x2 x3

x4 x5 x6

x7 x8 x9
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Compatible priors for variable selection

Application

Bayesian regression output

Estimate BF log10(BF)

(Intercept) 9.2714 26.334 1.4205 (***)
X1 -0.0037 7.0839 0.8502 (**)
X2 -0.0454 3.6850 0.5664 (**)
X3 0.0573 0.4356 -0.3609
X4 -1.0905 2.8314 0.4520 (*)
X5 0.1953 2.5157 0.4007 (*)
X6 -0.3008 0.3621 -0.4412
X7 -0.2002 0.3627 -0.4404
X8 0.1526 0.4589 -0.3383
X9 -1.0835 0.9069 -0.0424
X10 -0.3651 0.4132 -0.3838

evidence against H0: (****) decisive, (***) strong, (**)
subtantial, (*) poor
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Compatible priors for variable selection

Application

Bayesian variable selection

t1(γ) π(γ|y,X) π̂(γ|y,X)

0,1,2,4,5 0.0929 0.0929
0,1,2,4,5,9 0.0325 0.0326
0,1,2,4,5,10 0.0295 0.0272
0,1,2,4,5,7 0.0231 0.0231
0,1,2,4,5,8 0.0228 0.0229
0,1,2,4,5,6 0.0228 0.0226
0,1,2,3,4,5 0.0224 0.0220
0,1,2,3,4,5,9 0.0167 0.0182
0,1,2,4,5,6,9 0.0167 0.0171
0,1,2,4,5,8,9 0.0137 0.0130

Noninformative G-prior model choice and Gibbs estimations
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k-nearest-neighbour classification

3 Classification via k-nearest-neighbour

1 Bayesian Model Choice

2 Compatible priors for variable selection

3 k-nearest-neighbour classification
Principle
Statistical reformulation
Bayesian inference in k mean models
Ripley’s benchmark
Global classification

[Joint work with C. Celeux, J.M. Marin and D.M. Titterington]
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k-nearest-neighbour classification

Principle

Idea

Use for classification purposes of
a training dataset

(
(ytr

i , xtr
i )
)
i=1,...,n

with class label 1 ≤ ytr
i ≤ Q and

predictor variables xtr
i
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k-nearest-neighbour classification

Principle

Classification

Skip animation

Principle

Prediction for a new point
(yte

j , xte
j ) (j = 1, . . . ,m): the

most common class amongst the
k nearest neighbours of xte

j in the
training set

Neighbourhood based on a
distance metric
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k-nearest-neighbour classification
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k-nearest-neighbour classification

Principle

Classification

Skip animation

Principle

Prediction for a new point
(yte

j , xte
j ) (j = 1, . . . ,m): the

most common class amongst the
k nearest neighbours of xte

j in the
training set

Neighbourhood based on a
distance metric
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k-nearest-neighbour classification

Principle

Model choice perspective

Back to idea

Choice of k?

Usually chosen by minimizing cross-validated misclassification rate
(non-parametric or even non-probabilist!)
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k-nearest-neighbour classification

Statistical reformulation

Formalisation thru a probabilty model

k nearest neighbour model

Based on full conditional distributions (ω ∈ {C1, . . . , CQ})

P(ytr
i = ω|ytr

−i, x
tr, β, k) ∝ exp



β
∑

k

l∼i

δω(ytr
l )

/
k



 β > 0

where
k

l ∼ i is the k nearest neighbour relation
[Holmes & Adams, 2002]
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Statistical reformulation

Drawback

Because the neighbourhood structure is not symmetric (xi may be
one of the k nearest neighbours of xj and xj not one of the k
nearest neighbours of xi),
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k-nearest-neighbour classification

Statistical reformulation

Drawback

Because the neighbourhood structure is not symmetric (xi may be
one of the k nearest neighbours of xj and xj not one of the k
nearest neighbours of xi), there usually is no joint probability
distribution corresponding to these “full conditionals”!
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k-nearest-neighbour classification

Statistical reformulation

Resolution

Symmetrize the neighbourhood relation:
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k-nearest-neighbour classification

Statistical reformulation

Resolution

Symmetrize the neighbourhood relation:

if xtr
i belongs to the k-nearest-neighbour set for xtr

j and xtr
j does

not belong to the k-nearest-neighbour set for xtr
i , xtr

j is added to
the set of neighbours of xtr

i



Model uncertainty and model choice: Bayesian tools

k-nearest-neighbour classification

Statistical reformulation

Consequence

Given the full conditionals

P(ytr
i = ω|ytr

−i, x
tr, β, k) ∝ exp



β
∑

k

l∼i

δω(ytr
l )

/
N(i)





where
k

l ∼ i is the symmetrized k nearest neighbour relation, and
N(i) denotes the size of the symmetrized k-nearest neighbourhood
of xtr

i
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k-nearest-neighbour classification

