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The likelihood

Given an usually parametric family of distributions

F ∈ {Fθ, θ ∈ Θ}

with densities fθ [wrt a fixed measure ν], the density of the iid
sample x1, . . . , xn is

n∏

i=1

fθ(xi)

Note In the special case ν is a counting measure,

n∏

i=1

fθ(xi)

is the probability of observing the sample x1, . . . , xn among all
possible realisations of X1, . . . ,Xn
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The likelihood

Definition (likelihood function)

The likelihood function associated with a sample x1, . . . , xn is the
function

L :Θ −→ R+

θ −→
n∏

i=1

fθ(xi)

same formula as density but different space of variation
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Example: density function versus likelihood function

Take the case of a Poisson density
[against the counting measure]

f(x; θ) =
θx

x!
e−θ IN(x)

which varies in N as a function of x
versus

L(θ; x) =
θx

x!
e−θ

which varies in R+ as a function of θ θ = 3
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Example: density function versus likelihood function

Take the case of a Normal N(0, 1/θ)
density [against the Lebesgue measure]
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Example: Hardy-Weinberg equilibrium

Population genetics:

Genotypes of biallelic genes AA, Aa, and aa

sample frequencies nAA, nAa and naa

multinomial model M(n;pAA,pAa,paa)

related to population proportion of A alleles, pA:

pAA = p2A , pAa = 2pA(1− pA) , paa = (1− pA)
2

likelihood

L(pA|nAA,nAa,naa) ∝ p2nAAA [2pA(1− pA)]
nAa(1− pA)

2naa

[Boos & Stefanski, 2013]



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Example: Rainfall at a given spot on a given day may be zero with
positive probability p0 [it did not rain!] or an arbitrary number
between 0 and 100 [capacity of measurement container] or 100
with positive probability p100 [container full]



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Example: Tobit model where y ∼ N(XTβ,σ2) but
y∗ = y× I{y > 0} observed



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Density of X against composition of two measures, counting and
Lebesgue:

fX(a) =

{
Pθ(X = a) if a ∈ {a1, . . . ,ak}

f(a|θ) otherwise

Results in likelihood

L(θ|x1, . . . , xn) =

k∏

j=1

Pθ(X = ai)
nj ×

∏

xi /∈{a1,...,ak}
f(xi|θ)

where nj # observations equal to aj



Enters Fisher, Ronald Fisher!

Fisher’s intuition in the 20’s:

the likelihood function contains the
relevant information about the
parameter θ

the higher the likelihood the more
likely the parameter

the curvature of the likelihood
determines the precision of the
estimation



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ P(3) as n increases

n = 40, ..., 240
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Likelihood functions for x1, . . . , xn ∼ P(3) as n increases

n = 38, ..., 240



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ N(0, 1) as n increases
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Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ N(0, 1) as sample varies



why concentration takes place

Consider

x1, . . . , xn
iid
∼ F

Then

log

n∏

i=1

f(xi|θ) =

n∑

i=1

log f(xi|θ)

and by LLN

1/n

n∑

i=1

log f(xi|θ)
L−→
∫

X

log f(x|θ)dF(x)

Lemma

Maximising the likelihood is asymptotically equivalent to
minimising the Kullback-Leibler divergence

∫

X

log f(x)/f(x|θ) dF(x)

c© Member of the family closest to true distribution
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Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0
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Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Reason:
∫

X

∇ log L(θ|x)dFθ(x) =

∫

X

∇L(θ|x) dx = ∇
∫

X

dFθ(x)



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Connected with concentration theorem: gradient null on average
for true value of parameter



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Warning: Not defined for non-differentiable likelihoods, e.g. when
support depends on θ



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Warning (2): Does not imply maximum likelihood estimator is
unbiased



Fisher’s information matrix

Another notion attributed to Fisher [more likely due to Edgeworth]

Information: covariance matrix of the score vector

I(θ) = Eθ
[
∇ log f(X|θ) {∇ log f(X|θ)}T

]

Often called Fisher information

Measures curvature of the likelihood surface, which translates as
information brought by the data

Sometimes denoted IX to stress dependence on distribution of X



Fisher’s information matrix

Another notion attributed to Fisher [more likely due to Edgeworth]

