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Exercise sheet 0 :

Initiation to R

Preliminary steps

– To start R, you either open a terminal window and lauch R from the command line, or
call R or Rkward by clicking on the appropriate icon.

– How to include comments : put ] before the comments.

– On-line help : use ?xx to get the documentation on the function xx and its uses. Do
not forget this highly helpful shortcut to help(xx).

– Always make sure to save your code in a file to avoid disasters (and to be prepared
for the exam). On a terminal window, the basic instruction source("code.R") loads
all the functions defined in this file code.R and execute any relevant R code. When
using Rkward, there is a workspace window which can be edited by a straightforward
editor and from which pieces of code can be loaded and executed. This workspace must
be labelled in an recognisable way and periodically saved during the working session.
In the sad event you erase this file, the commands of the current session can be found
in the hidden file .Rhistory and the output is saved in the corresponding .RData. Ask
your instructor before handling those files.

– All the answerts to the following exercises are provided in the re-
ference manual “Initiation to R” by Robin Ryder and Jean-Michel Marin,
available on your account, which should be read and mastered by the first
fortnight of the course. It is highly recommended to test all instructions on
a machine.

1 Object manipulation

1.1 Vector manipulation

1. Create a vector v1=( 1, 4, -3, 78, 9).

2. Display v1, then display only the 3rd component of v1.

3. Create v2 that contains the 2nd and 4th terms of v1.

4. Create v3 that contains the 2nd up to 4th terms of v1.
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5. Create v4 by concatenating v1 et 12, then v5 by concatenating v2 and v3.

6. Multiply v1 by 2, then only its 3rd term by 10.

Note : you can implement the same principe when adding, subtracting, etc.

7. Add the two vectors v2 and v3, then the two vectors v1 and v5, which sizes differ.
What is the result ?

8. Derive the sum and product of all the components of v1.

9. Determine the number of elements in the vector v1.

10. Transpose the vector v1.

11. Compute the scalar product between the vectors v1 and v5.

1.2 Useful functions

Create the following vectors :

1. x1=(1 1 1 1 1 1 1 1 1 1) and x2=( 1 2 3 4 1 2 3 4 1 2 3 4), using the
property that x1 is made of 10 repetitions of the integer 1 while x2 is made of
3 repetitions of the vector (1 2 3 4).

2. Find two alternative codes to construct x3=( 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0).

3. Operate a random equiprobable draw with no replication of 5 elements from the
vector x3.

What should you modify to allow repetition ? to modify the probabilities into p=(

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2) ?

1.3 Matrices

1. Create the matrices

> m1 and > m1bis

[,1] [,2] [,3] [,4] [,5] [,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13 [1,] 1 2 3 4 5

[2,] 2 5 8 11 14 [2,] 6 7 8 9 10

[3,] 3 6 9 12 15 [3,] 11 12 13 14 15

by a transform of the vector (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15),

then the matrices

> m2 and > m3

[,1] [,2] [,3] [,4] [,5] [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9 [1,] 3 6 9 12 15

[2,] 2 4 6 8 10 [2,] 4 7 10 13 16

[3,] 5 8 11 14 17
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2. What happens to the R command building a matrix out of a vector with the inap-
propriate number of elements ?

Test this instance by calling m4=matrix((1:10), nrow=4,ncol=5).

3. Compute the sum, the term-by-term product, and the matricial product of the
matrices m1 and m1bis.

What occurs if m1bis is replaced with m3 ?

4. Extract some elements from m1 : the (1, 3) element, the 1st row, the 3rd column,
both 1st and 3rd columns, all rows but the 2nd.

5. Exhibit the elements of m1 that are larger than 10, replace them by 10.

6. Concatenate m1 and m1bis verticaly, then horizontaly.

7. Compute the sum of the rows, then of the columns, of m1.

8. Create a matrix msquare as follows,

> msquare

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

then derive its eigenvectors and eigenvalues.

1.4 Lists

1. Create a list object made of x1,m1,a=TRUE.

2. Extract the vector from this list by its name, then by its position in the list.

2 Probability distributions

This section is essential, practice again and again to avoid confusing dnorm

with rnorm, or mixing the position of the parameters... Use help or arg when
not sure.

After practising the instruction provided in the R manual about distributions :

1. Simulate a sample of 100 r.v.’s with a uniform U([0, 10]) distribution.

2. Compute the value of a normal density at x = 2 when its mean is 5 and its variance
4.

3. Determine the 50% quantile of a Poisson distribution with mean parameter 2.

4. Find the cdf of a standard Cauchy distribution in x = 1.
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3 Functions

Once again, make sure to store and save your own functions in appro-
priate files like mycode.R. Under a terminal window, use the instruction
source(‘‘mycode.R’’) to load and execute those functions ! ! !

