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1 A Benchmark example



Population Monte Carlo Methods/OFPR/CREST/May 5, 2003

Even simple models may lead to computational complications, as in latent

variable models:

Example 1 —Mixture models—

Models with density
X ~ f; with probability p;,

forj = 1,2,...,k, with overall density

X ~pifi(@)+ - +pefe(e) .
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For a sample of independent random variables (Xl, I Xn), sample density

H {prfa(ews) + 4 prfulzi)} .

Expanding this product involves k™ elementary terms: prohibitive to compute in
P g P y P P

large samples.
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For a mixture of two normal distributions,

PN (1, 7%) + (1 = p)N (0, 07) ,

likelihood proportional to

(252 0mn e (357)

1

containing 2" terms.

Standard maximization techniques often fail to find the global maximum because of

multimodality of the likelihood function.
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In the special case

fali, o) = (1= € exp{(~1/2)a”} + = exp{(~1/20")(@ = u)’} @
with € > (0 known

Then, whatever n, the likelihood is unbounded:

lim l(p = z1,0|x1,...,25) = 0

o—0
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Echantillon N(0,1)
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Likelihood of 7N (p1,1) 4+ .3N (2, 1)
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Similar difficulties with the Bayesian approach:

Mixture of two normal distributions
T1y. o ~ f(2]0) = po(; p1,01) + (1 = p)p(x; 2, 02)

Prior

pilos ~ N (&, 07 /ni),  0f ~TG(1if2,57/2),  p~ Be(a,B)
Posterior

m(021, ... an) H{péﬁ(ﬂfﬁ#laffl)+(1—P)90($j5ﬂ2»02)}ﬁ(9)

ZZW ]ft 9‘ kt)
(=0 (k¢)

[0(2")]
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For a given permutation (kt) conditional posterior distribution

w(61(k)) = A7 (€a0k0). =70 ) X TG0 + 0)/2.51(k0) 2
< N (fg(kt), - f; - €> < TG ((vo +n — £) /2, 52(kt)/2)

xBe(a+4,0+n—1)

10
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where
fl(kt) - %Zle Ly 31(kt) — Ef:1($kt o j1(’I€75>)27
To(ky) = 520 01 Thys So(ke) = iy (@, — Za(ke))?
and
n1&1 + &f‘l(kt) noks + (n — 6)3_32(]@)
k — ki) =
X Nyt B
si(ky) = s7+38(k)+ o 15(51 — z1(ke))?,
A no(n — ¢ B
salke) = s+ 8300 + 2 (6 — aa(h) ),

posterior updates of the hyperparameters
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Bayes estimator of 6:

577(5171,... ZZW kt

0=0 (k;)

Too costly: 2™ terms

"01x, (k)]

12
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2 Monte Carlo Integration

13



Intro/Monte Carlo/Importance

2.1 Introduction

Two major classes of numerical problems that arise in statistical inference

- generally associated with the likelihood approach

- generally associated with the Bayesian approach

14
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Example 2 —Bayesian decision theory—

Bayes estimators are not always posterior expectations, but rather solutions of the

minimization problem

min /@ L(0,5) x(6) f(x|0) dO .

o

e For absolute error loss (A, §) = |6 — |, the Bayes estimator is the posterior

median

15
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2.2 Classical Monte Carlo integration

Generic problem of evaluating the integral

where X is uni- or multidimensional, f is a closed form, partly closed form, or

implicit density, and A is a function

16
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First use a sample (X1, ..., X,,) from the density f to approximate the integral J

by the empirical average

Average

by the Strong Law of Large Numbers

17
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Estimate the variance with

1 1 —
Um s L m—1 Z fi(@s) =Rl
71=1
and for m large,
fom, — By [0(X)]

~ N(0,1).
o (0,1)

Note: This can lead to the construction of a convergence test and of confidence

bounds on the approximation of E s [h(X)].

18
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Example 3 —Cauchy prior—

For estimating a normal mean, a robust prior is a Cauchy prior

X ~N(0,1), 0~C(0,1).

Under squared error loss, posterior mean

19
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Form of 0™ suggests simulating iid variables 61, - - -, 0,,, ~ N(m, 1) and calculate
0.
m 1
Zi:l 2
NS 1+ 9@
Om (5’7) — _ 1

The Law of Large Numbers implies

A

or (x) — 6" (x) as m — 0.

20
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2.3 Importance Sampling

Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling , based on the

alternative representation

5000 = [ ho) B8 o) o

g()

which allows us to use other distributions than f

21



Intro/Monte Carlo/Importance

Evaluation of

by
1. Generate a sample X1, ..., X,, from a distribution g

2. Use the approximation

= 9(Xy)

22
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Convergence of the estimator

1 «— f(X;) N 2 ) di
5 2 g M) [ wia) s d

23
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o Same reason the regular Monte Carlo estimator h,,, converges

o converges for any choice of the distribution g [as long as

supp(g) DO supp(f)]

o Instrumental distribution g chosen from distributions easy to simulate

o The same sample (generated from g) can be used repeatedly, not only for

different functions h, but also for different densities f

o Even dependent proposals can be used, as seen later

24
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Although g can be any density, some choices are better than others:

o Finite variance only when

s PO [ P
[0 | = e iy e <o

o Instrumental distributions with tails lighter than those of f (that is, with

sup f/g — 0OQ) hot appropriate.

o If sup f/g = oo, the weights f(z;)/g(x;) vary widely, giving too much

importance to a few values ;.

o If sup f/g = M < o0, the accept-reject algorithm can be used as well to

simulate f directly.

25
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The choice of g that minimizes the variance of the importance sampling
estimator is
o) — @)
Jz ()] f(2) dz

Rather formal optimality result since optimal choice of g* () requires the
knowledge of J, the integral of interest!

26
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Practical alternative

2 -1 M(X5) [(X5)/9(X;)
2o f(X5)/9(X5)

where f and g are known up to constants.

o Also converges to J by the Strong Law of Large Numbers.
o Biased, but the bias is quite small

o In some settings beats the unbiased estimator in squared error loss.

27



Intro/Monte Carlo/Importance

Example 4 —Student's ¢ distribution— X ~ 7 (v, 0, 0?), with density

_ I'((v+1)/2) (z — 9)2 —(v+1)/2
~ oyun I(v/2) <1+ vo? ) '

Without loss of generality, take @ = 0, o0 = 1.

/2 O: (Smf) ) " (@)

fu(z)

Calculate the integral

28
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e Simulation possibilities

i i N<071)
o Directly from f,, since f, = oo
X2

o Importance sampling using Cauchy C(O, 1)

o Importance sampling using a normal N/ (0, 1)
(expected to be nonoptimal)

o Importance sampling using a ([0, 1/2.1])

change of variables

29
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3 The Metropolis-Hastings Algorithm

30
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3.1 Monte Carlo Methods based on Markov Chains

Unnecessary to use a sample from the distribution f to approximate the integral

[ na)s(a)de.

Now we obtain X1, ..., X, ~ f (approx) without directly simulating from f,

using an ergodic Markov chain with stationary distribution f

31
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For an arbitrary starting value x((’), an ergodic chain (X(t)) IS generated

using a transition kernel with stationary distribution f
e Insures the convergence in distribution of (X ()) to a random variable from f.
e For a “large enough” 1y, X (To) can be considered as distributed from f

e Produce a dependent sample X(TO), X(T0+1), ..., Which is generated from

f, sufficient for most approximation purposes.
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3.2 The Metropolis—Hastings algorithm

3.2.1 Basics

The algorithm starts with the objective (target) density

f

A conditional density
q(y|z)

called the instrumental (or proposal) distribution  , is then chosen.

33
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Algorithm 5 —Metropolis—Hastings—

Given z(*),
1. Generate Y; ~ q(y|z(®).

2. Take
X@+n——{y3 with prob. p(z("), Y}),
gj(t) with prob. 1 — ,0(33<t)7 }/t)’

where

oz, 1) :mm{f(y) q(zly) ’1} |

flx) q(ylz)

34



MCMC/MH:Basics/Examples/Extensions

Features

e Always accept upwards moves

e Independent of normalizing constants for both f and ¢(-|x) (constants

independent of x)
e Never move to values with f(y) = 0

e The chain (Zl?(t>)t may take the same value several times in a row, even though

f is a density wrt Lebesgue measure

e The sequence (¥ )¢ is usually not a Markov chain

35
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3.2.2 Convergence properties

1. The M-H Markov chain is reversible , with invariant/stationary density f since it

satisfies the detailed balance condition
fy) K(y,z) = f(z) K(z,y)

2. As f is a probability measure, the chain is positive recurrent

3. If
f(Y7) ¢(XOY;)
OO

that is, the event { X ‘T1) = X ()} is possible, then the chain is aperiodic

Pr

(1)

36
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q(ylz) > Ofor every (z,y), (2)

the chain is irreducible
5. For M-H, f-irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)
(@) For h, with E¢|h(X)| < o0,

T'— o0

lim %;h()ﬂ”) = /h(a:)df(a:) ae. f.

(b) and

=0
TV
for every initial distribution 1, where K™ (x, -) denotes the kernel for n

i | [ K" () - 5

n—oo

transitions.
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3.3 A Collection of Metropolis-Hastings Algorithms

3.3.1 The Independent Case

The instrumental distribution q is independent of X(t), and is denoted g by analogy

with Accept-Reject.

38
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Algorithm 6 —Independent Metropolis-Hastings—

Given 33(t>,
1. Generate Y; ~ g(y)

2. Take

(1) — Y;  with prob. min{

(1) otherwise.

F(Y2) g(2®)

f(z®) g(Y)

i)

39
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The resulting sample is not iid
There can be strong convergence properties:

The algorithm produces a uniformly ergodic chain if there exists a constant
M such that

flz) < Mg(x), xcsupp f.