Information: covariance matrix of the score vector

I(θ) = Eθ
[
∇ log f(X|θ) {∇ log f(X|θ)}T

]

Often called Fisher information

Measures curvature of the likelihood surface, which translates as
information brought by the data

Sometimes denoted IX to stress dependence on distribution of X



Fisher’s information matrix

Second derivative of the log-likelihood as well

lemma

If L(θ|x) is twice differentiable [as a function of θ]

I(θ) = −Eθ
[
∇T∇ log f(X|θ)

]

Hence

Iij(θ) = −Eθ
[

∂2

∂θi∂θj
log f(X|θ)

]



Illustrations

Binomial B(n,p) distribution

f(x|p) =

(
n

x

)
px(1− p)n−x

∂/∂p log f(x|p) = x/p− n−x/1−p

∂2/∂p2 log f(x|p) = − x/p2 − n−x/(1−p)2

Hence

I(p) = np/p2 + n−np/(1−p)2

= n/p(1−p)



Illustrations

Multinomial M(n;p1, . . . ,pk) distribution

f(x|p) =

(
n

x1 · · · xk

)
px11 · · ·p

xk
k

∂/∂pi log f(x|p) = xi/pi − xk/pk
∂2/∂pi∂pj log f(x|p) = − xk/p2k
∂2/∂p2i log f(x|p) = − xi/p2i − xk/p2k

Hence

I(p) = n




1/p1 + 1/pk · · · 1/pk
1/pk · · · 1/pk

. . .
1/pk · · · 1/pk−1 + 1/pk






Illustrations

Multinomial M(n;p1, . . . ,pk) distribution
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px11 · · ·p

xk
k

∂/∂pi log f(x|p) = xi/pi − xk/pk
∂2/∂pi∂pj log f(x|p) = − xk/p2k
∂2/∂p2i log f(x|p) = − xi/p2i − xk/p2k

and

I(p)−1 = 1/n




p1(1− p1) −p1p2 · · · −p1pk−1
−p1p2 p2(1− p2) · · · −p2pk−1

. . .
. . .

−p1pk−1 −p2pk−1 · · · pk−1(1− pk−1)






Illustrations

Normal N(µ,σ2) distribution

f(x|θ) =
1√
2π

1

σ
exp
{
−(x−µ)2/2σ2

}
∂/∂µ log f(x|θ) = x−µ/σ2

∂/∂σ log f(x|θ) = − 1/σ+ (x−µ)2/σ3 ∂2/∂µ2 log f(x|θ) = − 1/σ2

∂2/∂µ∂σ log f(x|θ) = −2 x−µ/σ3 ∂2/∂σ2 log f(x|θ) = 1/σ2 − 3 (x−µ)2/σ4

Hence

I(θ) = 1/σ2
(
1 0

0 2

)



Properties

Additive features translating as accumulation of information:

if X and Y are independent, IX(θ) + IY(θ) = I(X,Y)(θ)

IX1,...,Xn(θ) = nIX1(θ)

if X = T(Y) and Y = S(X), IX(θ) = IY(θ)

if X = T(Y), IX(θ) 6 IY(θ)

If η = Ψ(θ) is a bijective transform, change of parameterisation:

I(θ) =

{
∂η

∂θ

}T

I(η)

{
∂η

∂θ

}

”In information geometry, this is seen as a change of
coordinates on a Riemannian manifold, and the intrin-
sic properties of curvature are unchanged under different
parametrizations. In general, the Fisher information matrix
provides a Riemannian metric (more precisely, the Fisher-
Rao metric).” [Wikipedia]
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Approximations

Back to the Kullback–Leibler divergence

D(θ ′, θ) =
∫

X

f(x|θ ′) log f(x|θ ′)/f(x|θ) dx

Using a second degree Taylor expansion

log f(x|θ) = log f(x|θ ′) + (θ− θ ′)T∇ log f(x|θ ′)

+
1

2
(θ− θ ′)T∇∇T log f(x|θ ′)(θ− θ ′) + o(||θ− θ ′||2)

approximation of divergence:

D(θ ′, θ) ≈ 1
2
(θ− θ ′)TI(θ ′)(θ− θ ′)

[Exercise: show this is exact in the normal case]
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First CLT

Central limit law of the score vector
Given X1, . . . ,Xn i.i.d. f(x|θ),

1/
√
n∇ log L(θ|X1, . . . ,Xn) ≈ N (0, IX1(θ))

[at the “true” θ]

Notation I1(θ) stands for IX1(θ) and indicates information
associated with a single observation
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Sufficiency

What if a transform of the sample

S(X1, . . . ,Xn)

contains all the information, i.e.