1. Write a function called mymean that returns the empirical average of a vector
of arbitrary length n of normal N (0, 1) r.v.’s. Give the values of mymean(10),
mymean(100),mymean(1000).

2. Modify this function towards the computation of the average of a sample of size
n from a N (µ, σ2) distribution for µ and σ additional parameters of the function.
Apply for n = 104, µ = 5 and σ = 2.

3. Write another function moments that outputs both the average and the empirical
variance of a given sample.

4 Loops, etc...

1. For : Write a function that returns all integers from 1 to n.

2. If : Write a function that produces a r.v. X uniform over [0, 1] and outputs X if
X > 0.5, 0.5 otherwise.

3. While : Write a function that produces a r.v. X with distribution a truncated
N(0, 1) distribution over (−∞, 2).

5 Histograms

The function hist is used to produce a rudimentary approximation of the density of an
iid sample x1, . . . , xn).

1. Recover all the arguments one can use when calling hist and separate the necessary
arguments from the optional ones.

2. Describe the elements of the list return by hist(x) and identify those you do not
understand.

3. Explain why the grey area can have an area equal to either one or n, depending on
the choice of a specific option.

4. Given that hist(x)$density provides a sequence of weights over the intervals de-
fined by {hist(x)$breaks, show how to plot the density approximation given by
hist(x)

5. The number of intervals in the histogram approximation is specified by the argument
nclass} of hist(x). For a sample of 100 points from a N (0, 1) distribution, plot
the evolution of the density approximation as nclass} increases.
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Exercise sheet # 1

Simulation of random variables : cdf inversion, Box-Müller
algorithm et accept-reject algorithm

1 Generic inversion

Fundamental principle : Bases

Given a uniform r.v. U over [0, 1) and a cdf FX corresponding to the r.v. X, F−1
X (U) has the

same distribution as X

Proof. Obviously, P (F−1
X (U) ≤ x) = P (U ≤ FX(x)) = FX(x).

Note. When FX is not (strictly) increasing, and hence non-invertible, we define the generalised
inverse by

F−1
X (u) = inf {x;FX(x) ≥ u}

Exercise 1 : An illustration of the inversion technique

1. Write an R function that simulate a sample (X1, . . . , Xn) with size n such that the Xi’s
are i.i.d. distributed from an exponential distribution with parameter λ, when using the cdf
inversion technique.

2. Simulate a sample of size 104 from an exponential distribution with parameter 4 using this
function. Demonstrate graphically that the histogram of the resulting sample fits the expo-
nential density modulo the Monte Carlo variations.

3. Repeat the above question for the Cauchy distribution.

2 Box-Müller transform

Box-Müller transform : Basics

If U1, U2 ∼i.i.d. U [0, 1], then, when

X1 =
√
−2 log(U1) sin(2πU2) X2 =

√
−2 log(U1) cos(2πU2)

X1 and X2 are i.i.d. N (0, 1).

Exercise 2 : Application of the Box-Müller transform and Cauchy distribution
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Take a Cauchy C(0, 1) random variable X with density

f(x) =
1

π

1

1 + x2

1. Show (or accept) that we can simulate realisations of X via the Box-Müller algorithm, thanks
to the following property : if X1 , X2 are i.i.d with distribution N (0, 1), then X1

X2
∼ C(0, 1).

2. Study the evolution of the empirical average

X̄n =
1

n

n∑
i=1

Xi

when Xi ∼i.i.d. C(0, 1) and n ≥ 1 increases from 1 to 104. What is your intuition about the
observed phenomenon ?

3. Show that the distribution C(0, 1) has no mean. What is the consequence on X̄n ?

4. Take-home problem : Write a Monte Carlo experiment that would establish that X̄n is also a
Cauchy C(0, 1) random variable, for all n ≥ 1

3 Accept-reject algorithm

Accept-reject algorithm : Basics

One aims at generating a realisation of the random variable X with a distribution represented by
the density f .

1. Obtain a density g that can be simulated and such that supx
f(x)
g(x) = M . (M ∈]1, <∞[)

2. Generate
Y1, Y2, . . . ∼i.i.d. g , U1, U2, . . . ∼i.i.d. U([0, 1])

3. Take X = Yk where
k = inf{n ;Un ≤ f(Yn)/Mg(Yn)}

The random variable resulting from the above is distributed from fX .