In this case,

M

and the expected acceptance probability is at least %

[Mengersen & Tweedie, 1996]

K™ (z,") = fllov < (1 — iy .

40
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Example 7 —Generating gamma variables—
Generate the Ga(c, 3) distribution using a gamma Ga([a|, b = |a]/«) candidate

Algorithm 8 —Gamma accept-reject—

1. Generate Y ~ Ga(|a], |a]/a)

2. Accept X = Y with prob.

(6 y exp(—y/a) > ol |

(87
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and

Algorithm 9 —Gamma Metropolis-Hastings—

1. Generate Y; ~ Ga(|a], [a]/a)

2. Take

. Y;
x@+1) — ) Yy with prob. (E ex

(1) otherwise.

g

SO v

84

.

42
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Comparison

Close agreement in M-H and A-R, with a slight edge to M-H.

|
1

90

85

8.

o 1000 2000 3000 4000
(5000 iterations)

Accept-reject (solid line) vs. Metropolis—Hastings (dotted line) estimators of
E[X?] = 8.33, for & = 2.43 based on Ga(2,2/2.43)

43
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3.3.2 Random walk Metropolis—Hastings

Use the proposal
}/t — X(t) + &4,

where £, ~ g, independent of X (*).

The instrumental density is now of the form g(y — x) and the Markov chain is a

random walk if we take g to be symmetric

44
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Algorithm 10 —Random walk Metropolis—

Given z(*)
1. Generate Y; ~ g(y — z*))
2. Take
(1) Y;  with prob. min {1,

(1) otherwise.

45
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Example 11 —Random walk normal—

Generate (0, 1) based on the uniform proposal [—4, ]

The probability of acceptance is then

p(z'",ys) = exp{(z")" —y7)/2} A 1.

[Hastings (1970)]

46
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Sample statistics

) 0.1 0.5 1.0
mean 0.399 —-0.111 0.10

variance 0.698 1.11 1.06

As 0 T, we get better histograms and a faster exploration of the support of f.

47
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Figure 1: Three samples based on U[—4, §] with (@) = 0.1, (b) 6 = 0.5 and (c)
0 = 1.0, superimposed with the convergence of the means (15, 000 simulations).
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Example 12 —Mixture models—

m(8]2) « [ (Zmﬂxm,ae)) n(6)
j=1 \¢=1

Metropolis-Hastings proposal:

pt+1) _ ) + we® ifu®) < plt)

ot) otherwise

where
t t
m(0)]z)

and w scaled for good acceptance rate

49
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Random walk sampling (50000 iterations)
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[Celeux & al., 2000]
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Random walk MCMC output for

2
1
|

51
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Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

For a symmetric density  f, log-concave in the tails, and a positive and
symmetric density g, the chain (X(t)) Is geometrically ergodic.
[Mengersen & Tweedie, 1996]

52
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Example 13 Comparison of tail effects

Random-walk Metropolis—Hastings algorithms based on aN(O, 1) instrumental for

the generation of (a) aN(O, 1) distribution and (b) a distribution with density
P(x) o (1+ [z]) 7

|
~—i

15

< |
-~

10

05
05

O | e S | e T T e
=3 =]
(¥ o) Lo
< <
(=) (=1
F.. ~
Lo Lo
F.| -
o 50 100 150 200 o 50 100 150 200
) (b)

90% confidence envelopes of the means, derived from 500 parallel

independent chains
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Further convergence properties

Under assumptions

e (Al) f is super-exponential, i.e. it is positive with positive continuous first
derivative such that lim ;| n(z)"V log f(x) = —oo where
In words : exponential decay of f in every direction with rate tending to 0o
n(z)'m(x) < 0,where m(z) =V f(x)/|Vf(x)|
In words: non degeneracy of the countour manifold

Cepy =1y : fly) = f(2)}

() is geometrically ergodic, and
V(x) o< f(2)~1/? verifies the drift condition

e (A2) lim Sup|,,

[—o0

[Jarner & Hansen, 2000]

54
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Further [further] convergence properties

If P p-irreducible and aperiodic, for 7 = (7(n)),ecn real-valued non decreasing

sequence, such that, foralln, m € N,
r(n+m) < r(n)r(m),

and 7(0) = 1, for C' asmall set, 7¢ = inf{n > 1, X,, € C'},and h > 1,
assume

sup K,
xeC

3 r<k>h<Xk>] <

k=0

55
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then,

S(f,C,r):= {x - X,Ex{

Tc—1

k=0

is full and absorbing and for = € S(f,C,r),

> r(lc)h(Xk)} < oo}

lim r(n)||P"(x,.) — f|ln = 0.

n—oo

[Tuominen & Tweedie, 1994]

56
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Comments

[CLT, Rosenthal’s inequality...]  h-ergodicity implies CLT for additive (possibly
unbounded functionals) of the chain (under additional conditions, guaranteeing
the integrability of the limit), Rosenthal’s inequality (also for functions whose

growth at infinity is controlled properly) and so on...

[Control of the moments of the return-time] The condition implies (because

h > 1) that

Tc—1 n
sup E.[ro(7¢)] < sup E,, Z r(k)h(Xy) p < 0o, whererg(n) = Y r(l)
xeC xeC k—0 [=0

Can be used to derive bounds for the coupling time, an essential step to

determine computable bounds, using coupling inequalities
[Roberts & Tweedie, 1998; Fort & Moulines, 2000]



MCMC/MH/RWMH/Extensions

Alternative conditions

The condition is not really easy to work with...

[Possible alternative conditions]
(a) [Tuominen, Tweedie, 1994]  There exists a sequence (V;, ) nen,
Vi, > r(n)h, such that
(i) sups Vo < o0,
(i) {Vo =00} C {V1 = o0} and
(iy PVypy1 <V, —r(n)h+br(n)lec.

58
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(b) [Fort2000] 3V > f > 1and b < o0, such that sup~ V' < oo and

{Z Ar(k } < V(x)+blg(x)

where o¢ is the hitting time on C' and

Ar(k)=r(k) —r(k—1),k > 1and Ar(0) = r(0).

Result () < (b) < sup,ec Ex {22001 r(k)f (Xk)} < 00,

59
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3.4 Extensions

There are many other algorithms
o Adaptive Rejection Metropolis Sampling
o Reversible Jump (later!)
o Langevin algorithms

to name a few...

60
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3.4.1 Langevin Algorithms

Proposal based on the Langevin diffusion L; is defined by the stochastic differential

equation
1
st = dBt -+ §V10g f(Lt)dt,
where Bj; is the standard Brownian motion

The Langevin diffusion is the only non-explosive diffusion which is reversible with

respect to f.

61
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Discretization:

2
b0 = 20 1+ T Vlog f(20) £ oer, e~ Np(0.1)

2

where o “ corresponds to the discretization

Unfortunately, the discretized chain may be be transient, for instance when

lim |0°Vlog f(z)|z| '] > 1

xr— +o00

62
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MH correction

Accept the new value Y; with probability

2
Yy, = 2® — 2 (t) 2
() .exp{ HYt x 5V log f(x )H /20 }/\1
fz®) () o2 2 2
expq — ||lz® =Y, — S-Viog f(Yy)||” /20

Choice of the scaling factor o
Should lead to an acceptance rate of to achieve optimal convergence rates
(when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]
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3.4.2 Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of view

Most common alternatives:
(a) a fully automated algorithm like ARMS;

(b) an instrumental density g which approximates f, such that f/g is bounded for

uniform ergodicity to apply;
(c) arandom walk

In both cases (b) and (c), the choice of g is critical,

64
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Case of the independent Metropolis—Hastings algorithm

Choice of g that maximizes the average acceptance rate

o= E e

2P(@>@>, X~ f Y~y

g(Y) — g(X)
Related to the speed of convergence of

T
Z X(t)

to E¢[h(X)] and to the ability of the algorithm to explore any complexity of f

65
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Practical implementation
Choose a parameterized instrumental distribution g(-|f) and adjusting the

corresponding parameters 6 based on the evaluated acceptance rate

: 2
p(@) — m Z H{f(yi)g(wi)>f(xi)g(yi)} ’

1=1

where 1, ..., x,, sample from f and y1, ..., Y., iid sample from g.

66



MCMC/Metropolis-Hastings/Examples/Extensions:Accept rate

Example 14 Inverse Gaussian distribution.

Simulation from
f(2|91, 02) XX 2_3/2 exp { 912 i —|— 2\/ 6192 -+ lOg AV 2@ } HR+ )

based on the Gamma distribution Ga(c, ) with « = 3+/65 /60,

Since

% o p——1/2 exp{(g 0r)x — %2} ,

the maximum is attained at
- (a+1/2) — \/(a+1/2)% + 465(01 — 3)
o 2(6 — 01) |

67
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The analytical optimization (in 3) of

M(B) = (x5) """ 1* exp {(ﬁ —01)xp - :i%}

Is impossible

0.2 0.5 0.8 0.9 1 1.1 1.2 1.5

s
p(B8) 022 041 054 056 0.60 0.63 0.64 0.71
[

E[Z] 1.137 1.158 1.164 1.154 1.133 1.148 1.181 1.148
E[1/Z] 1.116 1.108 1.116 1.115 1.120 1.126 1.095 1.115

(01 = 1.5,05 = 2, and m = 5000).

68
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Case of the random walk

Different approach to acceptance rates

A high acceptance rate does not indicate that the algorithm is moving correctly since

it indicates that the random walk is moving too slowly on the surface of f.

if 2(*) and y, are close, i.e. f(a:(t)) ~ f(y:) y is accepted with probability

min (S5 1) =1,

For multimodal densities with well separated modes, the negative effect of limited

moves on the surface of f clearly shows.
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If the average acceptance rate is low, the successive values of f () tend to be
small compared with f(2(*)), which means that the random walk moves quickly on

the surface of f since it often reaches the “borders” of the support of f

70
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Rule of thumb
In small dimensions, aim at an average acceptance rate of 50%. In large
dimensions, at an average acceptance rate of 25%.

