
Approximating the marginal likelihood in mixture models

Jean-Michel Marin1,2,4 and Christian Robert2,3,4

3INRIA Saclay Ile-de-France, Projet select, Université Paris-Sud,
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Abstract

In Chib (1995), a method for approximating marginal densities in a Bayesian setting is pro-
posed, with one proeminent application being the estimation of the number of components in a
normal mixture. As pointed out in Neal (1999) and Frühwirth-Schnatter (2004), the approxima-
tion often fails short of providing a proper approximation to the true marginal densities because
of the well-known label switching problem (Celeux et al., 2000). While there exist other alter-
natives to the derivation of approximate marginal densities, we reconsider the original proposal
here and show as in Berkhof et al. (2003) and Lee et al. (2008) that it truly approximates the
marginal densities once the label switching issue has been solved.
Keywords: Bayesian model choice, conjugate prior, Rao–Blackwellisation, Markov Chain
Monte Carlo (MCMC).

1 Introduction

Model choice is a central issue in mixture modelling because of the nonparametric nature of mixtures
(Marin et al., 2005, Frühwirth-Schnatter, 2006). Indeed, while a distribution with a density of the
form

fk(x|θk) =
k∑
i=1

pki g(x|µki ) , pki > 0 ,
k∑
i=1

pki = 1 , (1)

where the densities g are known and the corresponding parameters µki ’s are unknown, is a well-
defined object (with θk = (pk1, . . . , p

k
k, µ

k
1, . . . , µ

k
k), it occurs that, in most settings, the number

of components k is uncertain and is an integral part of the inferential goals. This is true for
classification as well as for estimation purposes, especially because of the weakly informative nature
of mixtures: due to the representation of those distributions as sums of components g(x|µki ), samples
from fk(x|θk) provide relatively little information about each of the components, in the sense that
there always is a positive probability that no point in the sample has been generated from a
particular component.

Evaluating the number k of components from a sample x = (x1, . . . , xn) from (1) is therefore a
quite relevant issue in the setting of mixtures and a standard Bayesian approach is to consider the
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problem from a model choice perspective, i.e. to consider that each value of k defines a different
model, with density

fk(x|θk) =
n∏
i=1

fk(xi|θk)

and corresponding parameter θk, and to compute the corresponding Bayes factors

Bπ
k,k+1(x) =

∫
fk(x|θk)πk(θk) dθk∫

fk+1(x|θk+1)πk+1(θk+1) dθk+1
=

mk(x)
mk+1(x)

for all pairs (k, k + 1) of interest. Obviously, there exist different Bayesian solutions for the ap-
proximation of Bπ

k,k+1(x) and this is well-documented in the literature (see, e.g., Chen et al., 2000,
Frühwirth-Schnatter, 2004). One possible solution is to derive the posterior probabilities of the dif-
ferent values of k (that are proportional to the mk(x)’s) by an reversible jump MCMC algorithm as
in Richardson and Green (1997). But we consider however that there is a fundamental inefficiency
in using a random walk like the reversible jump MCMC algorithm on a structure—the collection
of mixture distributions with an unknown number of components—made of a rather small number
of terms (since k is usually bounded): the resulting inherent randomness does not seem pertinent
in a finite state space. For one thing, the proposed values of the parameters θk at each step of
a reversible jump MCMC algorithm are less likely to be accepted than in a regular Gibbs sam-
pling scheme because of (a) the introduction of an additional proposal to move between models
and between the parameters of those models, rather than relying on the exact full conditionals
of the true target distribution, (b) the comparison not only of values of the parameters within a
model but in connection with the relative likelihoods of different models which, by its very nature,
forces the corresponding Markov chain to remain more often in the more probable models and thus
slows down the exploration of the less probable models, and (c) the lack of connection between the
adjacent elements of the Markov chain since the parameter space changes at every step. This is
of course arguable, as defended in Richardson and Green (1997) who maintain the opposite point
of view that using a reversible jump algorithm improves the mixing of the Markov chain within
each model. (This is certainly true from a probabilistic perspective, namely that two consecutive
values of θk are less correlated than in a Gibbs scheme because there is an arbitrary large number
of intermediate simulations between those two values, but this does not answer the criticism that
a proper exploration of each model, i.e. of each value of k, requires in the end a much larger num-
ber of simulations than the sum of the numbers of simulations requested by the approximation of
each posterior distribution πk(θk|x), not to mention the additional level of complexity in designing
efficient reversible jumps algorithms, see Brooks et al., 2003.)

Exploring each model/case separately by MCMC and then producing an approximation of the
corresponding marginal densities is therefore more reasonable if those marginals can be correctly
approximated. Once a sample from the posterior distribution πk(θk|x) has been produced, there
are again many alternatives for approximating the marginals mk(x), as discussed in, for instance,
Frühwirth-Schnatter (2004) or Chopin and Robert (2007), but the central point of this note is
to stress the point already made in Berkhof et al. (2003) that a proper approximation can be
found when using a simple correction to Chib’s (1995) marginal likelihood approximation, since
this solution has somehow been overlooked in the literature, maybe due to the original controversy
surrounding Chib’s (1995) proposal. We recall in Section 2 the basis of Chib’s (1995) approximation
and the difficulties surrounding its implementation to the mixture problem, before presenting in

2



Section 3 our correction and demonstrating in Section 4 how this correction recovers the true
marginal densities.