Exercise 3 : Application of the Accept-reject algorithm

1. Using the Accept-reject method, generate a realisation of a N (0, 1) distribution using only
rcauchy.

2. Show that the constante M is
√

2πe−1/2 by simulation.

3. Illustrate by a graph the accuracy of your algorithm.

4. Change the bound M and check its influence on the waiting time till an acceptance.

5. Using the Accept-reject method, generate a realisation of a random variable with density

f(x) =
2

5
(2 + cos(x))e−x

using only the function rexp. Establish the validity of your algorithm by graphical means.
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Exercise 4 : Take-home problem : truncated variable generation
Consider a Gaussian random variable X that is centred, with variance 1 and restricted to the
support [a, b] avec 0 < b

1. Give the density of this random variable and find the normalising constant.

2. Plot in R the probability P(Y ∈ [0, b]) when Y ∼ N (0, 1) and a and b vary.

3. Evaluate the efficiency of the algorithm that simulates Y ∼ N (0, 1) until Y ∈ [a, b]

4. Consider the case a = 0. Propose an Accept-reject method, based on exponential E(λ) distri-
butions. Optimise in λ and write the corresponding R function.
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Exercise Sheet # 2

Monte Carlo Methods

1 Monte Carlo Integration

Monte Carlo integration : Bases

Let X be a random variable of density f and let h be a function defined on the support of X and
such that

∫
|h(x)|f(x)dx <∞. We want to evaluate

I =

∫
h(x)f(x)dx = Ef [h(X)] .

In many situations, this integral cannot be explicitely calculated. A numerical approximation can
be computed by Monte Carlo integration.
In principle : following the law of large numbers, if X1, . . . , Xn are independent et identically
distributed random variables of density f , then

lim
n→∞

În = lim
n→∞

1

n

n∑
i=1

h(Xi) = I, a.s. .

In practice : simply simulate an n-sample X1, . . . , Xn ∼ f and approximate I with În.

Convergence of În : Let σ̂2n(h(X)) = 1
n

∑n
i=1(h(Xi) − În)2 be the variance estimator of h(X)

and suppose that
∫
|h(x)|2f(x)dx <∞. Following the Central Limit Theorem, we have

lim
n→∞

√
n

În − I

σ̂n(h(X))
= N (0, 1) (L) ,

that is În ∼ N
(
I, 1n σ̂

2
n(h(X))

)
for large n values. Calling q1−α/2 the (1− α

2 )-quantile of the normal
distribution N (0, 1), we are able to compute

lim
n→∞

P
(
I ∈

[
În − q1−α/2

1√
n
σ̂n(h(X)), În + q1−α/2

1√
n
σ̂n(h(X))

])
= (1− α)%

thus providing the (1− α) asymptotic confidence interval for I.

Remark : Be careful not to mix up the following quantities :

(i) the variance of X, estimated by σ̂2n(X) = 1
n

∑n
i=1(Xi −Xn)2 ;

(ii) the variance of h(X), estimated by σ̂2n(h(X)) = 1
n

∑n
i=1(h(Xi)− În)2 ;

(iii) the variance of În, estimated by
σ̂2n(h(X))

n .
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Exercise 1 : Application of the Monte Carlo method
Let us consider a random variable X ∼ Gamma(a, b) with probability density

fa,b(x) =
baxa−1

Γ(a)
exp(−bx)Ix>0

and set a = 4 et b = 1.

1. Simulate a sample of n = 1000 realization of X.

2. Compute an estimation of the expected value and variance of X by Monte Carlo method,
then give an estimation of the variance of the expected value.

3. Compute the approximated values of the distribution function FX(x) in x = 2 and x = 5 by
means of a simulation method.

4. Give the approximated values of the 85%, 90% and 95% quantiles of the law of X.

Exercise 2 : Application of the Monte Carlo method (2)
Let us consider consider a random variable X whose probability density is proportional to the
following function :

(2 + sin2(x)) exp
(
−
(
2 + cos3(3x) + sin3(2x)

)
x
)
1R+(x).

1. Verify that cos3(3x) + sin3(2x) > −7
4 for all x ∈ [0, 2π], and build an algorithm to generate

the realizations of X .

2. Compute an estimation of the expected value and of the variance of X by a simulation method.

3. Compute the approximated value of the distribution function FX(x) ofX for x ∈ (0.5, 1, 1.5, 5, 10, 15)
and an approximation of the 85%, 90% et 95% quantiles of the law of X .