[Gelman,Gilks and Roberts, 1995]
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4 The Gibbs Sampler

72
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4.1 General Principles

A very specific simulation algorithm based on the target distribution f:
1. Uses the conditional densities f1, ..., f, from f
2. Start with the random variable X = (X1,..., X))
3. Simulate from the conditional densities,
Xilx1, T2y ooy Ti1, Tig1y - Tp
~ fi(zi|x1, T2y .o Tio1, Tig1, .-, Tp)

forr =1,2,...,p.
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Algorithm 15 —The Gibbs sampler—

Given x(*) = (acgt), e ,a:;,t)), generate
1. Xftﬂ) ~ fl(a;1|$g), . ,x](f));

2. X2(t+1) ~ f2($2|$gt+1)a 33:(;)7 e 75’71(9t))’

t+1 1 1
p. X]g ) fp(a:p\a:g ),...,x;_l))

Then X(+D — X ~ f

74



Principle/Data Augmentation/Improper Priors 75

Properties

The full conditionals densities f1, ..., f, are the only densities used for simulation.

Thus, even in a high dimensional problem, all of the simulations may be univariate

The Gibbs sampler is not reversible with respect to f. However, each of its p
components is. Besides, it can be turned into a reversible sampler, either using the

Random Scan Gibbs sampler (see below) or running instead the (double) sequence

fl"'fp—lfpfp—l"'fl
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Example 16 —Bivariate Gibbs sampler—

(X7 Y) ~ f(xvy)

Generate a sequence of observations by

Set X = xg

Fort =1,2,..., generate

i ~ fyix(lwe-1)
X~ fxp(lye)

where fy|x and f x|y are the conditional distributions
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o (X4, Y:)s, is a Markov chain
o (X¢)¢ and (Y3)s individually are Markov chains

o For example, the chain (X;); has transition density

K (z,2%) = / Py tx Wl Fx iy (2 y)dy,

with invariant density fx (-)

77
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For the special case

the Gibbs sampler is

Given y¢, generate

Xt—l—l \ Yt

Yt+1 \ Lt41

~ N(pys, 1 —p?),

~ N(pxtyr, 1— /02)-

78



Principle/Data Augmentation/Improper Priors

Properties of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with acceptance rate

uniformly equal to 1.

The Gibbs sampler
1. limits the choice of instrumental distributions
2. requires some knowledge of f
3. is, by construction, multidimensional

4. does not apply to problems where the number of parameters varies as the

resulting chain is not irreducible.
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4.1.1 Completion

The Gibbs sampler can be generalized in much wider generality

A density g is a completion of f if

/Z g(r,2) dz = f(x)

80
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g should have full conditionals that are easy to simulate for a Gibbs

sampler to be implemented with g rather than f

For p > 1, write y = (x, z) and denote the conditional densities of

9(y) =9(y1,...,yp) by

Yl‘yg,...,yp ~ gl(ylly27--°7yp)7
Yg\yl,yg,...,yp ~ 92(y2|ylay37“°7yp)7

Yolyi, - ¥p—1 ~ Gp(Uply1, - Yp—1)-
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The move from Y ®) to Y (t11) is defined as follows:

Algorithm 17 —Completion Gibbs sampler—

Given (y%t), . ,yz(f)), simulate

1. Yl(t+1> ~ g1 (y1|y§t)7 S 7y1(7t)>’
2. YQ(H_l) ~ 92(y2|y§t+1)7 y§t>7 <o 7y1<?t>>’

1 t+1 t+1
p. Vi gyt ),
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Example 18 —Mixtures all over again—
Hierarchical missing data structure

If
k
X17 SR 7X’n ~ Zp’bf(x|0’b)7
1=1

then
X|Z ~ f(al02), Z~pl(z=1)+...+pl(z = k),

and Z is the component indicator associated with observation x

83
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Conditionally on (21, ..., Z,) = (21, . - -

7T(p1, s 7pk7917 <. 78/6':617 .

><7T(91|y1 + N1, )\1 + nl) ..

with

n; = Zﬂ(zj =1) et
J

) Zn)

Ty 21y ey Zn)

T (Ok|yk + neZr, A\ + ng),

84
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Corresponding Gibbs sampler

1. Simulate
O0; ~ m(0;ilys +nizi, \i +n5) (2=1,...,k)
(p17°"7pk) ~ D(Oél +n17-°-7ak +nk)

2. Simulate (j = 1,...,n)

k
Zj‘ﬁl}j,pl, ce 7pk7617 <. 79k ~ szy]:[(zj — Z)
1=1

with (i = 1,..., k)
Pij OCPif(ijz’)

and update n; and z; (i = 1,... k).
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Estimation of the pluggin density for 3 components and 1 iterations

for 149 observations of acidity levels in lakes in the American North-East



Principle:Completion/Data Augmentation/Improper Priors
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average density (yellow), and pluggins:

average (tomato), marginal MAP (green), MAP (marroon)
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4.1.2 Random Scan Gibbs sampler

Modification of the above Gibbs sampler where, with probability 1/p, the 2-th

component is drawn from f; (z;| X _;)

The Random Scan Gibbs sampler is reversible.

88
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4.1.3 Slice sampler

If f(0) can be written as a product

it can be completed

k
H HOS%SJ%W)’
=1

leading to the following Gibbs algorithm:

89



Principle:Slice/Data Augmentation/Improper Priors

Algorithm 19 —Slice sampler—

Simulate

1
1w~ Ui,y oo

1
k. w}(:+ N M[O,fk(e(t))];

kel. 0T~ U 4 e41), with

A = Ly fi(y) 2wl =1,

kD
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Representation of a few steps of the slice sampler
[Roberts & Rosenthal, 1998]
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The slice sampler usually enjoys good theoretical properties (like geometric

ergodicity).

As k increases, the determination of the set A+ may get increasingly complex.
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4.1.4 Properties of the Gibbs sampler

(Yl,YQ,'“,Yp) Ng(yl,...,yp)

If either

(i) ¢\ (y;) > Oforeveryi =1,---,p,impliesthat g(y1,...,y,) > 0, where
g(i) denotes the marginal distribution of Y;, or

[Positivity condition]
(zz) the transition kernel is absolutely continuous with respect to g,
then the chain is irreducible and positive Harris recurrent.

0. If [ h(y)g(y)dy < oo, then

lim Zhl y (1) /h( Jg(y)dy a.e. g.

nT— oo T

93
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(ii). If, in addition, (Y (*)) is aperiodic, then

n—aoo

i | [ 57 ) - 5

for every initial distribution L.

TV

94
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Slice sampler

Properties of X; and of f(X}) identical

If fis bounded and supp f is bounded, the simple slice sampler is uniformly
ergodic.

[Mira & Tierney, 1997]
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For €* > ¢,,

IS a

where

de

[Roberts & Rosenthal, 1998]
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Slice sampler: drift

Under some differentiability and monotonicity conditions, the slice sampler also
verifies a drift condition with V() = f(x) ", is geometrically ergodic, and there
exist explicit bounds on the total variation distance

[Roberts & Rosenthal, 1998]

Example 20 —Exponential Exp(1)—

For n > 23,

1K™ (x,) — f()||rv < .054865 (0.985015)™ (n — 15.7043)
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For any density such that

0
E&)\

then

({z € X; f(x) > €}) isnon-increasing

K™% (2, ) = f()llrv < .0095

[Roberts & Rosenthal, 1998]
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Example 21 —A poor slice sampler—

Consider
flz) =exp{—|lz|]} zeR?

Slice sampler equivalent to one-dimensional slice sampler on
m(z)=2te™® 2> 0

or on

Poor performances when d large (heavy tails)
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4.1.5 Hammersley-Clifford Theorem

An illustration that conditionals determine the joint distribution

If the joint density g(y1, y=) have conditional distributions g1 (y1|y2) and

g2(y2|y1), then
g2 (yz \yl)

9 v2) = o) for uilo) o
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General case

Under the positivity condition, the joint distribution g satisfies

f[ yﬁ ‘y€17'°‘7y€j—17y2j+17'°‘7y2)

=1 yg ‘y€17'°‘7y€j—17y2- 7y2>

j4+1’

9(Y1,. .., Yp) X

for every permutation £ on {1,2,...,p} andeveryy’ € ).
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4.1.6 Hierarchical models

The Gibbs sampler is particularly well suited to hierarchical models

Example 22 —Hierarchical models in animal epidemiology—
Counts of the number of cases of clinical mastitis in 127 dairy cattle herds over a

one year period.

Number of cases in herd 1
XZ-NP()\Z-) 1=1,---,m

where \; is the underlying rate of infection in herd 2

Lack of independence might manifest itself as overdispersion.
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Modified model

X; ~ PN\)
>\’i ~ ga(()é?ﬁi)
ﬁi ~ Zg(aab)a

The Gibbs sampler corresponds to conditionals

i o~ m(\ilx,a,8) = Ga(w + o, [L+1/6,]71)
B; ~ 7(Bilx,a,a,b,)\;) =IG(a+a, [N +1/b]1)
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4.2 Data Augmentation

The Gibbs sampler with only two steps is particularly useful

Algorithm 23 —Data Augmentation—

Given y(t),

1.. Simulate Yl(Hl) ~ g1 (yﬂyét)) :

2.. Simulate YQ(HU ~ gg(yg\yyjq)) :
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Convergence is ensured

(Y1,2)" — (Y1,Y2) ~g
Yl(t> — Y]~ g1
Y2<t) — Yy ~ g9
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Example 24 —Grouped counting data—

360 consecutive records of the number of passages per unit time.