Statistical reformulation

Consequence

Given the full conditionals

P(ytr
i = ω|ytr

−i, x
tr, β, k) ∝ exp



β
∑

k

l∼i

δω(ytr
l )

/
N(i)





where
k

l ∼ i is the symmetrized k nearest neighbour relation, and
N(i) denotes the size of the symmetrized k-nearest neighbourhood
of xtr

i there exists a corresponding joint distribution
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k-nearest-neighbour classification

Statistical reformulation

Extension to the unclassified points

Use for the predictive distribution of yte
j (j = 1, . . . ,m)

P(yte
j = ω|xte

j , ytr, xtr, β, k) ∝ exp



β
∑

k

l#j

δω(ytr
l )

/
k





where
k

l#j denotes the symmetrized k-nearest-neighbour relation
wrt the set {xtr

1 , . . . , xtr
n}
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k-nearest-neighbour classification

Bayesian inference in k mean models

Bayesian global inference

Within the Bayesian paradigm, assign a prior π(β, k) and use the
marginal predictive distribution of yte

j given xte
j (j = 1, . . . ,m)
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k-nearest-neighbour classification

Bayesian inference in k mean models

Bayesian global inference

Within the Bayesian paradigm, assign a prior π(β, k) and use the
marginal predictive distribution of yte

j given xte
j (j = 1, . . . ,m)

∫
P(yte

j = ω|xte
j , ytr, xtr, β, k)π(β, k|ytr, xtr)dβ dk

where π(β, k|ytr, xtr) ∝ f(ytr|xtr, β, k)π(β, k) posterior distribution
of (β, k) given the training dataset ytr

[ŷte
j = MAP estimate]
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k-nearest-neighbour classification

Bayesian inference in k mean models

Bayesian global inference

Within the Bayesian paradigm, assign a prior π(β, k) and use the
marginal predictive distribution of yte

j given xte
j (j = 1, . . . ,m)

∫
P(yte

j = ω|xte
j , ytr, xtr, β, k)π(β, k|ytr, xtr)dβ dk

where π(β, k|ytr, xtr) ∝ f(ytr|xtr, β, k)π(β, k) posterior distribution
of (β, k) given the training dataset ytr

[ŷte
j = MAP estimate]

Note

Model choice without varying dimension because β is the same on
all models
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k-nearest-neighbour classification

Bayesian inference in k mean models

Difficulty

To compute f(ytr|xtr, β, k) requires a normalisation constant that
is not readily available
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k-nearest-neighbour classification

Bayesian inference in k mean models

Difficulty

To compute f(ytr|xtr, β, k) requires a normalisation constant that
is not readily available

Approximation

Use instead a pseudo-likelihood f̂(ytr|xtr, β, k) equal to

n∏

i=1

[
P(ytr

i = 0|ytr
−i, x

tr, β, k)
]1−ytr

i
[
1 − P(ytr

i = 0|ytr
−i, x

tr, β, k)
]ytr

i
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k-nearest-neighbour classification

Bayesian inference in k mean models

Further difficulty

Even with this approximation, the computation of
P(yte

j = ω|xte
j , ytr, xtr) is not feasible.
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k-nearest-neighbour classification

Bayesian inference in k mean models

Further difficulty

Even with this approximation, the computation of
P(yte

j = ω|xte
j , ytr, xtr) is not feasible.

Use instead a Monte Carlo approximation of π(β, k|ytr, xtr),

M−1
M∑

i=1

P

(
yte

j = 0
∣∣∣xte

j , ytr, xtr, (β, k)(i)
)

where (β, k)(i) simulated by MCMC with r-neighbour random-walk
proposal on k: U ({k − r, k − r + 1, . . . , k + r − 1, k + r})

[Gibbs too costly]
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k-nearest-neighbour classification

Bayesian inference in k mean models

MCMC for k-nearest-neighbours

Random walk k-nearest-neighbours

At time 0, generate β(0) ∼ N
(
0, τ2

)
and k(0) ∼ U{1,...,K}

At time 1 ≤ t ≤ T ,

1 Generate log β̃ ∼ N
(
log β(t−1), τ2

)
and

k̃ ∼ U ({k − r, k − r + 1, . . . , k + r − 1, k + r})
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Bayesian inference in k mean models

MCMC for k-nearest-neighbours

Random walk k-nearest-neighbours

At time 0, generate β(0) ∼ N
(
0, τ2

)
and k(0) ∼ U{1,...,K}

At time 1 ≤ t ≤ T ,

1 Generate log β̃ ∼ N
(
log β(t−1), τ2

)
and

k̃ ∼ U ({k − r, k − r + 1, . . . , k + r − 1, k + r})

2 Calculate Metropolis-Hastings acceptance probability
ρ(β̃, k̃, β(t−1), k(t−1))
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k-nearest-neighbour classification