2 Monte Carlo Intergration with Importance Sampling

Importance Sampling : Bases

Again, we want to approximate I =
∫
h(x)f(x)dx. We introduce the following alternative repre-

sentation :

I =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx

where g is such that
∫ ∣∣∣h(x)f(x)g(x)

∣∣∣ g(x)dx <∞.

Consequence : If Y1, . . . , Yn
iid∼ g, following the law of large numbers

În =
1

n

n∑
i=1

h(Yi)
f(Yi)

g(Yi)
−→ I a.s. .

In practice : Simulate an n-sample Y1, . . . , Yn ∼ g and approximate I by 1
n

∑n
i=1 h(Yi)

f(Yi)
g(Yi)

.

Advantages :
• It works for all g such that supp(g) ⊃ supp(f) .
• Simple laws g can be chosen.
• Possible improvement of the variance of the estimator of I.
• Simulations {Yi}i=1,...,N ∼ g can be recycled for other densities f .
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Exercise 3 : Application of the Importance Sampling
We want to evaluate the integral

I =

∫ ∞
2

1

π(1 + x2)
dx .

1. Analytically calculate the value of I.

2. By a direct simulation method, compute an approximation of I, Î1,n, by means of a sample
of n simulations. Give the corresponding 95% confidence interval for I.

3. Show that I = 1
2 −

∫ 2
0

1
π(1+x2)

dx and propose a new approximation of I, Î2,n. Give the

corresponding 95% confidence interval for I.

4. Show that I =
∫ 1/2
0

y−2

π(1+y−2)
dy and propose a new approximation of I, Î3,n. Give the corres-

ponding 95% confidence interval for I.

5. Plot Î1,n as a function of n (n varying between 1 et 10000). Add the curves corresponding to

Î2,n and Î3,n as functions of n and the line corresponding to I.

Exercise 4 : Application of the Importance Sampling (2)
Let us consider a random variable X, whose probability density is proportional to the following
function :

(2 + sin2(x)) exp
(
−
(
3 + cos3(3x)

)
x
)
1R+(x).

The density of X is only known up to multiplicative factor. Compute by a simulation method an
approximated value of this factor.
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U.F.R. Mathématiques de la Décision
Stat. Exploratoire

Exercise Sheet # 3

The Distribution Function

1 Definition of the empirical distribution function

Empirical distribution function : bases

Definition : Let (X1, X2, ..., Xn) be an n-sample of independent and identically distributed
random variables of distribution function F . Without any further hypothesis on F , this
function can be estimated at every point t by menas of the empirical distribution function
F̂n :

F̂n(t) =
1

n

n∑
i=1

I{Xi≤t}

Remark : F̂n(t) is a nonparametric, unbiased estimator of F (t). F̂n(t) is a step function,
i.e. :

F̂n(t) =



0 if t < X(1)
1
n

if X(1) ≤ t < X(2)
...
i
n

if X(i) ≤ t < X(i+1)
...
1 if t ≥ X(n)

where (X(1), X(2), . . . , X(n)) corresponds to the set of values of X sorted in ascending order.

In Exercises 1 to 3, we will consider X as an n-sample of law N (0, 1).

Exercise 1 : Computation and graphical representation of F̂n

1. Write a function that computes F̂n(t) starting from an n-sample X.

2. Plot F̂n (take n = 100) together with the curve representing F .

Homeworks : The same exercise with a sample drawn from E(1).
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2 Asymptotic behavior of the empirical distribution

function

Reminders : Consequences of the Strong Law of Large Numbers
and the Central Limit Theorem

Strong Law of Large Numbers (SLLN) : At each point t, F̂n(t) is the proportion of
observations smaller than t, i.e. an estimator of P (X ≤ t). As a consequence of SLLN, we
have that

∀ t, F̂n(t)
ps−→ F (t), n→∞

Central Limit Theorem (CLT) : We notice that I{X≤t} ∼ Ber(F (t)) and we easily obtain

that V(F̂n(t)) = 1
n
F (t)(1− F (t)). Following the CLT, we get :

√
n(F̂n(t)− F (t))

L−→ N (0, F (t)(1− F (t))), n→∞

Consequence : The application of the CLT and the SLLN yields a confidence interval for
F (t). Let q1−α/2 be the (1− α/2)-quantile of N (0, 1). Then

lim
n→∞

P
(
F (t) ∈

[
F̂n(t)± q1−α/2

1√
n

√
F̂n(t)(1− F̂n(t))

])
= (1− α)% .