Number of
passages 0 1 2

Number of
observations 199 128 55 29 13

3 4 or more
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Feature Observations with 4 passages and more are grouped

If observations are Poisson P (), the likelihood is

f()\‘il?l, “e ,5135)
3 \ 13
—347X y1284+55%2+25%3 Y A’
X e A 1—e Z T :
1=0
which can be difficult to work with.
With a prior m(A) = 1/\, complete the vector (y1, . .., y13) of the 13 units

larger than 4
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Algorithm 25 —Poisson-Gamma Gibbs—

1.. Simulate Y,L-(t) ~PAC N Ty i=1,...,13

2.. Simulate

13
AD < Ga (313 +3 360) .
=1

The Bayes estimator

converges quite rapidly
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4.2.1 Rao-Blackwellization

It (y1, Y2, ..., yp) ), t = 1,2,...T is the output from a Gibbs sampler

T

0o = % > h (ygw) - /h(yl)g(yl)dyl

t=1

and is unbiased. The Rao-Blackwellization replaces 0 with its conditional

expectation

oot = 7 ZE{ Ol
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Then
o Both estimators converge to E[h(Y7)]
o Both are unbiased,

o and

var (E [h(Y1)|Y2<”, o ,Yp(t)D < var(h(Y7)),

S0 0,4 is uniformly better (for Data Augmentation)
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Some examples of Rao-Blackwellization

e For the bivariate normal
(X7 Y)/ ~ N )

the Gibbs sampler is based upon

Xy ~ N(py, 1—p°)
Yz ~ N(pz, 1-p°).
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To estimate ¢ = E(X') we could use

LS ()
_ XZ
>

or its Rao-Blackwellized version

ZE X(Z)|y(% — ZQY(>

1=1

which satisfies o5 /o5 = p% > 1.
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e For the Poisson-Gamma Gibbs sampler, we could estimate A with

T

5o = % > AW,

t=1

but we instead used the Rao-Blackwellized version

T
57T = Z E[A(t”xl)wa"7x57y§2)7y§z)7"'7y§z3)]
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Another substantial benefit of Rao-Blackwellization is in the approximation of

densities of different components of y without nonparametric density estimation
methods.

The estimator

T
1 o
= ailwilyy”d # 1) = gily),
t=1

and is unbiased.
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4.2.2 The Duality Principle

Ties together the properties of the two Markov chains in Data Augmentation

Consider a Markov chain (X)) and a sequence (Y (*)) of random variables

generated from the conditional distributions

XOO ~ n(aly®)
YD g 0 fyla™ y D)

Properties
o If the chain (Y () is ergodic then so is (X))
o The conclusion holds for geometric or uniform ergodicity.

o The chain (Y (!)) can be discrete, and the chain (X (*)) can be continuous.
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4.3 Improper Priors

Unsuspected danger resulting from careless use of MCMC algorithms: It can

happen that
o all conditional distributions are well defined,
o all conditional distributions may be simulated from, but...

o the system of conditional distributions may not correspond to any joint

distribution

Warning The problem is due to careless use of the Gibbs sampler in a situation for

which the underlying assumptions are violated
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Example 26 —Conditional exponential distributions—
For the model

Xilwg ~ Exp(z2) , Xao|zy ~ Exp(z1)
the only candidate f(x1,x2) for the joint density is
f(x1,z2) ox exp(—x123),

but
[ f(z1,22)dr1dre = 0

(C) These conditionals do not correspond to a joint probability distribution
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Example 27 —Improper random effects—

For a random effect model,
Y;;j = U+ a; + €5, v=1,...,1, 5=1,...,J,

where

a; ~ N(0,0%) and g;; ~ N(0,7%),
the Jeffreys (improper) prior for the parameters (, o and 7 is

1
2

m(p, 0%, 7%) = 5 -
o7
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The conditional distributions

J(Yi — p _ —2\—
ai‘y7:u70-277_2 ~ N(J:_TQO-—)27(JT 2+J 2) 1) )

pla,y, 0%, 7%~ N(y—a,m2/JI),

ey, 2~ TG (1/2,<1/2>Z o@) ,

o,y 0~ TG 1J/2,(1/2) ) (yij — o — p)? |
i.J

are well-defined and a Gibbs sampling can be easily implemented in this setting.
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Evolution of (,u(t)) and corresponding histogram
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The figure shows the sequence of the ,u(t) and the corresponding histogram for
1000 iterations. The trend of the sequence and the histogram do not indicate that

the corresponding “joint distribution” does not exist
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Final notes on impropriety

The major task in such settings is to find indicators that flag that something is wrong.

However, the output of an “improper” Gibbs sampler may not differ from a positive
recurrent Markov chain.

Example The random effects model was initially treated in Gelfand et al. (1990) as
a legitimate model
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5 MCMC tools for variable dimension problems
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5.1 Introduction

There exist setups where

One of the things we do not know is the number of things we do

not know

[Peter Green]
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Bayesian Model Choice

Typical in model choice settings

model construction (nonparametrics)
model checking (goodness of fit)
model improvement (expansion)
model prunning (contraction)

model comparison

hypothesis testing (Science)

prediction (finance)

127
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Many areas of application
e variable selection
e change point(s) determination
® image analysis
e graphical models and expert systems
e variable dimension models

e causal inference
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Example 28 —Mixture modelling—

Benchmark dataset: Speed of galaxies
[Roeder, 1990; Richardson & Green, 1997]

] I. [ ] I|IIIII-. H =
5 2.0 > 5 i i

1.0 1.

20

15

10

05

0.0

velocities
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Modelling by a mixture model

M w5~ Y pelN (pei,07)  (G=1,...,82)
/=1

i?
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Bayesian variable dimension model

A variable dimension model is defined as a collection of models (k = 1...., K),

My, = {1f(-0k); Ok € Ok},

associated with a collection of priors on the parameters of these models,

ﬂ-k(ek) )

and a prior distribution on the indices of these models,

{o(k),k=1,...,K}.

Alternative notation:

(M, Or) = o(k) 71 (0)
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Formally over:

1. Compute

/fz 16, (60:)do
ij/ fi(210;)m;(0;)do

2. Take largest p(91;|x) to determine model, or use

S0y [ 110w, 0,)a8

p(M;|z) =

as predictive

[Different decision theoretic perspectives]
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Difficulties

e (formal) inference level [see above]

e parameter space representation

[even if there are parameters common to several models]

e (practical) inference level:

model separation, interpretation, overfitting, prior modelling, prior coherence

e computational level:

infinity of models, moves between models, predictive computation
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5.2 Green’s method

Setting up a proper measure—theoretic framework for designing moves between

models 9
[Green, 1995]

Create a Ron$ = J.{k} X O such that

/A/Bﬁ(a:,dy) dx—// (y, dx)m(y)dy

for the invariant density 7 [ is of the form (£, 9(’“)
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Write K as

82.B) = 3 [ onlep)an(e.dy) + w(o)la()

where (,, (x, dy) is a transition measure to model 901,,, and p,, (x, y) the
corresponding acceptance probability.

Introduce a measure &, (dx, dy) on $? and impose on

7(dz)qm, (x, dy) to be absolutely continuous wrt &,,,,

r(d)am (2, dy)
nldr,dy) Y

Then

pm (7, y) = min {1, gm(y’x>}

gm (T, y)
ensures reversibility
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Special case

When contemplating a move between two models, 2)t; and 915, the Markov chain
being in state 61 € 91, denote by Ry _.5(01,df) and Ra_.1 (02, dB) the

corresponding kernels, under the detailed balance condition
W(d@l) ﬁ1_>2(91, d@) — 7T(d(92) ﬁ2_>1(92, d@) y

and take, wlog, dim(9s) > dim(My).
Proposal expressed as

O = W1_9(01,v1-2)

where v1_.5 is a random variable of dimension dim (1) — dim (9914 ), generated

as

V1—-2 ~ 901—>2(U1—>2) -
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In this case, q1_.2(01, df2) has density

OV1 (01, v19) !

8(91, U1—>2)

901_>2(’U1—>2)

by the Jacobian rule.

If probability 71 _. 9 of choosing move to 15 while in 911, acceptance probability

reduces to

a(f1,v12) = 1A

m(Ma, 02) a1 ‘3‘111—@(91,’01_2)
7r(9T(1, 91) W1—2 901—>2(U1—>2) 5(91, U1—>2)
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Interpretation (1)

The representation puts us back in a fixed dimension setting:
o Ny X U1_,o and M5 in one-to-one relation.

e regular Metropolis—Hastings move from the couple (61, v1_,2) to #2 when
stationary distributions are (911, 601) X ¢1_.2(v1_2) and w(M>, O2), and

when proposal distribution is deterministic (?7?)



Intro/Green/Point Pro 139

Consider, instead, that the proposals

92 NN(\II1—>2(917U1—>2)75) and \Ijl—>2(917/01—>2) NN(9275)

Reciprocal proposal has density

exp { — (02 — W1_2(01,v12))?/2¢} y '5’\111_>2(6’1, V1-2)
V2me d(01,v1-2)

by the Jacobian rule.

Thus Metropolis—Hastings acceptance probability is

(M, 02) | OV _2(01,v1-2)

1A
7T(&Ttl?el) @1—>2</U1—>2) 8<917/01—>2)

Does not depend on €: Let £ go to 0
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Interpretation (2): saturation

[Brooks, Giudici, Roberts, 2003]

Consider series of models 9; (¢ = 1,..., k) such that
max dim(9;) = Npax < 00
1

Parameter of model )1; then completed with an auxiliary variable U; such that
dim(0;,u;) = Nmax and U; ~ q;(u;)
Posit the following joint distribution for [augmented] model 9)1;
m(M;, ;) qi (i)

. no varying dimension anymore since (8,-, uz) of fixed dimension.

