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Summary

In this discussion of Polson and Scott, we emphasize the links with the classical
shrinkage literature.

It is quite pleasant to witness the links made by Polson and Scott between the
current sparse modeling strategies and the more classical (or James-Stein) shrink-
age literature of the 70’s and 80’s that was instrumental in the first author’s (CPR)
personal Bayesian epiphany! Nevertheless, we have some reservation about this
unification process in that (a) MAP estimators do not fit a decision-theoretic frame-
work and (b) the classical shrinkage approach is some adverse to sparsity. Indeed, as
shown in Judge and Bock (1978), the so-called pre-test estimators that took the value
zero with positive probability are inadmissible and dominated by smooth shrinkage
estimators under the classical losses. While the efficiency of priors (respective to
others) is not clearly defined in Polson and Scott’s paper, the use of a mean sum
of squared errors in Table 1 seems to indicate the authors favour the quadratic loss
(Berger, 1985) at the core of the James-Stein literature. It would be of considerable
interest to connect sparseness and minimaxity, if at all possible.

As detailed in, e.g., Robert (2001, Chapters 8 and 10), differential expressions
linking E[β|y] and the marginal density abound in the shrinkage literature, as in
e.g. Brown and Hwang (1982), Berger (1985), George (1986a,b), Bock (1988), in
connection with the superharmonicity minimaxity condition (Haff and Johnstone,
1986, Berger and Robert, 1990). Connections between tail [robustness] behaviour
and admissibility are introduced in Brown (1971) and developed in Hwang (1982),
while boundary conditions appear in Karlin (1958) (see also Berger, 1982). In
particular, Berger and Robert (1990) link the minimaxity of the Bayes estimator
of a normal mean under conjugate priors, β ∼ N (µ, σ2Λ), with the fact that the
hyperprior density π(σ2|µ) is increasing. As mentioned by the authors in Polson
and Scott (2009), a related set of sufficient conditions for minimaxity (including an
assumption of monotonicity on the prior density of the sampling variance σ2) is
given by Fourdrinier et al. (2008).
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We quite agree with Polson and Scott about the dangers of using plug-in (a.k.a.
empirical Bayes) procedures, given that the shrinkage literature has persistently
shown the inefficiency and suboptimality of such procedures. We do wonder however
about the connection of the double expectation formula

Eτ |y[β̂(τ2)] = Eτ |y[EΛ|τ,y{β|y, τ}]

with the Rao–Blackwell theorem made in Section 2.4 of the paper, since this classi-
cal hierarchical decomposition of the Bayes estimator can be found for instance in
Lindley and Smith (1972) as well as in Berger (1985).

Finally, Theorems 3 and 4 provide new possibilities for penalty functions based
on Lévy processes, and seem to open very exciting connections with the mathemat-
ical finance literature.
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