I(X1,...,Xn)(θ) = IS(X1,...,Xn)(θ)

uniformly in θ?

In this case S(·) is called a sufficient statistic [because it is
sufficient to know the value of S(x1, . . . , xn) to get complete
information]

[A statistic is an arbitrary transform of the data X1, . . . ,Xn]
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Sufficiency (bis)

Alternative definition:

If (X1, . . . ,Xn) ∼ f(x1, . . . , xn|θ) and if T = S(X1, . . . ,Xn) is such
that the distribution of (X1, . . . ,Xn) conditional on T does not
depend on θ, then S(·) is a sufficient statistic

Factorisation theorem

S(·) is a sufficient statistic if and only if

f(x1, . . . , xn|θ) = g(S(x1, . . . , xn)|θ)× h(x1, . . . , xn)

another notion due to Fisher
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that the distribution of (X1, . . . ,Xn) conditional on T does not
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Factorisation theorem

S(·) is a sufficient statistic if and only if

f(x1, . . . , xn|θ) = g(S(x1, . . . , xn)|θ)× h(x1, . . . , xn)

another notion due to Fisher



Illustrations

Uniform U(0, θ) distribution

L(θ|x1, . . . , xn) = θ
−n

n∏

i=1

I(0,θ)(xi) = θ−nIθ> max
i
xi

Hence
S(X1, . . . ,Xn) = max

i
Xi = X(n)

is sufficient



Illustrations

Bernoulli B(p) distribution

L(p|x1, . . . , xn) =

n∏

i=1

pxi(1− p)n−xi = {p/1−p}
∑
i xi (1− p)n

Hence
S(X1, . . . ,Xn) = Xn

is sufficient



Illustrations

Normal N(µ,σ2) distribution

L(µ,σ|x1, . . . , xn) =

n∏

i=1

1√
2πσ

exp{− (xi−µ)
2/2σ2}

=
1

{2πσ2}n/2
exp

{
−
1

2σ2

n∑

i=1

(xi − x̄n + x̄n − µ)2

}

=
1

{2πσ2}n/2
exp

{
−
1

2σ2

n∑

i=1

(xi − x̄n)
2 −

1

2σ2

n∑

i=1

(x̄n − µ)2

}

Hence

S(X1, . . . ,Xn) =

(
Xn,

n∑

i=1

(Xi − Xn)
2

)

is sufficient



Sufficiency and exponential families

Both previous examples belong to exponential families

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}

Generic property of exponential families:

f(x1, . . . , xn|θ) =

n∏

i=1

h(xi) exp

{
T(θ)T

n∑

i=1

S(xi) − nτ(θ)

}

lemma

For an exponential family with summary statistic S(·), the statistic

S(X1, . . . ,Xn) =

n∑

i=1

S(Xi)

is sufficient
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Sufficiency as a rare feature

Nice property reducing the data to a low dimension transform but...

How frequent is it within the collection of probability distributions?

Very rare as essentially restricted to exponential families
[Pitman-Koopman-Darmois theorem]

with the exception of parameter-dependent families like U(0, θ)
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Pitman-Koopman-Darmois characterisation

If X1, . . . ,Xn are iid random variables from a density f(·|θ)
whose support does not depend on θ and verifying the
property that there exists an integer n0 such that, for n >
n0, there is a sufficient statistic S(X1, . . . ,Xn) with fixed
[in n] dimension, then f(·|θ) belongs to an exponential
family

[Factorisation theorem]