Three stage MCMC update:
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1. Update the current value of the parameter, 6;;
2. Update u; conditional on 6;;

3. Update the current model from 91; to 1, using the bijection

(05,u;) = Wi ;(0;,u;)
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Example 29 —Mixture of normal distributions—

k
N, ijkN(Njk7 O?k)

j=1
[Richardson & Green, 1997]
Moves:
(i). Split
( Pjk = DPj(k+1) T PG+1)(k+1)
\ Piklik = Djk+1)Mjk+1) T PG+1) (k+1)H(+1)(k+1)
\ pijgQ'k: = pj(k+1)032'(k+1)+p(j+1)(k+1)a(2j+1)(k+1)

(i). Merge (reverse)
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Additional moves for empty components (created from the prior
distribution)

Equivalent
(i). Split
uy, ug,ug ~ U(0,1)
(T) 4 Pj(k+1) —  U1DPjk

Hjk+1) = U2lk

— 2
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Histogram of k
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Figure 2: Histogram and rawplot of 100, 000 k’s produced by RIMCMC under the

imposed constraint & < 5.
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Normalised enzyme dataset
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Example 30 —Hidden Markov model—

Wi; = wij/zwiﬁa

Vil Xe =i~ N(uio07).
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Figure 3: DAG representation of a simple hidden Markov model
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Move to split component 7, into 71 and jo:
Wij, = Wij, Eiy Wij, = wij, (1 —&;), € ~U(0,1);
Wjij = w5, i&, Wi = wWii/& & ~ log N(0,1);
similar ideas give wj, j, etc.;
iy = Hj, — 304,Eus  Hjy = Ky, +305,6u, €x~N(0,1);

U?@ — 0-32'*507 0_32'2 — 0-]2'*/607 §o ™ logN(Oa 1)-

[Robert & al., 2000]
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Figure 4: Upper panel: First 40,000 values of k for S&P 500 data, plotted every 20th sweep.
Middle panel: estimated posterior distribution of £ for S&P 500 data as a function of number

of sweeps. Lower panel: o1 and o3 in first 20,000 sweeps with k = 2 for S&P 500 data.
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Example 31 —Autoregressive model—
Typical setting for model choice: determine order p of AR(p) model

Consider the (less standard) representation
p
Hl—)\B Xt—ét, EtNN(O,O'2>
1=1

where the \;’s are within the unit circle if complex and within [—1, 1] if real.
[Huerta and West, 1998]

Roots [may] change drastically from one p to the other.
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AR(p) reversible jump algorithm

Uniform priors for the real and complex roots A,

1 1 1
| | =1y, | | —1Iy,

A ER A R

and (purely birth-and-death) proposals based on these priors
o k — k+1
® k — k+2
o k — k-1

e k — k-2
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Figure 5. Reversible jump algorithm based on an AR(S) simulated dataset of 530 points
(upper left) with true parameters «; (—0.1,0.3, —0.4) and o = 1. First histogram associ-
ated with p, the following histograms with the «;’s, for different values of p, and of o?. Final

graph: scatterplot of the complex roots. One before last: evolution of &1, aa, (3.
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5.3 Birth and Death processes

Use of an alternative methodology based on a Birth—&-Death (point) process
[Preston, 1976; Ripley, 1977; Geyer & Mgller, 1994; Stevens, 1999]

ldea: Create a Markov chain in continuous time, i.e. a Markov jump process,
moving between models 91, by births (to increase the dimension), deaths (to

decrease the dimension), and other moves.
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Time till next modification (jump) is exponentially distributed with rate depending on

current state

Remember: if &1, . .., &, are exponentially distributed, &; ~ E(\;),
miné&;, ~ &€ Z A
i

Difference with MH-MCMC : Whenever a jump occurs, the corresponding move is

always accepted. Acceptance probabilities replaced with holding times.

Implausible configurations
L(0)7(6) < 1
die quickly.
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Balance condition

Sufficient to have detailed balance
L(0)m(0)q(0,0") = L(6")7(0")q(0',08) forall 6,6

for 7(6) o< L(0)m(0) to be stationary.
Here q(0, 0") rate of moving from state 0 to 6.

Possibility to add split/merge and fixed-k processes if balance condition satisfied.
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Example 32 —Mixture modelling (cont'd)—

Stephen’s original modelling:

® Representation as a (marked) point process

o = { ). (w0} |

J

e Birth rate \g (constant)

e Birth proposal from the prior

e Death rate () for removal of point j

e Death proposal removes component and modifies weights

e QOverall death rate
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e Balance condition
(k)

(k+1) d@ U {p, (1,0)}) L2 U {p, (1,0)}) = Ao L(®) -7

with
d(®\ {pj, (1j,05)}) = 6;(P)

e Case of Poisson prior k ~ Poi(A1)

~ o L(@\ {pj, (1j,05)})
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Stephen’s original algorithm:

Forv=0,1,---,V
t«— v

Runtilt > v+ 1

L(P|D,;
1. Compute §;(P) = ;(LI);) 1(1)

k
2. 5(®) — » 5;(D;), & Ao+ 6(®), u~U([0,1])

3.t — t—ulog(u)
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4. With probability 6 (P) /&
Remove component j with probability 6, (®) /(D)
kE—k—1
pe < pe/(1 —p;) (£#])
Otherwise,
Add component 7 from the prior 7T(/,Lj, Oj)
p; ~ Be(y, kv)
pe < pe(1 —pj) (£ #J)
k—k+1
5. Run I MCMC(k, 3, p)
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Rescaling time

In discrete-time RIMCMC, let the time unit be 1 /N, put
ﬂk:)\k/N and 5k:1_)\k/N

As N — 00, each birth proposal will be accepted, and having k& components births

occur according to a Poisson process with rate Az while component (w, qb) dies

with rate
1
Jim Nojyq X 1 min(A~1, 1)
= lim N % likelihood ratio ™' X Ok X b(w, )
N — o0 k -+ 1 5k—l—1 (1 — w)k—l
1 )‘k b(w7 ¢)

— likelihood ratio

“krl T A —w)ET

Hence “RIMCMC —BDMCMC” . This holds more generally.
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Example 33 —HMM models (cont'd)—

Implementation of the split-and-combine rule of Richardson and Green (1997) in

continuous time

Move to split component 7, into 7; and 72:
Wij, = Wij, €, Wij, =wij, (1 —¢), € ~U(0,1);
wWirj = Wj,i&5r Wij = w5 /& & ~ log N(0,1);
similar ideas give wj, j, etc.;
Py = Mg, = 30j. €y [hjy = My + 305, €u, €~ N(0,1);

0} =02 &y, 02 =02 [&, £ ~logN(0,1).

[Cappé & al, 2001]
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Wind intensity in Athens
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Figure 6: Histogram and rawplot of 500 wind intensities in Athens
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Figure 7: MCMC output on £ (histogram and rawplot), corresponding loglikelihood

values (histogram and rawplot), and number of moves (histogram and rawplot)
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Figure 8: MCMC sequence of the probabilities 7r; of the stationary distribution (top)

and the parameters o (bottom) of the three components when conditioning on k = 3
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Figure 9: MCMC evaluation of the marginal density of the dataset (dashes), com-

pared with R nonparametric density estimate (solid lines).
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Even closer to RIMCM

Exponential (random) sampling is not necessary, nor is continuous time!

Estimator of

by

where {6(t)} continuous time MCMC process and 74, . . . , Ty sampling instants.
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1. T,, time of the n-th jump of {A(¢) } with Ty = 0
2. {6,,} jump chain of states visited by {0(¢)}
3. A(0) total rate of {6(t)} leaving state 6

Then holding time T}, — T},_1 of {6(t)} in its n-th state 6,, exponential rv with rate
A(0n)
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Rao—Blackwellisation

If sampling interval goes to 0O, limiting case

Rao—Blackwellisation argument: replace ’j with
1 o 1 - -
J= T—Z T—Z T Tn 1 ‘ Hn—l]g(en—l)-

Only simulate jumps and store average holding times!
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Example 34 —Mixture modelling (cont'd)—

Comparison of RIMCMC and CTMCMC in the Galaxy dataset
[Cappé & al., 2001]

e Same proposals (same C code)

e Moves proposed in equal proportions by both samplers (setting the probability
P of proposing a fixed £ move in RIMCMC equal to the rate nF at which
fixed k moves are proposed in CTMCMC, and likewise PB = 773 for the birth

moves)
e Rao-Blackwellisation

e Number of jumps (number of visited
configurations) in CTMCMC == number of iterations
of RIMCMC
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(For RIMCMC
manifested as small A’s—birth proposals are rarely accepted—while for
BDMCMC manifested as large d’'s—new components are indeed born but die

again quickly.)
e No significant difference between samplers for birth and death only
e CTMCMC slightly better than RIMCMC with split-and-combine moves
e Marginal advantage in accuracy for split-and-combine addition

e [or split-and-combine moves, computation time associated with one step of
continuous time simulation is about 5 times longer than for reversible jump

simulation.
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Figure 11: Galaxy dataset, box plot for the estimated posterior on k obtained from 500 inde-
pendent runs: Top RIMCMC and bottom, CTMCMC. The number of iterations varies from 5
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6 Population Monte Carlo



Importance/Dynamo/PMC/Mixtures/lon channel 174

6.1 Importance sampling

Approximation of integrals

by unbiased estimators

1 n
1=1
when
L1y yTn Z}\Sl Q(x) and Oi d:ef ﬂ-(er)
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Dependent extension

For densities f and g, and importance weight

w(z) = f(z)/9(x),

for any kernel K (x, x") with stationary distribution f,

/ w(2) K (z,2') g(o)de = f(a).