Exercise 2 : Verification of the LLN and of the CLT

1. LLN : Study the convergence of F̂n towards F . (Use the values 30, 50, 100, 500 for n.)

2. CLT : Graphically check that
√
n(F̂n(t)−F (t))

L−→ N (0, F (t)(1−F (t))). (Use the same
value for n as in the previous point and t = 0.) Give the corresponding CI.95.

Homeworks The same exercise with a sample drawn from E(1) and t = 2.
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3 Precision of the distribution function estimator

Precision of the estimator : Bases

Definition : For a confidence interval of the form

CI1−α(I) =
(
Î ± q1−α/2σn(Î)

)
,

with the value of α fixed, the precision corresponds to the interval length, that is

p = 2q1−α/2σn(Î) .

Consequence : By estimating σn(Î) as a function of n, we are able to find the sample size
needed to obtain a given precision at a fixed α value.

Example of approximation : For a law which is symmetric in a, F (a) = 1/2, thus F (t)(1 −
F (t)) ≈ 1

4
for t close to a. As a consequence, for t close to a, the variance of F̂n(t), can be

approximated by 1
4n

(σn(Î) ≈ 1
2
√
n
).

Exercise 3 : Determination of the sample size needed to obtain a given precision

1. Always using a sample X drawn from a normal lawN (0, 1), compute an approximation

of the variance of F̂n(t) when t ≈ 0.

2. Derive the sample size n? needed to obtain a precision of 10e− 3 for α = 95%. Check
by a Monte Carlo experiment that the obtained precision is sufficient.

Homeworks : Build a CI.95 for F (t) in t = 2 based on a sample of size n?. Is the
precision of this estimator smaller or larger than 10e− 3 ? Why ?

Hint : Look at the variation of the function g(x) = x(1− x) on the interval [0, 1].
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4 Generation of an m-sample of distribution function

F̂n

Generation of an m-sample of distribution function F̂n

Let X1, · · · , Xn be an n-sample of distribution function FX . We are able to compute the

empirical distribution function F̂X
n from this sample. This distribution function F̂X

n defines
a new probability law whose support consists of {X1, · · · , Xn} only.

Aim : We want to generate an m-sample Y1, · · · , Ym of distribution function F Y = F̂X
n .

Consequence : Yi, i = 1, · · · ,m may only take the values in {X1, · · · , Xn} and

P(Yi = Xk) =
1

n
∀k = 1 . . . n,∀i = 1 . . .m .

In practice : we sample with replacement from the equiprobable sample X1, · · · , Xn using
the R function sample(...).

Beware : The distribution function of Y is F̂X
n , its empirical distribution function is F̂ Y

m =
1
m

∑m
i=1 I{Yi≤t} and we have that

∀ t, F̂ Y
m (t)

as−→ FX
n (t),m→∞ .

Exercise 4 : Re-sampling from a known empirical distribution function
Let X be an n-sample of N (0, 1) with n = 30.

1. Plot the empirical distribution function of X, F̂X
n .

2. Simulate a sample Y1, · · · , Ym from the distribution function F̂X
n .

3. Plot the empirical distribution function of Y , F̂ Y
m .

4. Graphically check that F̂ Y
m gets closer to F̂X

n when m becomes large (use the values
30, 50, 100, 500 for m).
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Exercise Sheet #4

Bootstrap

The objective of this TP is to present the Bootstrap re-sampling method. This method allows, when
classical statistical methods are not available, to solve usual inferential problelms (bias, variance, mean
square error of an estimator, confidence intervals, hypothesis testing, ..) .

Bootstrap is an inferential technique based on a succession of re-samplings. Let X be a real random
variable with cumulative distribution function F unknown : F (x) = P (X ≤ x). Let (X1, ..., Xn) be a
sample from the law of X and Fn the associated empirical distribution function : Fn(x) = 1

n

∑n
i=1 IXi≤x.

We’re interested in θ, a parameter of the law of X. θ can be written as a functional of F as θ = t(F ).
A natural estimator for θ = t(F ) is than given by θ̂ = t(F̂n) = T (X1, . . . , Xn).

Exemples :

1. If θ = E[h(X)] =
∫
h(x)dF (x), where h is a function from R in R,

θ̂ =
∫
h(x)dF̂n(x) = 1

n

∑n
i=1 h(Xi)

2. If θ = V ar[h(X)] = E[(h(X)−E[h(X)])2] =
∫
h(x)2dF (x)−

(∫
h(x)dF (x)

)2
where h is a function

from R in R,

θ̂ =
∫
h(x)2dF̂n(x)−

(∫
h(x)dF̂n(x)

)2
= 1

n

∑n
i=1 h(Xi)

2 −
[
1
n

∑n
i=1 h(Xi)

]2
3. If θ is the median value of X, θ̂ = (X(n/2) + X(n/2+1))/2 if n is odd, X(n+1)/2 if n is even,

where (X(1), ..., X(n)) is the order statistic associated with X1, ..., Xn (i.e. the increasingly ordered
sample) .