2 The original proposal

Chib’s (1995) method for approximating a marginal (likelihood) is a direct application of Bayes’
theorem: given x ∼ fk(x|θk) and θk ∼ πk(θk), we have that

mk(x) =
fk(x|θk)πk(θk)

πk(θk|x)
,

for all θ’s (since both the lhs and the rhs of this equation are constant in θ). Therefore, if an
arbitrary value of θ, θ∗ say, is selected and if a good approximation to π(θ|x) can be constructed,
π̂(θ|x) say, Chib’s (1995) approximation to the marginal likelihood is

m̂k(x) =
fk(x|θ∗k)πk(θ∗k)

π̂k(θ∗k|x)
. (2)

In the special setting of mixtures of distributions, Chib’s (1995) approximation is particularly
attractive as there exists a natural approximation to πk(θk|x), based on the Rao-Blackwell (Gelfand
and Smith, 1990) estimate

π̂k(θ∗k|x) =
1
T

T∑
t=1

πk(θ∗k|x, z
(t)
k ) ,

where the z(t)
k ’s are the latent variables simulated by the MCMC sampler. (We recall that the

natural Gibbs sampler in this setting Diebolt and Robert, 1990 is based on two steps: (i) the
simulation of the latent variables zik that correspond to the component indicators, conditional on
the parameter θk, and (ii) the simulation of the parameter θk, conditional on the latent variables
zik. When conjugate priors are used for θk, step (ii) can be implemented in one block, see Diebolt
and Robert, 1990, Casella et al., 2004.)

The estimate π̂k(θ∗k|x) is a parametric unbiased approximation of πk(θ∗k|x) that converges with
rate O(

√
T ). This Rao-Blackwell approximation obviously requires the full conditional density

πk(θ∗k|x, z) to be available in closed form (constant included), but this is the case when the compo-
nent densities g(x|µi) are within an exponential family and when conjugate priors on the µi’s are
used.

To be efficient, Chib’s (1995) method requires (a) a central choice of θ∗k but, since in the case
of mixtures, the likelihood is computable, θ∗k can be chosen as the MCMC approximation to the
MAP or to the ML estimator, and (b) a good approximation to πk(θk|x). This later requirement
is the core of Neal’s (1999) criticism in the case of mixtures: while, at a formal level, π̂k(θ∗k|x) is
a converging approximation of πk(θk|x) by virtue of the ergodic theorem, this convergence result
relies on the fact that the chain (z(t)

k ) converges to its stationarity distribution. Unfortunately,
in the case of mixtures, as shown in Celeux et al. (2000), the Gibbs sampler rarely converges in
essence because of the (lack of) label switching phenomenon (see also Jasra et al., 2005). In short,
due to the lack of identifiability of mixture models (since the components remain invariant under
permutations of their indices), the posterior distribution is generaly multimodal and, in the case of
an exchangeable prior, it is also exchangeable. Therefore, when the Gibbs output fails to reproduce
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the exchangeability predicted by the theory, namely when it remains concentrated around one (or a
subset) of the k! modes of the posterior distribution, the approximation π̂k(θ∗k|x) is untrustworthy
and Neal (1999) demonstrated via a numerical experiment that (2) is significantly different from the
true value mk(x) in that case. Chib (1995) tried to overcome this difficulty by using a constrained
parameter set based on an identifiability constraint, but such constraints are notorious for slowing
down the corresponding MCMC sampler and, more importantly, for failing to isolate a single mode
of the posterior distribution (Celeux et al., 2000).

3 The fix

There is, however, an easy remedy to this problem, as already demonstrated in Berkhof et al.
(2003). Since, when the prior distribution is exchangeable over the components of the mixture, the
posterior distribution is also exchangeable, this means that

πk(θk|x) = πk(σ(θk)|x) =
1
k!

∑
σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}. (The notation σ(θ∗k) indicates the transform
of θ∗k where components are switched according to the permutation σ.) In other words, the distri-
bution of interest is invariant over all permutations and the data brings no information about an
ordering of the components. The lack of symmetry in an approximation π̂k(θ∗k|x) is therefore purely
ancillary and integrating out this factor of randomness by recovering the label switching symmetry
a posteriori can only reduce the variability of the approximation, by a standard Rao-Blackwell
argument. We thus propose replacing π̂k(θ∗k|x) in (2) above with

π̃k(θ∗k|x) =
1
T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ∗k)|x, z
(t)
k ) .

Note that this solution is taking advantage of the symmetry predicted by the theory, following the
general principles stated in Kong et al. (2003).