Bayesian inference in k mean models

MCMC for k-nearest-neighbours

Random walk k-nearest-neighbours

At time 0, generate β(0) ∼ N
(
0, τ2

)
and k(0) ∼ U{1,...,K}

At time 1 ≤ t ≤ T ,

1 Generate log β̃ ∼ N
(
log β(t−1), τ2

)
and

k̃ ∼ U ({k − r, k − r + 1, . . . , k + r − 1, k + r})

2 Calculate Metropolis-Hastings acceptance probability
ρ(β̃, k̃, β(t−1), k(t−1))

3 Move to
(
β(t), k(t)

)
by Metropolis-Hastings step
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k-nearest-neighbour classification

Ripley’s benchmark

Benchmark

Dataset from Ripley (1994), with
two classes where each
population of xi’s from a mixture
of two bivariate normal
distributions.
Training set of n = 250 points
and testing set on a set of
m = 1, 000 points

−1.0 −0.5 0.0 0.5 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0
1

.2



Model uncertainty and model choice: Bayesian tools

k-nearest-neighbour classification

Ripley’s benchmark

Benchmark

Dataset from Ripley (1994), with
two classes where each
population of xi’s from a mixture
of two bivariate normal
distributions.
Training set of n = 250 points
and testing set on a set of
m = 1, 000 points
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k-nearest-neighbour classification

Ripley’s benchmark

Gibbs output

Use of the prior

π(β, k) ∝ I(0,15)(β) I{1,...,⌊n/2⌋}(k)
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k-nearest-neighbour classification

Ripley’s benchmark

Gibbs output

Use of the prior

π(β, k) ∝ I(0,15)(β) I{1,...,⌊n/2⌋}(k)
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k-nearest-neighbour classification

Ripley’s benchmark

Prediction performances

Same label allocation and same
misclassification rate (8.4%) for
both algorithms
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k-nearest-neighbour classification

Global classification

Alternative perspective

Lack of coherence of previous predictive:

Each testing point processed marginaly
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k-nearest-neighbour classification

Global classification

Alternative perspective

Lack of coherence of previous predictive:

Each testing point processed marginaly

Different distribution for training and testing points

No global assessment of uncertainty

Unless notified otherwise, testing sample = missing at random
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k-nearest-neighbour classification

Global classification

Joint k-nearest-neighbour distribution

Full exchangeability of training and testing samples
y = (ytr, yte) = (y1, . . . , yn+m) and
x = (xtr, xte) = (x1, . . . , xn+m)
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k-nearest-neighbour classification

Global classification

Joint k-nearest-neighbour distribution

Full exchangeability of training and testing samples
y = (ytr, yte) = (y1, . . . , yn+m) and
x = (xtr, xte) = (x1, . . . , xn+m)

P(yi = ω|y−i, x, β, k) ∝ exp



β
∑

k

l#i

δ0(yl)

/
N(i)





where
k

l#i is the symmetrized k-nearest-neighbour relation in the
set {x1, . . . , xn+m} and N(i) the number of symmetrized
k-nearest-neighbours of xi (1 ≤ i ≤ n + m)
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k-nearest-neighbour classification

Global classification

Pseudo-likelihood

Same difficulty with joint distribution (normalizing constant)
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k-nearest-neighbour classification

Global classification

Pseudo-likelihood

Same difficulty with joint distribution (normalizing constant)
Use instead pseudo-likelihood

m+n∏

i=1

[P(yi = 0|y−i, x, β, k)]1−yi [1 − P(yi = 0|y−i, x, β, k)]yi
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k-nearest-neighbour classification

Global classification

Gibbs implementation

Process the yte
j ’s as missing data

Hybrid Gibbs k-nearest-neighbour classification

At time 1 ≤ t ≤ T ,

1 For n + 1 ≤ i ≤ n + m, compute

qi = P

(
yi = 1

∣∣∣y(t)
−i , x, β(t−1), k(t−1)

)
and generate

y
(t)
i ∼ B(1, qi)

2 Generate log β̃ ∼ N
(
log β(t−1), τ2

)
and

k̃ ∼ U
(
{k(t−1) − r, . . . , k(t−1) + r}

)

3 Accept (β̃, k̃) with M-H probability ρ(β̃, β(t−1), k(t−1))
otherwise replicate (β(t−1), k(t−1))
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k-nearest-neighbour classification

Global classification

Benchmark illustration

For Ripley’s benchmark and
testing sample of 1, 000 points,
use of prior

π(β, k) ∝ I0≤β≤15) I{1,...,⌊m+n
2

⌋}(k)

and misclassification rate 8.3%
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k-nearest-neighbour classification

Global classification

Benchmark illustration

For Ripley’s benchmark and
testing sample of 1, 000 points,
use of prior

π(β, k) ∝ I0≤β≤15) I{1,...,⌊m+n
2

⌋}(k)

and misclassification rate 8.3%
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k-nearest-neighbour classification

Global classification

Extensions

Assessment and representation of uncertainty on buffer points

k dependent β’s

Behaviour of marginal/local versus global/exchangeable when
m goes to ∞

Selection of the significant components of x (= imbedded
principal components)
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