Note: Darmois published this result in 1935 [in French] and
Koopman and Pitman in 1936 [in English] but Darmois is generally
omitted from the theorem... Fisher proved it for one-D sufficient
statistics in 1934
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Minimal sufficiency

Multiplicity of sufficient statistics, e.g., S′(x) = (S(x),U(x))
remains sufficient when S(·) is sufficient

Search of a most concentrated summary:

Minimal sufficiency

A sufficient statistic S(·) is minimal sufficient if it is a function of
any other sufficient statistic

Lemma
For a minimal exponential family representation

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}

S(X1) + . . . + S(Xn) is minimal sufficient
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Ancillarity

Opposite of sufficiency:

Ancillarity

When X1, . . . ,Xn are iid random variables from a density f(·|θ), a
statistic A(·) is ancillary if A(X1, . . . ,Xn) has a distribution that
does not depend on θ

Useless?! Not necessarily, as conditioning upon A(X1, . . . ,Xn)
leads to more precision and efficiency:

Use of Fθ(x1, . . . , xn|A(x1, . . . , xn)) instead of Fθ(x1, . . . , xn)

Notion of maximal ancillary statistic
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Illustrations

1 If X1, . . . ,Xn
iid
∼ U(0, θ), A(X1, . . . ,Xn) = (X1, . . . ,Xn)/X(n)

is ancillary

2 If X1, . . . ,Xn
iid
∼ N(µ,σ2),

A(X1, . . . ,Xn) =
(X1 − Xn, . . . ,Xn − Xn)∑n

i=1(Xi − Xn)
2)

is ancillary

3 If X1, . . . ,Xn
iid
∼ f(x|θ), rank(X1, . . . ,Xn) is ancillary

> x=rnorm(10)

> rank(x)

[1] 7 4 1 5 2 6 8 9 10 3

[see, e.g., rank tests]



Basu’s theorem

Completeness

When X1, . . . ,Xn are iid random variables from a density f(·|θ), a
statistic A(·) is complete if the only function Ψ such that
Eθ[Ψ(A(X1, . . . ,Xn))] = 0 for all θ’s is the null function

Let X = (X1, . . . ,Xn) be a random sample from f(·|θ) where
θ ∈ Θ. If V is an ancillary statistic, and T is complete and
sufficient for θ then T and V are independent with respect to f(·|θ)
for all θ ∈ Θ.

[Basu, 1955]
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some examples

Example 1

If X = (X1, . . . ,Xn) is a random sample from the Normal
distribution N(µ,σ2) when σ is known, X̄n = 1/n

∑n
i=1 Xi is

sufficient and complete, while (X1 − X̄n, . . . ,Xn − X̄n) is ancillary,
hence independent from X̄n.

counter-Example 2

Let N be an integer-valued random variable with known pdf
(π1,π2, . . .). And let S|N = n ∼ B(n,p) with unknown p. Then
(N,S) is minimal sufficient and N is ancillary.



some examples

Example 1

If X = (X1, . . . ,Xn) is a random sample from the Normal
distribution N(µ,σ2) when σ is known, X̄n = 1/n

∑n
i=1 Xi is

sufficient and complete, while (X1 − X̄n, . . . ,Xn − X̄n) is ancillary,
hence independent from X̄n.

counter-Example 2

Let N be an integer-valued random variable with known pdf
(π1,π2, . . .). And let S|N = n ∼ B(n,p) with unknown p. Then
(N,S) is minimal sufficient and N is ancillary.



more counterexamples

counter-Example 3

If X = (X1, . . . ,Xn) is a random sample from the double
exponential distribution f(x|θ) = 2 exp{−|x− θ|}, (X(1), . . . ,X(n))
is minimal sufficient but not complete since X(n) − X(1) is ancillary
and with fixed expectation.

counter-Example 4

If X is a random variable from the Uniform U(θ, θ+ 1)
distribution, X and [X] are independent, but while X is complete
and sufficient, [X] is not ancillary.
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last counterexample

Let X be distributed as
x -5 -4 -3 -2 -1 1 2 3 4 5

px α′p2q α′pq2 p3/2 q3/2 γ′pq γ′pq q3/2 p3/2 αpq2 αp2q

with
α+ α ′ = γ+ γ ′ = 2/3

known and q = 1− p. Then

T = |X| is minimal sufficient

V = I(X > 0) is ancillary

if α ′ 6= α T and V are not independent

T is complete for two-valued functions

[Lehmann, 1981]



Point estimation, estimators and estimates

When given a parametric family f(·|θ) and a sample supposedly
drawn from this family

(X1, . . . ,XN)
iid
∼ f(x|θ)

1 an estimator of θ is a statistic T(X1, . . . ,XN) or θ̂n providing
a [reasonable] substitute for the unknown value θ.