The modified π̃k(θ∗k|x) is shown (through examples) in the next section to recover the missing
mass lost in the lack of exploration of the k! modes of the posterior density, rightly pointed out by
Neal (1999). When the Gibbs sampler starts exploring more than one mode of the posterior density,
there is no loss in using the symmetrised estimator π̃k(θ∗k|x) (except for the additional computing
time). In the case of “perfect symmetry”, both estimators are identical, which is a good indicator
of proper mixing. In other cases, a difference between both estimators points out a lack of mixing,
at least from the point of view of exchangeability, and it may call for additional simulations with
different starting points. The major question in such cases is to ascertain whether or not the Gibbs
sampler has completely explored at least one major mode of the posterior distribution. As shown
in Marin et al. (2005), there may also exist secondary modes where a standard Gibbs sampler gets
trapped. In such occurrences, even a symmetrised estimate of πk(θk|x) fails to produce a proper
approximation of mk(x), but this goes undetected. This is however unrelated with the original
difficulty of Chib’s (1995) approximation and trapping modes can be detected by using tempering
devices or other simulation algorithms like Population Monte Carlo (Douc et al., 2007). (We indeed
point out that the approximation (2) can also be used in a setup where a sample θ(t)

k is directly
produced without data augmentation. Once the sample obtained, the z(t)

k ’s can be simulated from
the full conditional as side products.)
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k 2 3 4 5 6 7 8
mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Table 1: Estimations of the marginal likelihoods by the symmetrised Chib’s approximation (based
on 105 Gibbs iterations and, for k > 5, 100 permutations selected at random in Sk). (Source: Lee
et al., 2008.)

4 Illustration

In this example, we consider the benchmark galaxy dataset (Roeder, 1992, Mengersen and Robert,
1996), that represents the distribution of the radial speeds of n = 82 galaxies as a mixture of k
normal distributions with both mean and variance unknown. In this case, label switching mostly
does not occur. If we compute log m̂k(x) using only the original estimate, with θ∗k chosen as the MAP
estimator, the (logarithm of the) estimated marginal likelihood is m̂k(x) = −105.1396 for k = 3
(based on 103 simulations), while introducing the permutations leads to m̂k(x) = −103.3479. As
already noted by Neal (1999), the difference between the original Chib’s (1995) approximation and
the true marginal likelihood is close to log(k!) (only) when the Gibbs sampler remains concentrated
around a single mode of the posterior distribution. In the current case, we have that −116.3747 +
log(2!) = −115.6816 exactly! (We also checked this numerical value against a brute-force estimate
obtained by simulating from the prior and averaging the likelihood, up to fourth digit agreement.)
A similar result holds for k = 3, with −105.1396 + log(3!) = −103.3479. Both Neal (1999) and
Frühwirth-Schnatter (2004) also pointed out that the log(k!) difference was unlikely to hold for
larger values of k as the modes were getting less separated on the posterior surface and thus the
Gibbs sampler was more likely to explore in parts several modes. For k = 4, we get for instance
that the original Chib’s (1995) approximation is −104.1936, while the average over permutations
gives −102.6642. Similarly, for k = 5, the difference between −103.91 and −101.93 is less than
log(5!). The log(k!) difference cannot therefore be used as a direct correction for Chib’s (1995)
approximation because of this difficulty in controlling the amount of overlap. But it is altogether
unnecessary since using the permutation average resolves the difficulty. Table 1 shows that the
prefered value of k for the galaxy dataset and the current choice of prior distribution is k = 5.

When the number of components k grows too large for all permutations in Sk to be considered
in the average, a (random) subsample of permutations can be simulated to keep the computing
time to a reasonable level when keeping the identity as one of the permutations, as in Table 1 for
k = 6, 7. (See Berkhof et al., 2003 for another solution.) Note also that the discrepancy between
the original Chib’s (1995) approximation and the average over permutations is a good indicator of
the mixing properties of the Markov chain, if a further convergence indicator is requested.

Acknowledgements

Both authors are grateful to Kerrie Mengersen for helpful discussions on this topic. This work had
been supported by the Agence Nationale de la Recherche (ANR, 212, rue de Bercy 75012 Paris)
through the 2006-2008 project Adap’MC.

5



References

Berkhof, J., van Mechelen, I., and Gelman, A. (2003). A Bayesian approach to the selection and
testing of mixture models. Statistica Sinica, 13:423–442.

Brooks, S., Giudici, P., and Roberts, G. (2003). Efficient construction of reversible jump Markov
chain Monte Carlo proposal distributions (with discussion). J. Royal Statist. Society Series B,
65(1):3–55.

Casella, G., Robert, C., and Wells, M. (2004). Mixture models, latent variables and partitioned
importance sampling. Statistical Methodology, 1:1–18.

Celeux, G., Hurn, M., and Robert, C. (2000). Computational and inferential difficulties with
mixtures posterior distribution. J. American Statist. Assoc., 95(3):957–979.

Chen, M., Shao, Q., and Ibrahim, J. (2000). Monte Carlo Methods in Bayesian Computation.
Springer-Verlag, New York.

Chib, S. (1995). Marginal likelihood from the Gibbs output. J. American Statist. Assoc., 90:1313–
1321.

Chopin, N. and Robert, C. (2007). Contemplating evidence: properties, extensions of, and alterna-
tives to nested sampling. Technical Report 2007-46, CEREMADE, Université Paris Dauphine.
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