4. If θ is the quantile of level 1− α of the law of X ,θ̂ = X([(1−α)n]+1) .

We’d like to estimate bias, variance or mean square error of a given estimator θ̂ = T (X1, ..., Xn), obtain
confidence interval on θ, etc...

1 Estimation of the bias of θ̂ = T (X1, ..., Xn).

We call bias of θ̂ the quantity E[θ̂]− θ. This bias is in general unknown because it depends on F , that
is unknown too. We’d like to etimate it based on just one observation (X1, . . . Xn). There are several
possible cases :
For a start we suppose that F and θ are known (this is just an academic exercise because if this was
true, we wouldn’t need to estimate θ !). So we could :



• compute E[θ̂]− θ analytically and the problem is solved,
• if we can’t compute E[θ̂] − θ analytically we could resort to a Monte Carlo technique. More

precisely,

1. We simulate B n-samples (X l
1, ..., X

l
n) with distribution F .

2. For each sample, we compute θ̂l = T (X l
1, ..., X

l
n).

3. In the end, we obtain an estimate of the bias E[θ̂]− θ with : 1
B

∑B
l=1 θ̂

l − θ

But, in a realistic setting, both F and θ are unknown and the previous procedure is then unavailable.

The Bootstrap method consist in replacing in the previous Monte Carlo scheme F with F̂n and θ with θ̂.

Remember : In sheet # 3, we learned how to simulate an n-sample according to F̂n : it amounts to
randomly sample with replacement n variables from the observations X1, . . . Xn

Finally we can write the Bootsrap procedure to estimate the bias as :

Bootsrap procedure to estimate the bias

1. Compute θ̂ from the sample X1 . . . Xn.

2. For l = 1 . . . B,

(a) Simulate an n-sample (X∗l1 , ..., X
∗l
n ) according to F̂n i.e. extract a random sample with

replacement of length n from the observations (X1, ..., Xn) : sample(X,n,replace=TRUE).

(b) For each new sample, compute θ̂∗l = T (X∗l1 , ..., X
∗l
n )

3. We obtain an estimation of the bias E[θ̂]− θ with : 1
B

∑B
l=1 θ̂

∗l − θ̂

Exercise 1

We’re interested in σ̂2n = 1
n

∑n
i=1(Xi −Xn)2 , the natural estimator for the variance V (X) = σ2.

1. Suppose that X follow the distribution N (0, 1).

(a) Simulate a 100 - sample (X1, . . . , X100) and save it into the vector XX.

(b) Compute analytically the bias b = E[σ̂2n]− σ2.
(c) Evaluate this bias by the Monte Carlo method. Design a graph that explain how this appoxi-

mation change as a function of the iteration number B. Add to this graph an horizontal line
of ordinate b.

2. Now we still take (X1, . . . , X100), stocked in the XX vector, but we suppose that the observations
have an unknown distribution. Estimate the bias with a Bootstrap procedure. As before, design a
graph that explains how this appoximation change as a function of the iteration number B.

3. Compare the three methods.

Remarque : The same procedure can be utilized to estimate the variance, the mean square error of an
estimator, ...
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2 Bootstrap confidence intervals

Let θ̂ be an estimator of θ . We’d like to find a confidence interval for θ i.e we’re searching q1(θ̂) and

q2(θ̂) such that P
[
q1(θ̂) ≤ θ ≤ q2(θ̂)

]
= 1− α (α fixed).

Remark on confidence intervals (see the L2 stat course) :

1. Let (X1, . . . , Xn) a sample from a normal distribution N (θ, σ2), then θ̂ = 1
n

∑n
i=1Xi = Xn is the

natural estimator of θ .

(a) If σ2 is known, let Φ be the cumulative distribution function of a standard normal law and
q such that Φ(q) = 0.975. Than Ic = [θ̂ − q σ√

n
, θ̂ + q σ√

n
] is an exact 95%-level confidence

interval for θ.