2 an estimate of θ is the value of the estimator for a given
[realised] sample, T(x1, . . . , xn)

Example: For a Normal N(µ,σ2) sample X1, . . . ,XN,

T(X1, . . . ,XN) = µ̂n = XN

is an estimator of µ and µ̂N = 2.014 is an estimate
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Rao–Blackwell Theorem

If δ(·) is an estimator of θ and T = T(X) is a sufficient statistic,
then

δ1(X) = Eθ[δ(X)|T ]

has a smaller variance than δ(·)

varθ(δ1(X)) 6 varθ(δ(X))

[Rao, 1945; Blackwell, 1947]
mean squared error of Rao–Blackwell estimator does not exceed
that of original estimator
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Lehmann–Scheffé Theorem

Estimator δ0

unbiased for Eθ[δX] = Ψ(θ)
depends on data only through complete, sufficient statistic
S(X)

is the unique best unbiased estimator of Ψ(θ)
[Lehmann & Scheffé, 1955]

For any unbiased estimator δ(·) of Ψ(θ),

δ0(X) = Eθ[δ(X)|S(X)]
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[Fréchet–Darmois–]Cramér–Rao bound

If θ̂ is an estimator of θ ∈ R with bias

b(θ) = Eθ[θ̂] − θ

then

varθ(θ̂) >
[1+ b ′(θ)]2

I(θ)

[Fréchet, 1943; Darmois, 1945; Rao, 1945; Cramér, 1946]
variance of any unbiased estimator at least as high as inverse
Fisher information
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Single parameter proof

If δ = δ(X) unbiased estimator of Ψ(θ), then

varθ(δ) >
[Ψ ′(θ)]2

I(θ)

Take score Z = ∂
∂θ log f(X|θ). Then

covθ(Z, δ) = Eθ[δ(X)Z] = Ψ ′(θ)

And Cauchy-Schwarz implies

covθ(Z, δ)2 6 varθ(δ)varθ(Z) = varθ(δ)I(θ)



Warning: unbiasedness may be harmful

Unbiasedness is not an ultimate property!

most transforms h(θ) do not allow
for unbiased estimators

no bias may imply large variance

efficient estimators may be biased
(MLE)

existence of UNMVUE restricted to
exponential families

Cramér–Rao bound inaccessible
outside exponential families



Maximum likelihood principle

Given the concentration property of the likelihood function,
reasonable choice of estimator as mode:

MLE

A maximum likelihood estimator (MLE) θ̂N satisfies

L(θ̂N|X1, . . . ,XN) > L(θN|X1, . . . ,XN) for all θ ∈ Θ

Under regularity of L(·|X1, . . . ,XN), MLE also solution of the
likelihood equations

∇ log L(θ̂N|X1, . . . ,XN) = 0

Warning: θ̂N is not most likely value of θ but makes observation
(x1, . . . , xN) most likely...
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Maximum likelihood invariance

Principle independent of parameterisation:

If ξ = h(θ) is a one-to-one transform of θ, then

ξ̂MLE
N = h(θ̂MLE

N )

[estimator of transform = transform of estimator]

By extension, if ξ = h(θ) is any transform of θ, then

ξ̂MLE
N = h(θ̂MLE

n )

Alternative of profile likelihoods distinguishing between parameters
of interest and nuisance parameters
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Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1 an a.s. unique MLE θ̂MLE
n

2

3

1 Case of x1, . . . , xn ∼ N(µ, 1)

2

3 [with τ = +∞]



Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1

2 several or an infinity of MLE’s [or of solutions to likelihood
equations]