[McEachern, Clyde, and Liu, 1999]
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Consequence: An importance sample transformed by MCMC transitions keeps its

weights

Unbiasedness preservation:

Ew(X)h(X)] = / (@) h(z') K (22" glx) da do’
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Drawback The weights do not change!

If £ has small weight
w(z) = f(zx)/9(x),
then

v~ K(z,x')

keeps this small weight.
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Dynamic extension

As in Markov Chain Monte Carlo (MCMC) algorithms, introduction of a temporal

dimension :
xf;t) (:c|:c(_)) i=1,...,n, t=1,.
and
A 1
3= z:: o'V bz
Is still unbiased for
(t) _ () i=1,...,n

Q'L _ )
gr (292
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Reason why:

(X ®)
2 (XO[X D)

E [h(X(t))

N /hm T q:(zly) g(y) dz dy

q:(z|y)

= / h(z) 7(z) do

for any distribution g on X (¢—1)

179
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Variance decomposition

Furthermore,

Var( ) =3 ZV&I( Et))) :

’[,_

: t .
if var ( (t >> exists, because the :1:,5 )’s are conditionally uncorrelated

Note: Decomposition still valid for correlated :1:,5 ) 's when incorporating weights Q( )



Importance/Dynamo/PMC/Mixtures/lon channel 181

6.2 Dynamic sampling

More global dynamic scheme:
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6.3 Population Monte Carlo

Pros and cons of Imp’Samp. vs. MCMC
e Production of a sample (IS) vs. of a Markov chain (MCMC)
e Dependence on importance function (I1S) vs. on previous value (MCMC)
e Unbiasedness (IS) vs. convergence to the true distribution (MCMC)
e Variance control (IS) vs. learning costs (MCMC)
e Recycling of past simulations (1S) vs. progressive adaptability (MCMC)

® Processing of moving targets (1S) vs. handling large dimensional problems
(MCMC)

e Non-asymptotic validity (I1S) vs. difficult asymptotia for adaptive
algorithms (MCMC)
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Population Monte Carlo

ldea Simulate from the product distribution

7r®n(:131, e ,:Cn) = Hﬂ(ﬂfz)

and apply dynamic importance sampling to the sample

x() = (x(lt), i)
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The importance distribution of the sample x(t)
qt(x(t) ‘X(t—l))

can depend on the previous sample x(t=1) in any possible way as long as marginal

distributions

4ir(7) = / g (x ) dx)
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can be expressed to build importance weights

m(z;”)
Oit = PRON
qit(x; ")
Note: Using the marginal distributions creates correlation terms in the variance of

J: but reduces the overall variance varJ; by a Rao—Blackwellisation argument
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Special case

n

ar(xV|x"D) = [T aque(”1x1)
i=1
[Independent proposals]

In that case,

. 1 —
var (’Jt> = — Zvar (Qgt)h(azgt))) :

1=1
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because

E o h(x{") o h(x]")]

ﬂ-(xz) 7T(£Uj)
— [ h(z; e
/ (x)qit(xilx(t‘”) gje(2;]x(=D) (%5)
Gt (s x" 1) g (a0 das day g(x D) dx P
= Ex [h(X))°

whatever the distribution g on X(t_l)
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Normalising constants

In general, 7 is unscaled and

(t)
Qgt)ocli(t)), 1=1,...,n,
Qit(mi )

scaled so that

> o =1
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e Loss of the unbiasedness property and the variance decomposition

e Normalising constant can be estimated by

,7_

Wt = tn Z Z (T)>

=1 =1

e Variance decomposition (approximately) recovered if o;_ 1 used instead
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Resampling

Over iterations (in t), weights are multiplied, resulting in degeneracy of the sample

01 = 1, while g, . .. negligible

Use instead Rubin’s (1987) systematic resampling: at each iteration resample the

20 (t)

s according to their weight o’ and reset the weights to 1

1
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PMCA: Population Monte Carlo Algorithm

Fort=1,...,7T

Fori=1,...,n,

(a) Select the generating distribution qit(-)

(b) Generate xz(-w ~ qit(T)

(c) Compute Q(t) — w(:vz(-t))/qit(xz(.t))

i
Normalise the Q(-t>

;'stosumupto 1

()

7

®) 14

Resample n values from the x; *’s with replacement, using the weights o,

create the sample (:::ﬁt), e ,967(5))
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Links with particle filters

e Usually setting where m = 7; changes with ¢: Population Monte Carlo also

adapts to this case

e Gilks and Berzuini (2001) produce iterated samples with (SIR) resampling

steps, and add an MCMC step: this step must use a 7; invariant kernel

e Chopin (2001) uses iterated importance sampling to handle large datasets: this
IS a special case of PMC where the @;;’s are the posterior distributions

associated with a portion k; of the observed dataset

e Stavropoulos and Titterington’s (1999) smooth bootstrap, and Warnes’ (2001)
kernel coupler use nonparametric kernels on the previous importance sample to

build an improved proposal: this is a special case of PMC
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6.4 Mixtures of distributions

Observation of an iid sample X = (x1, ..., T, ) from
p'/\/‘(:ul: 02) + (1 o p)'/\/‘(:u27 02)7

with p # 1/2 and ¢ > 0 known.

Usual V(6,02 /) prior on p11 and fo:

m(p, po|x) o< f(X|p1, po) m(pr, p2)
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Population Monte Carlo Algorithm

Step 0O: Initialisation

© ()0
J ( J

Forj =1,...,n = pm, choose (1) (o)

Fork=1,...,p,setry =m
Step i: Update (¢ =1,...,1)

Fork=1,...,p,

1. generate a sample of size rj, as

(1) ~ N ()0 o) and (u2) )~ N ((2) ) )
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2. compute the weights
7 (| e)$ s (a2)§ ) 7 () (o))
® ((Ml)ﬁi) |(M1)§i_1> ka:) ® ((MQ)?) ’(M2)§~i_1) 7’Uk:)

0j X

Resample the ((u1)§i) : (/Lg);i)) “using the weights 9,
j
Fork=1,...,p,

update 7 as the number of elements generated with variance vg which

have been resampled.
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Details
After an arbitrary initialisation, use of the previous (importance) sample (after

resampling) to build random walk proposals,
—1
N (w5~ )

with a multiscale variance v; within a predetermined set of p scales ranging from
103 down to 1073, whose importance is proportional to its survival rate in the

resampling step.
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Figure 12: (u.left) Number of resampled points for v1 = 5 (darker) and vy = 2;
(u.right) Number of resampled points for the other variances; (m.left) Variance of the
(1's along iterations; (m.right) Average of the (11’s over iterations; (l.left) Variance of

the uo’s along iterations; (l.right) Average of the simulated (io’s over iterations.
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Figure 13: Log-posterior distribution and sample of means
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6.5 lon Channel Modelling

Formalised representation of ion exchanges between neurons as neurotransmission

regulators.

lon channel can be in one of several states, each state corresponding to a given

electric intensity.

Indirect observation of these intensities: patch clamp recordings, ie intensity

variations.
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A hidden semi-Markov model

Observables y = (yt)lgth directed by a hidden Gamma (indicator) process
X = (Cl?t)lgth

2
yilze ~ N(pa,,07),
Hidden process such that
dj+1 =tjp1 — 1t~ ga(si7 )\i)

if ry = z'fortj <t < tj_|_1
[Ball et al., Carpenter et al., Hodgson, 1999]
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T T T T
o 1000 2000 3000 4000

Figure 14: Simulated sample of size 4000
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Our assumptions

e The durations d; are integers
— generalisation of HMM: geometric vs. negative binomial

— identifiability issue

e 5o and sp are integers and uniformon {1,..., 5}
— generalisation of HMM: exponential vs. sum of exponentials

— alternative to duplicate states

[Carpenter et al., Hodgson and Green, 1999]

— alternative to variable dimension modelling

® Observables independent , given the x4’s
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Prior modelling

Mo, 1

)\07 )\1

~ N0y, 70?)
~ G(a,p)

203
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Instrumental distribution
m(w@ly, x9)) Gibbs like:

B T 1
o7y, x ~Q<2+n, (5)
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(1T —x)/y‘|—907_ 0'2
Vo + T ’?Jo—l—’i'

MO‘yaxaa2 NN(

/ 0 2
(LT _2)

?}1+T 7’U1—|—7'

ifvg = (17 — ) 17 and vy = 2’17 and
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7 g conditional distribution of a (pseudo) hidden Markov chain X given the

observables y and constructed via the forward—backward formula for the pseudo

1 — 2o Ao
-_ S0 So
P_( o 1—ﬁ)
S1 S1

transition
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Motivations
1. Importance sampling bypasses exact simulation of the hidden process
(let)lgth, using a pseudo-HMM, and avoids recourse to variable dimension
models
2. Provides unrestricted moves between configurations of the process ()1 <¢<T-
3. lterated importance sampling provides progressive selection of the most
relevant particles [Berzuini et al., 1997]

Metropolis—Hastings scheme based on the same proposal does not work so well

Produces a sample in the parameter space close to an iid sample from the true

posterior distribution

. Can be tuned on-the-run while remaining valid.
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Population Monte Carlo Algorithm

Step 0. Generate (j = 1,...,J)
1w ~ (W)
() _ (2! (J ))

2. X7 1<t<T ™~ WH(X’yaW(j))

compute the weights (j = 1,...,J)

r(w@,xVy)
m(wNmg (x y, w)

using the weights 9

Q5 X

(J))

resample the (w\), x
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Stepi. (1 =1,...)Generate (j = 1,...,J)
(J))

1. w9 ~ 7wy, x

2. x) = (z@

- XY Ty ) 1<t<T ~ WH(X’yaw(j))
compute the weights (j = 1,...,J)
(D, xPy)
m(w@ly, x)m (xP |y, w)