(b) If σ2 is unknown, under the hypothesis of normality for the observations, let Ŝn = 1
n−1

∑n
i−1(Xi−

Xn)2 be an estimator of the variance. Than Xn−θ√
Ŝn/n

∼ T (n − 1) Thus, let ΦT be the cumu-

lative distribution function of a Student’s T with n − 1 degrees of freedom and q such that

ΦT (q) = 0.975 than Ic =

[
Xn − q

√
Ŝn/n,Xn + q

√
Ŝn/n,

]
is a 95%-level confidence interval

for θ.

2. Now, suppose that (X1, . . . , Xn) is an n-sample of X with unknow distribution such that E[X] = θ.
As before, θ̂ = Xn is a natural estimator for θ.

(a) If σ2 is known, the Central-Limit theorem enables us able to give an asymptotic confidence
interval.

(b) If σ2 is unknown, let Ŝn be a consistent estimator of σ2. Thanks to Slutsky’s Lemma and the

Central-Limit theorem, we have convergence for Xn−θ√
Ŝn/n

towards a standard normal law. We

can easly than obtain asymptotic confidence intervals.

Problems :
• The previous results are applicable only when the Central-Limit theorem applies.
• These results are asymptotic and thus they are reliable only in the presence of a large number of

observations.
• We need a consistent estimator of the variance for them to apply.

The percentiles Bootstrap procedure allows us to overcome these problems. Its principle is to approximate

the distribution function of the estimator θ̂ = T (X1, ..., Xn) with its empirical distribution function
obtained with a Bootstrap sample. The bounds of the confidence interval are then obtained from this
empirical distribution function.
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Bootstrap Percentiles procedure

Let (X1, . . . , Xn) be an observed n-sample.

1. For l = 1 . . . B,

(a) Simulate an n-sample (X∗l1 , ..., X
∗l
n ) with distribution F̂n i.e. extract a random sample

with replacement of length n from the observations (X1, ..., Xn) :

sample(X,n,replace=TRUE).

(b) Compute θ̂∗l = T (X∗l1 , ..., X
∗l
n )

2. The sample (θ̂∗l)l=1...B leads to an approximation of the distribution function of θ̂. Compute
q1 and q2 using the function quantile.

Exercise 2

We’re interested in the expected value of µ of a normal distributed sample.

1. Simulate an n-sample (X1, ..., Xn) for n = 10 from a normal distribution N (5, 2). Suppose µ and
σ2 unknown.

2. Compute the 95%-level confidence interval for µ using Student’s t distribution.

3. Compute the 95%-level asymptotic confidence interval for µ using the Central limit theorem.

4. Compute the 95%-level asymptotic confidence interval for µ using the Bootstrap Percentiles pro-
cedure.

5. Compare the three methods

6. Take a larger n and repeat the exercise.

3 Hypothesis testing with the Bootstrap

Problems

In a number of practical problems, we modelize the relation between two quantities Y and X. Suppose
that we dispose of n values of X fixed, denoted xi, and that for each xi we observe a realization of a
random variable Y , denoted yi. The simple linear regression model consists in :

Yi = α+ βxi + Ei

where Ei are random variables i.i.d. with null expected value and variance σ2. We can then estimate the
unknown parameters α and β thanks to the least squares criterion. This consist in finding the quantities
α̂ and β̂ minimizing :

n∑
i=1

(Yi − α− βxi)2.

Let x = 1
n

∑n
i=1 xi, Y =

∑n
i=1 Yi , Sxx =

∑n
i=1(xi − x)2 and SY Y =

∑n
i=1(Yi − Y )2, SxY =

∑n
i=1(xi −

x)(Yi − Y ). The least square estimator of α and β can be written as :

β̂ =
SxY
Sxx

α̂ = Y − β̂x
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1. For n = 30, σ2 = 0.5, α = 2, β = 1 and x = seq(0, 10, length = n) , generate some realization
of Yi following the simple linear model in the case where the residuals Ei follow the distribution
γT (5) where γ is a constant that we need to compute.

2. Determine a Boostrap estimation of α and β

3. Determine, with a Boostrap procedure, a 95%-level confidence interval for the parameters α and
β.

4. Suppose

T =
√

(n− 2)Sxx
β̂ − 1∑n

i=1(YI − α̂− β̂xi)2
On the previously generated sample, we want to test the null hypothesis H0 that β = 1 versus
the alternative hypothesis H1 that β = 1.5. We propose to use the decision rule where we reject
H0 if T > F−1St(28)(0.95), optimal strategy when the residuals are Gaussian. Determine, with the

Bootstrap method, the error ratio of the previous test (i.e. probability of rejecting H0 while it’s
true instead, equal to 5% in the Gaussian case).
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Exercise Sheet #6

Kolmogorov-Smirnov’s Test.