3

1

2 Case of x1, . . . , xn ∼ N(µ1 + µ2, 1) [and mixtures of normal]

3 [with τ = +∞]



Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1

2

3 no MLE at all

1

2

3 Case of x1, . . . , xn ∼ N(µi, τ
−2) [with τ = +∞]



Unicity of maximum likelihood estimate

Consequence of standard differential calculus results on
`(θ) = log L(θ|x1, . . . , xn):

lemma

If Θ is connected and open, and if `(·) is twice-differentiable with

lim
θ→∂Θ

`(θ) < +∞

and if H(θ) = ∇∇T`(θ) is positive definite at all solutions of the
likelihood equations, then `(·) has a unique global maximum

Limited appeal because excluding local maxima
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Unicity of MLE for exponential families

lemma

If f(·|θ) is a minimal exponential family

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}

with T(·) one-to-one and twice differentiable over Θ, if Θ is open,
and if there is at least one solution to the likelihood equations,
then it is the unique MLE

Likelihood equation is equivalent to S(x) = Eθ[S(X)]



Unicity of MLE for exponential families

lemma

If Θ is connected and open, and if `(·) is twice-differentiable with

lim
θ→∂Θ

`(θ) < +∞

and if H(θ) = ∇∇T`(θ) is positive definite at all solutions of the
likelihood equations, then `(·) has a unique global maximum



Illustrations

Uniform U(0, θ) likelihood

L(θ|x1, . . . , xn) = θ
−nIθ> max

i
xi

not differentiable at X(n) but

θ̂MLE
n = X(n)

[Super-efficient estimator]



Illustrations

Bernoulli B(p) likelihood

L(p|x1, . . . , xn) = {p/1−p}
∑
i xi (1− p)n

differentiable over (0, 1) and

p̂MLE
n = Xn



Illustrations

Normal N(µ,σ2) likelihood

L(µ,σ|x1, . . . , xn) ∝ σ−n exp

{
−
1

2σ2

n∑

i=1

(xi − x̄n)
2 −

1

2σ2

n∑

i=1

(x̄n − µ)2

}

differentiable with

(µ̂MLE
n , σ̂2

MLE

n ) =

(
Xn,

1

n

n∑

i=1

(Xi − Xn)
2

)



The fundamental theorem of Statistics

fundamental theorem

Under appropriate conditions, if (X1, . . . ,Xn)
iid
∼ f(x|θ), if θ̂n is

solution of ∇ log f(X1, . . . ,Xn|θ) = 0, then

√
n{θ̂n − θ}

L−→ Np(0, I(θ)
−1)

Equivalent of CLT for estimation purposes

I(θ) can be replaced with I(θ̂n)

or even Î(θ̂n) = −1/n
∑
i∇∇T log f(xi|θ̂n)
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Assumptions

θ identifiable

support of f(·|θ) constant in θ

`(θ) thrice differentiable

[the killer] there exists g(x) integrable against f(·|θ) in a
neighbourhood of the true parameter such that

∣∣∣∣
∂3

∂θi∂θj∂θk
f(·|θ)

∣∣∣∣ 6 g(x)

the following identity stands [mostly superfluous]

I(θ) = Eθ
[
∇ log f(X|θ) {∇ log f(X|θ)}T

]
= −Eθ

[
∇T∇ log f(X|θ)

]

θ̂n converges in probability to θ [similarly superfluous]

[Boos & Stefanski, 2014, p.286; Lehmann & Casella, 1998]



Inefficient MLEs

Example of MLE of η = ||θ||2 when x ∼ Np(θ, Ip):

η̂MLE = ||x||2

Then Eη[||x||2] = η+ p diverges away from η with p

Note: Consistent and efficient behaviour when considering the
MLE of η based on

Z = ||X||2 ∼ χ2p(η)

[Robert, 2001]
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Inconsistent MLEs

Take X1, . . . ,Xn
iid
∼ fθ(x) with

fθ(x) = (1− θ)
1

δ(θ)
f0(x−θ/δ(θ)) + θf1(x)

for θ ∈ [0, 1],

f1(x) = I[−1,1](x) f0(x) = (1− |x|)I[−1,1](x)

and
δ(θ) = (1− θ) exp{−(1− θ)−4 + 1}

Then for any θ
θ̂MLE
n

a.s.−→ 1

[Ferguson, 1982; John Wellner’s slides, ca. 2005]