0j X

(J))

resample the (W), x

G=1,...,J)

using the weights ¢, and take X~

(7)

()

= X

209
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Results
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Figure 15: (top) Histograms of residuals after fit by averaged (.., ; (middle) Simulated
sample of size 4000 against fitted averaged pi;, ; (bottom) Probability of allocation to

first state for each observation
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Population Monte Carlo

Adaptive algorithm: self-improvement of the importance sampler

Long-term behaviour of the algorithm?

stopping rule?
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Degeneracy
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Comparison with Hastings—Metropolis

Uses exactly the same proposal in an HM framework

MCMC Algorithm

Stepi (v =1,...,J)
e Generate w?) ~ 7(wly,x=1)

e Generate X* ~ 7 (x|y,w), u ~ U([0,1])

and take

(7) x* if < 7T(x*|w(i)y) / W(X(i_1)|w(i)y)
X = =

T (x*ly,w®) [ mg(x0-Dl]y,w®)’

i—1)

x( otherwise
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Performances

e Poor overall performances/mixing abilities

® Degenerates (to single state) if started at random

e Requires a sequential burnin (n = 100, 200, . . .) and even...

e No visible improvement over population Monte Carlo

00 02 04 08 08 10

4

T T T
o 1000 2000 3000

P8 0T 1 0 0 0 10

T T T
o 1000 2000 3000

Figure 19: 5000 MCMC iterations
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7 Perfect simulation
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7.1 Propp and Wilson’s

Difficulty devising MCMC stopping rules:
when should one stop an MCMC algorithm?!
[Robert, 1995, 1998]
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Coupling from the past (CFTP): rather than start at £ = 0 and wait till t = 00,

startatt = —oo and wait till t = 0
[Propp & Wilson, 1996]

CFTP Algorithm

1. Start from the m possible values at time —1
2. Run the m chains till time O (coupling allowed)
3. Check if the chains are equal at time O

4. If not, start further back: t < 2 * ¢, using the same random numbers at time

already simulated
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Random mappings

Equivalent formulation

Fort =—1,-2,...,
1. Simulate a random mapping 1); from each state to its successor

2. Compose with the more recent random mappings, )4/ ' >t
Uy = W1 0y

3. Check if U, is constant
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Example 35 —Beta-Binomial—
6 ~ Beta(c, 3) and X0 ~ Bin(n, ),

with joint density

m(x,0) x (n) grro—l(p — gyn—erb-1

X

and posterior density

0|lx ~ Beta(a + =, 8+ n — x)

Gibbs sampler

1. 0411 ~ Beta(a + x¢, B+ n — x¢)

2. Xt_|_1 ~ Bin(n, Qt—l—l)-
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Transition kernel

n
fU(weg1,0011) (20, 01)) o ( )th—l—l—l—ori—xt—l

Lt+1
(1 — @)Fr2n—ae—wem—1,
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n=2a=2and 3 =4.

State space

Transition probabilities

Pr(0—0) = .583,
Pr(l1—0) = .417,
Pr(2+—0) = .278,

x =1{0,1,2}.

Pr(0 — 1) = .333, Pr(0 2)
Pr(1+— 1) = .417, Pr(1+ 2)
Pr(2— 1) = .444, Pr(2+— 2)

083,
167,

27

8

223
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2 2 2. 2
1& 1 1§ 1
0—3 0 0—> 0
U1 < .278 U1 € (278, .417)
2. 2 2. 2
\\ \
11 131
0— 0 o 0
w1 € ((417,.583)  wpq € (.583,.722)
2 .2 > .2 2 .2
1— 1 11 17 1
o 0 0o 0 o/ 0
wpr € (.722,.833)  wuypq1 € (.833,.917) Upp1 > 917

All possible transitions for the
Beta-Binomial(2,2,4) example

224
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Begin at time t = —1 and draw Uy. Suppose Uy € (.833,.917).

2 /' 2
1 /1
0 0
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The chains have not coalesced, so go to time ¢ = —2 and draw U_{. Suppose
U_; € (.278,417).

o
s
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The chains have still not coalesced so go to time t = —3. Suppose
U_5 e (.278, .417).

All chains have coalesced into Xy = 1. We accept Xy as a draw from 7 . Note
that even though the chains have coalesced att = —1, we do not accept

X_1 = 0 as adraw from 7.
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Extension to continuous chains

[Murdoch & Green, 1998]

e Multigamma coupling

e Find a discretization of the continuum of states (renewal, small set,

accept-reject, &tc...)

e Run CFTP for a finite number of chains
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Example 36 —Mixture models—

Simplest possible mixture structure

pfo(z) + (1 =p)fi(z),

with uniform (or Beta) prior on p.
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Data Augmentation Gibbs sampler:

At iteration ¢:
1. Generate n iid (0, 1) rv's ugt), Coud,
2. Derive the indicator variables 2" as z§t> = O iff

)

(t—1) .
(*) P o)
U S pUt=b fo(x;) + (1 — pt=1) fi(x;)

and compute
mn

mt) = Z zz-(t) :

1=1

3. Simulate p*) ~ Be(n +1 —m), 1 4+ m®).




Prop/Slice/Kac’s

Corresponding CFTP :

At iteration —1:

1. Generate n iid uniform rv’'s u

2.

SR )

Partition [0, 1) into intervals [q[;1, q[j+1])-

(=t) _(=1)

For each [q[j] ’q[j+1])’ generate

p$™ ~ Be(n —j+1,j+1).

Foreachj =0,1,...,n, r§_t) . pg_t)

For(d=1,0<T,0{++4) P pé_tj%) with k£ such that

J

(—t4£—1) (—t+8)  (—t+40)
T €lap g |

(0)

Stop if the r j

s (0 < j < n) are all equal. Otherwise, t < 2 x* t.

231
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Duality Principle and marginalisation

Finite number of starting chains more obvious in the finite state space!

Equivalent version based on the simulations of the (n + 1) chains m ") started from all

possible values m = 0,...,n
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n =495

10

-60 -40 -20 (0] 0.0 0.2 0.4 0.6 0.8 1.0

(10000 iterations)

Figure 20: Simulation of n. = 495 iid rv's from .33 N (3.2, 3.2) + .67 N (1.4,1.4) and

coalescence att = —73.
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Coupling between chains

Follows from the Be(m + 1,n — m + 1) representation:

1. Generate n + 2 iid exponential Exp(1) rv's w1, . . ., Wn+2.

2. Take

Explanation:  Pool of exponentials w; common to all chains
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Monotonicity & CFTP

Assumption of a partial or total ordering on the states
e Quest: maximal/majorizing and minimal/minorizing elements, 0and 1
® Request: Monotone transitions (Stochastic versus effective)
e Conguest: Run only the chains that start from 0and 1

Reduces the number of chains to examine to 2 (or more) Often delicate to implement in

continuous settings
[Kendall & Mgller, 1999a,b,...]

Works in the 2 component mixture case (thanks to Beta representation trick!)
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Case k = 3

Gibbs sampler:

1. Generate U1, ..., un ~ U(0,1).

2. Take

B n | p1f1(fEi) )
n = ;H(uzSplfl(zcz')+p2f2(f’3'i)‘|'p3f3(xi) |

ny = ; {]I (u 7 o () +§;£Ei; +p3f3(ﬂfz')>

| p1f1(w) + p2fa(xi) )}
x I (Uz < p1fi(xi) + p2fo(xi) + psfa(xi) ;

andng = n — niy — nNo.

3. Generate (p1,p2,p3) ~ D(n1 + 1,n2 4+ 1,n3 + 1).
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CFTP can be implemented as for k = 2
But (n + 2)(n + 1) /2 different values of (11, n2, n3) to consider

No obvious monotone structure
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Towards coupling

Representation of the Dirichlet D(n1 + 1,n2 + 1, ng + 1) distribution : if

Wily ...y Wi(n4+1), W21, ...,W3(nt1) g:ljp(l) ,

then
Y wi ! wai S wai
1 ) 1 7 1
YDHIND DICARNTITD DR DM THD DD DI
isaD(ni +1,n2 4+ 1,n3 + 1) rv.

Common pool of 3(n + 1) exponential rv’s.
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Lozenge monotonicity

The image of the triangle

7 ={(n1,n2);n1 +n2 < n}
by Gibbs is contained in the lozenge
L={(ni,n2);n; <ni <N, n2>0,n; <n—ni —n2 <n3},
where
® n, is min ny over the images of the left border of T
e N3 is the n3 coordinate of the image of (0, 0),
e 7 is the n1 coordinate of the image of (n, 0),

® N, is min n3 over the images of the diagonal of 7.

[Hobert & al., 1999]
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Lozenge monotonicity (explained)

For a fixed no,

no+1 n1+1 n—mi—no2+1 ni+1
b2 Pp3
— = E wW2; E wi; and — = E W3 E W14
p1 i=1 i=1 p1 i=1 i=1

are both decreasing in n1.