In this sheet, we will make use of the faithful data, included in R.

Preliminary study of the data

1. Download the dataset and make a summary analysis (type of data, sample size, quantities under study,
means, variances ... etc)

Use data(faithful), help(faithful), summary(faithful)

2. Design a graphic rapresentation describing roughly the distribution of the data in faithful

3. Estimate with an uniform Kernel the density of the faithful data.

4. Estimate with a Gaussian Kernel the density of the faithful data.

5. Study the influence of the window’s width on the Gaussian Kenrnel density estimation.

1 Introduction to the Kolmogorov-Smirnov’s test

1.1 Test of adequacy to a given law

Let (X1, . . . , Xn) be an n-sample from an unknown distribution P . Let P0 be a known distribution, that is
fixed. We try to test the hypothesis:

H0: ”the data X1, . . . , Xn are distributed according to the distribution P0”

versus

H1: ”the data X1, . . . , Xn are not distributed according to the distribution P0”

Principle of the test : The Kolmogorov-Smirnov’s test can answer this problem. The idea is that if the
hypothesis H0 is correct, then the empirical distribution function F̂n of the sample should be close to F0,
the distribution function corresponding to P0.

Test Statistic: We measure the adequacy of the empirical distribution function of the function F0 with the
Kolmogorov-Smirnov’s distance, which is the uniform norm between the distribution functions. To compute
that, simply evaluate the difference between F̂n and F0 at the points X(i).

DKS(F0, F̂n) = max
i=1,...,n

{ ∣∣∣∣F0(X(i))−
i

n

∣∣∣∣ , ∣∣∣∣F0(X(i))−
i− 1

n

∣∣∣∣ } .

Construction of the test: We’re going to reject H0 if the distance between F̂n and F0 is big, i.e. if
DKS(F0, F̂n) exceeds a certain threshold qα still to be defined.



About the threshold: We’ll choose the threshold qα such that, if the hypothesis H0 is true, the probability
of rejection for H0 is small (typically α = 5%)

PXi∼F0

(
DKS(F0, F̂n) > qα

)
= α

To obtain this threshold, we need to know the distribution of DKS(F0, F̂n) in the case where the Xis
are distributed according to F0. Now we can show that under the assumption H0, the distribution of the
statistic DKS(F0, F̂ ) does not depend on F0. Thus the distribution of DKS(F0, F̂ ) has no simple and explicit
expression and has to be computed numerically. This distribution has been tabulated.

↪→ In R,

• This adequacy test has been implemented in ks.test

• the output of this function is a liste of objects, comprehending the p-value. The p-value is the minimum
α at which We would have rejected H0. If the p-value is inferior to 5% We will reject the
hypothesis H0 at the 5% level

Exercise. Test of adequacy to a given law

We are interested in the eruption’s times exceeding 3 minutes.

1. Create a vector long containing the eruption’s times exceeding 3 minutes.

2. Test the hypothesis that the observed times of eruption exceeding 3 minutes follow a N (4, 0.1) distri-
bution.

Remark: The Kolmogorov-Smirnov’s test can be extended to a comparison between two empirical distri-
bution functions, and allows to test the hypothesis that two samples come from the same distribution. For

this we use a function similar to ks.test but with corrected thresholds.

1.2 Test of adequacy to a family of distributions

Let X1 . . . Xn be an n-sample from an unknow distribution. Let Fθ be a parametric family of distributions.
For example, Fθ =

{
N (µ, σ2), θ = (µ, σ2) ∈ R× R∗+

}
. We’ll try now to test the hypothesis that: H0:

”The distribution of X1, . . . , Xn belongs to the family of distributions Fθ” contre H1: ”The distribution of
X1, . . . , Xn does NOT belong to the family of distributions Fθ”

Method: Let θ̂ be the maximum likelihood estimator of the parameter θ. As before, we’ll reject H0 if

DKS(Fθ̂, F̂n) > q′α

About the threshold: As before, we compute the threshold in order to minimize the probability to reject
H0 while it’s true. So we need again the distribution of the statistic DKS(Fθ̂, F̂n) > q′α.

• Attention: As Fθ̂ depends on the sample, the distribution of the statistic is not the same as in the test
of adequcy to a given distribution. The function ks.test cannot be used in this case.

• The R function which allow us to realize the Kolmogorov-Smirnov’s test adjustement to a gaussian
family is lillie.test(x), in the package nortest.

Exercise. Test of adequacy to a family of distributions

Test the potential normality of the probability distribution of the observed eruption’s times exceeding 3
minutes using the function lillie.test(x).
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