Inconsistent MLEs

Consider Xij i = 1, . . . ,n, j = 1, 2 with Xij ∼ N(µi,σ
2). Then

µ̂MLE
i = Xi1+Xi2/2 σ̂2

MLE
=
1

4n

n∑

i=1

(Xi1 − Xi2)
2

Therefore
σ̂2

MLE a.s.−→ σ2/2

[Neyman & Scott, 1948]



Inconsistent MLEs

Consider Xij i = 1, . . . ,n, j = 1, 2 with Xij ∼ N(µi,σ
2). Then

µ̂MLE
i = Xi1+Xi2/2 σ̂2

MLE
=
1

4n

n∑

i=1

(Xi1 − Xi2)
2

Therefore
σ̂2

MLE a.s.−→ σ2/2

[Neyman & Scott, 1948]

Note: Working solely with Xi1 − Xi2 ∼ N(0, 2σ2) produces a
consistent MLE



Likelihood optimisation

Practical optimisation of the likelihood function

θ? = arg max
θ
L(θ|x) =

n∏

i=1

g(Xi|θ).

assuming X = (X1, . . . ,Xn)
iid
∼ g(x|θ)

analytical resolution feasible for exponential families

∇T(θ)
n∑

i=1

S(xi) = n∇τ(θ)

use of standard numerical techniques like Newton-Raphson

θ(t+1) = θ(t) + Iobs(X, θ(t))−1∇`(θ(t))

with `(.) log-likelihood and Iobs observed information matrix
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EM algorithm

Cases where g is too complex for the above to work

Special case when g is a marginal

g(x|θ) =

∫

Z

f(x, z|θ) dz

Z called latent or missing variable



Illustrations

censored data

X = min(X∗,a) X∗ ∼ N(θ, 1)

mixture model

X ∼ .3N1(µ0, 1) + .7N1(µ1, 1),

desequilibrium model

X = min(X∗, Y∗) X∗ ∼ f1(x|θ) Y∗ ∼ f2(x|θ)



Completion

EM algorithm based on completing data x with z, such as

(X,Z) ∼ f(x, z|θ)

Z missing data vector and pair (X,Z) complete data vector

Conditional density of Z given x:

k(z|θ, x) =
f(x, z|θ)

g(x|θ)
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Likelihood decomposition

Likelihood associated with complete data (x, z)

Lc(θ|x, z) = f(x, z|θ)

and likelihood for observed data

L(θ|x)

such that

log L(θ|x) = E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x] (1)

for any θ0, with integration operated against conditionnal
distribution of Z given observables (and parameters), k(z|θ0, x)



[A tale of] two θ’s

There are “two θ’s” ! : in (1), θ0 is a fixed (and arbitrary) value
driving integration, while θ both free (and variable)

Maximising observed likelihood

L(θ|x)

equivalent to maximise r.h.s. term in (1)

E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x]
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Intuition for EM

Instead of maximising wrt θ r.h.s. term in (1), maximise only

E[log Lc(θ|x,Z)|θ0, x]

Maximisation of complete log-likelihood impossible since z

unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term θ0
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unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term θ0



Expectation–Maximisation

Expectation of complete log-likelihood denoted

Q(θ|θ0, x) = E[log Lc(θ|x,Z)|θ0, x]

to stress dependence on θ0 and sample x

Principle

EM derives sequence of estimators θ̂(j), j = 1, 2, . . ., through
iteration of Expectation and Maximisation steps:

Q(θ̂(j)|θ̂(j−1), x) = max
θ
Q(θ|θ̂(j−1), x).
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EM Algorithm

Iterate (in m)

1 (step E) Compute

Q(θ|θ̂(m), x) = E[log Lc(θ|x,Z)|θ̂(m), x] ,

2 (step M) Maximise Q(θ|θ̂(m), x) in θ and set

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m), x).

until a fixed point [of Q] is found
[Dempster, Laird, & Rubin, 1978]