Sois

w\ . p2fa(z:) +pafa(z:)] ™"
ml—;ﬂ(z<[1+ 1 fr (1) ] )
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Figure 21:

Sample of n

35 observations from

62N (1.4,0.49) + .15 N (0.6,0.64)

20 30

23N (2.2,1.44) +
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Lozenge monotonicity (preserved)

The image of L is contained in
L' ={(m1,m2);m; <mi <m1,mz >0, my <ms<ms},
where
e m, is minn; over the images of the left border {n1 = n, }
e 7111 is max 1 over the images of the right border {n1 = 71 }
® m. is min na over the images of the upper border {n3 = n,}

e T3 is max ng of the images of the lower border {n3 = 73}
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Lozenge monotonicity (completed)

e Envelope result: generation of the images of all points on the borders of £
[Kendall, 1998]

e O(n) complexity versus O(n?) for brute force CFTP
® Checking for coalescence of the borders only : almost perfect !

e Extension to £k = 4 underway
[Machida, 1999]
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Figure 22: n = 03 observations from
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Interruptable version

For impatient users: if we just stop runs that take “too long”, this gives biased results

Fill's algorithm:

1. Choose arbitrary time 7" and set x = 2

2. Generate Xp_1|xp, X7_o|xr_1, ..., Xo|21 from the reversed chain

3. Generate Uy |z, x1], ..., [Up|xr—_1,27]

4. Begin chains in all states at /" = 0 and use common Uy, ..., Ur to update all
chains

5. If the chains have coalesced in z by T', accept x( as a draw from 7

6. Otherwise begin again, possibly with new 1" and z.

[Fill, 1996]
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Proof
Need to prove Pr| Xy = z|Cr(2)] = 7(x)

PI‘[XO = QJ‘CT<Z)] —
Prlz — x| Pr[Cr(2)|r — 2] |
> . Prjz = 2'| Pr[Cr(z)|z" — 2]

Now for every x’

Pr[Cr(2)|z" — 2] =
Pr[Cr(z) and ' — z] _ Pr[Cr(z)]
Pr[z’ — 2] Pr[z’ — 2|’

and, since Pr[z’ — 2] = K1 (2/, 2),

KT (z,2)Pr[Cr(2)] /KT (x, 2)

PriXo = 2|Cr(2)] = > KT (2,2") Pr[Cr(2)]/ KT (2, 2)

247
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_ K (z,2)/ KT (2, 2)
> KT (2,2") [ KT (2!, 2)

Using detailed balance,
K*(z,2)/ K" (x,2) = m(z)/7(2),

and thus,

Pr[Xo = 2|Cp(2)] = ”/(”7)/”(2) — 7(x).
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Example 37 —Beta-Binomial—

Choose T' = 3 and X7 = 2.

Reversible chain, so
X2/ X3 =2 ~ BetaBin(2,4,4)
X1|Xo =1 ~ BetaBin(2,3,5)
Xo| X1 =2 ~ BetaBin(2,4,4)
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Suppose
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X():l, X1:O, X2:1 and X3:2
imply

Uy ~ U(O, .417), Us ~ U(583, .917), Us ~ U(833, 1)
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Suppose
U, € (278, 417) Uy € (833, 917) Us > .917

Begin chains in states 0, 1 and 2.
\ / / e

1

0

t=0 t=1 t =2 t=3

The chains coalesce in X3 = 2; so we accept Xy = 1 as a draw from .
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7.2 Slice sampling

Remember that slice sampling associated with 7 amounts to simulation from
U({w; m(w) = um(wo)})

and u ~ U(]0, 1])
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Properties

Slice samplers do not require normalising constants
Slice samplers induce a natural order

If 7T(w1) < 7T(CU2)

As = {w; m(w) > um(we2)} C A1 = {w; m(w) > um(wi)}

Slice samplers induce a natural discretization of continuous state space
[Mira, Mgller & Roberts, 2001]
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Slice samplers preserve monotonicity

1. Startfrom 0 = arg min 7(w) and 1 = arg max m(w)
2. Generate U_¢, ..., U
3. Get the successive images of 0 for t = T, ...,0

4. Check if those are acceptable as successive images of 1

If not, generate the corresponding images

255
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But slice samplers are real hard to implement: for instance,

n k
U0 1D pif(zil6;) >e

i=1j=1

IS Impossible to simulate
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Duality principle

Dual marginalization: integrate out the parameters (6, p) in

Z, 0 ‘ X W(Q,p) szzf(xz ‘ (921)

1=1

Easily done in conjugate (exponential) settings.
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Use the slice sampler on the marginal posterior of z
e Finite state space
e Link with Rao—Blackwellisation

e Perfect sampling on z equivalent to perfect sampling on 6



Prop/Slice/Kac’s

Example 38 —Exponential example ( £ = 2, p known)

Joint distribution

k
Hp(1 zz) (1 —p;)* A, exp(—A,, z;) H eXP AiB;)
1=1 j=1
leads to

F(Oéo + Nng — ].)F(Ckl +nq — 1)
(50 + So)ao+no (51 + 51)a1+n1 )

z | x~p"(l—p™

259
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e Closed form computable expression (up to constant)
e Factorises through (7, s ), sufficient statistic
e Maximum 1 and minimum O can be derived

But... slice sampler still difficult to implement
because of number of values of sg : <7:‘O)

Still, feasible for small values of n (n < 40)

260
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‘ ”\
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|

s0
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10

Fixed ng, 40 observations
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Perfect sampling is possible!

Idea: Use Breyer and Roberts’ (1999) automatic coupling:

If
(t)y - m(ye) a(@i” |ye)
Y 5 If’LL < 1 ’
mgtﬂ) 7 a(ler’) P2 r@®) alyel2)
xﬁ“ otherwise.
generate
() [,.()
IfU W(yt)Q($2 ‘xl )’
:Cét—H) _ Yt t > (2 qlye|aD) 2)

t .
x; ) otherwise.
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Theorem In the special case

q(y|z) = h(y),

if (:I:gt) ) starts from

0 = arg min 7 /h,

if (wgt) ) starts from

1 = arg max7/h,

the coupling (2) preserves the ordering.

[Now, this is a result from Corcoran and Tweedie!!!]
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Example When state space X compact,

use for h the uniform distribution on X .

Extremal elements 0 and 1 then induced by 7t only.

start from arbitrary value for :L'go) and keep proposing for
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S0

likelihood
24

17

16

15

14

13

12

1

30
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26

2

20

-2000 -1500 -1000 -500

t

Coupling history

-2000 -1500 -1000 -500

t

Corresponding likelihoods
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Back to Basics!

~

When X compact, and 7(z) < (1), independent Metropolis—Hasting coupling is

accept-reject , based on uniform proposals
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Reason:

When coupling occurs, azg) = Yt,

and therefore the chain is in stationnary regime at coupling time.

This extends to the general case, with accept—reject based on proposal h.

267
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In this case, the accept-reject algorithm could have been conceived independently
from perfect sampling (?)

while Fill's (1998) algorithm is an accept—reject algorithm in disguise, but it could not

have been conceived independently from perfect sampling
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7.3 Kacs' formula

Consider two Markov kernels /{1 and K5

What of the mixture
K3 =pKi+ (1 —p)K»?
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Stability (1)

If K1 and K5 are recurrent kernels, the mixture kernel K5 is recurrent.
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Stability (2)

If 1 and K5 define positive recurrent chains with the same potential
function V/, thatis, there existasmallset C, A < 1,V > 1and V bounded
on C such that

Er, [V(x)y] = AV(y) + blo(y)

then the mixture kernel K3 is also positive recurrent.
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Stationary measure

If 1 = 7o and K3 is positive recurrent, 7y is its stationary distribution.
Otherwise...

K is aniid kernel 7. Then

Kg — P71 —+ (1 —p)Kg
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No assumption on /5 (it can even be transient!) but, still,

Theorem 3 K3 is positive recurrent with stationary distribution

—+ 00

m3=» (1—p)'p Pim,
i=0

when P2i7r1 is the transform of 717 under 2 transitions using /5.
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Special special case: K3 is uniformly ergodic:
KS(xay) Z€V<y>7 \V/.QfEX,

Mixture decomposition:

Kg(ili', y) B <€I/(y)

Ks(xz,y) = ev(y)+(1—¢) 1=
ev(y) + (1 —e)Ka(x,y)

Representation of the stationary distribution:

—|—OO . .
Y e(1—¢)'Pjv,
1=0

where P» is associated with Ko
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1. Simulate g ~ v, w ~ Geo(e).

2. Run the transition xy 11 ~ Ko(xy,y) t =0, ,w — 1,

and take x,.

[Murdoch and Green, 1998]
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General case

Minorizing condition

Ks(x,y) > ev(y)lo(x) I(MNRZ)

Splitting decomposition

Ki(z,y) = {‘EV(?J) +(1-¢) K3<x71y>__e s } Ic(y) + Ks(z,y)lee-(y)

= Aev(y) + (1 —e)Ka(z,y) Ho(y) + Ks(z,y)lc(y)

[Nummelin, 1984]

K5 is the depleted measure of K3
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Introduction of the split chain ®* = {(X,,, )} n, on X x {0, 1}, with transition

kernel
[0+ (1—e)(1—-9)| K3(x,A) x¢C
26+ (1 —e)(1 —8)] Ka(z, A) z€C
and

[0+ (1 —¢)(1—9)| K3(x,A) x¢C
ed+(1—¢e)(1—98)]v(A) xeC

L —|

PmumAxﬂ{

where 0 € {0, 1} (renewal indicator)
[Athreya and Ney, 1984]

Then a := C' x {1} is an accessible atom
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1. Simulate X, ~ K3(xp_1, *)
2. Simulate ¢,,_1 conditional on (1, T )

Pr(én—l — 1‘3771—173771) — gy(xn)

KS(xn—la mn)

[Mykland, Tierney and Yu, 1995]
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General Mixture Representation

Let 7, be the first return time to «
To =min{n >1:(X,,0,) € a} .

and
Pr(-) and E,(:),
(87
probability and expectation conditional on (Xo, 50) SeY

Tail renewal time T

If the chain is recurrent, £, (7,,) < oo
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Theorem 4 If (X,,),, is p-irreducible, aperiodic, and Harris recurrent with

invariant probability distribution 7T, with a minorization condition [MNRZ], then

= f:Pr(Nt c A)Pr(T* =1)

t=1
where Ny is equal in distributionto X given X7 ~ v(-) and given no

regenerations before time t.

Follows from Kac's theorem

1
_ >
m(A) E(a tglPraXtGATa_t)

Can be extended to stationary measures