Justification

Observed likelihood
L(θ|x)

increases at every EM step

L(θ̂(m+1)|x) > L(θ̂(m)|x)

[Exercice: use Jensen and (1)]



Censored data

Normal N(θ, 1) sample right-censored

L(θ|x) =
1

(2π)m/2
exp

{
−
1

2

m∑

i=1

(xi − θ)
2

}
[1−Φ(a− θ)]n−m

Associated complete log-likelihood:

log Lc(θ|x, z) ∝ −
1

2

m∑

i=1

(xi − θ)
2 −

1

2

n∑

i=m+1

(zi − θ)
2 ,

where zi’s are censored observations, with density

k(z|θ, x) =
exp{− 1

2(z− θ)
2}√

2π[1−Φ(a− θ)]
=

ϕ(z− θ)

1−Φ(a− θ)
, a < z.
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Censored data (2)

At j-th EM iteration

Q(θ|θ̂(j), x) ∝ −
1

2

m∑

i=1

(xi − θ)
2 −

1

2
E

[
n∑

i=m+1

(Zi − θ)
2

∣∣∣∣∣ θ̂(j), x
]

∝ −
1

2

m∑

i=1

(xi − θ)
2

−
1

2

n∑

i=m+1

∫∞

a

(zi − θ)
2k(z|θ̂(j), x)dzi



Censored data (3)

Differenciating in θ,

n θ̂(j+1) = mx̄+ (n−m)E[Z|θ̂(j)] ,

with

E[Z|θ̂(j)] =
∫∞

a

zk(z|θ̂(j), x)dz = θ̂(j) +
ϕ(a− θ̂(j))

1−Φ(a− θ̂(j))
.

Hence, EM sequence provided by

θ̂(j+1) =
m

n
x̄+

n−m

n

[
θ̂(j) +

ϕ(a− θ̂(j))

1−Φ(a− θ̂(j))

]
,

which converges to likelihood maximum θ̂
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Mixtures

Mixture of two normal distributions with unknown means

.3N1(µ0, 1) + .7N1(µ1, 1),

sample X1, . . . ,Xn and parameter θ = (µ0,µ1)
Missing data: Zi ∈ {0, 1}, indicator of component associated with
Xi ,

Xi|zi ∼ N(µzi , 1) Zi ∼ B(.7)

Complete likelihood

log Lc(θ|x, z) ∝ −
1

2

n∑

i=1

zi(xi − µ1)
2 −

1

2

n∑

i=1

(1− zi)(xi − µ0)
2

= −
1

2
n1(µ̂1 − µ1)

2 −
1

2
(n− n1)(µ̂0 − µ0)

2

with

n1 =

n∑

i=1

zi , n1µ̂1 =

n∑

i=1

zixi , (n− n1)µ̂0 =

n∑

i=1

(1− zi)xi
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Mixtures (2)

At j-th EM iteration

Q(θ|θ̂(j), x) =
1

2
E
[
n1(µ̂1 − µ1)

2 + (n− n1)(µ̂0 − µ0)
2|θ̂(j), x

]

Differenciating in θ

θ̂(j+1) =




E
[
n1µ̂1

∣∣θ̂(j), x
] /

E
[
n1|θ̂(j), x

]

E
[
(n− n1)µ̂0

∣∣θ̂(j), x
] /

E
[
(n− n1)|θ̂(j), x

]






Mixtures (3)

Hence θ̂(j+1) given by




∑n
i=1 E

[
Zi
∣∣θ̂(j), xi

]
xi

/∑n
i=1 E

[
Zi|θ̂(j), xi

]

∑n
i=1 E

[
(1− Zi)

∣∣θ̂(j), xi
]
xi

/∑n
i=1 E

[
(1− Zi)|θ̂(j), xi

]




Conclusion

Step (E) in EM replaces missing data Zi with their conditional
expectation, given x (expectation that depend on θ̂(m)).



Mixtures (3)

−1 0 1 2 3

−
1

0
1

2
3

µ1

µ 2

EM iterations for several starting values



Properties

EM algorithm such that

it converges to local maximum or saddle-point

it depends on the initial condition θ(0)

it requires several initial values when likelihood multimodal


