Prior selection and model choice

## Outline

## Prior selection and model choice

Christian P. Robert

Université Paris Dauphine and CREST-INSEE http://www.ceremade.dauphine.fr/~xian

Mathematischen Forschungsinstitut Oberwolfach October 18, 2005

#### Bayesian Model Choice

2 Compatible priors

③ Symmetrised compatible priors

| Bayesian Model Choice   | Bayesian Model Choice |  |
|-------------------------|-----------------------|--|
|                         | Introduction          |  |
| 1 Bayesian Model Choice | Setup                 |  |
|                         |                       |  |

#### Bayesian Model Choice

- Introduction
- Bayesian resolution
- Problems
- Bayes factors
- Pseudo-Bayes factors
- Intrinsic priors

2 Compatible priors

3 Symmetrised compatible priors

## Choice of models

Several models available for the same observation

 $\mathfrak{M}_i: x \sim f_i(x|\theta_i), \quad i \in \mathfrak{I}$ 

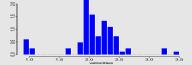
where J can be finite or infinite



#### Example (Galaxy normal mixture)

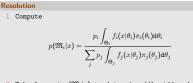
Set of observations of radial speeds of 82 galaxies possibly modelled as a mixture of normal distributions

$$\mathfrak{M}_i: x_j \sim \sum_{\ell=1}^i p_{\ell i} \mathcal{N}(\mu_{\ell i}, \sigma_{\ell i}^2)$$



Prior selection and model choice Bayesian Model Choice Bayesian resolution

## Formal solutions



2. Take largest  $p(\mathfrak{M}_i|x)$  to determine ''best'' model,

or use averaged predictive

$$\sum_{j} p(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

Prior selection and model choice Bayesian Model Choice Bayesian resolution

## Bayesian resolution

#### **B** Framework

Probabilises the entire model/parameter space This means:

- $\circ$  allocating probabilities  $p_i$  to all models  $\mathfrak{M}_i$
- defining priors  $\pi_i(\theta_i)$  for each parameter space  $\Theta_i$

Prior selection and model choice Bayesian Model Choice

## Several types of problems

- Concentrate on selection perspective:
  - $\circ$  averaging = estimation = non-parsimonious = no-decision
  - o how to integrate loss function/decision/consequences
  - representation of parsimony/sparcity (Ockham's rule)
  - . how to fight overfitting for nested models

Which loss ?

Prior selection and model choice Bayesian Model Choice Problems

## Several types of problems (2)

Prior selection and model choice Bayesian Model Choice Problems

## Several types of problems (3)

#### Choice of prior structures

if 
$$\mathfrak{M}_1 = \mathfrak{M}_2 \cup \mathfrak{M}_3$$
,  $p(\mathfrak{M}_1) = p(\mathfrak{M}_2) + p(\mathfrak{M}_3)$ 

- priors distributions
  - $\pi_i(\theta_i)$  defined for every  $i \in \Im$
  - $\pi_i(\theta_i)$  proper (Jeffreys)
  - π<sub>i</sub>(θ<sub>i</sub>) coherent (?) for nested models

#### Warning

Parameters common to several models must be treated as separate entities!

#### Computation of predictives and marginals

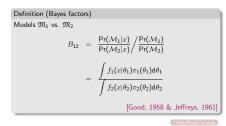
- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over many models (2<sup>k</sup>)

[MCMC resolution = another talk]

#### Prior selection and model choice Bayesian Model Choice

#### Bayes factors

## A function of posterior probabilities



#### Prior selection and model choice Bayesian Model Choice

#### Bayes factors

## Self-contained concept

- eliminates choice of Pr(M<sub>i</sub>)
- but depends on the choice of π<sub>i</sub>(θ<sub>i</sub>)
- Bayesian/marginal likelihood ratio
- Jeffreys' scale of evidence

Prior selection and model choice Bayesian Model Choice Bayes factors

lf

## A battery of difficulties

Prior selection and model choice Bayesian Model Choice Bayes factors

#### Constants matter

Improper priors not allowed here

$$\int_{\Theta_1} \pi_1(\mathsf{d} heta_1) = \infty \quad ext{or} \quad \int_{\Theta_2} \pi_2(\mathsf{d} heta_2) = \infty$$

then either  $\pi_1$  or  $\pi_2$  cannot be normalised uniquely but the normalisation matters in the Bayes factor

Example (Poisson versus Negative binomial)

If  $\mathfrak{M}_1$  is a  $\mathscr{P}(\lambda)$  distribution and  $\mathfrak{M}_2$  is a  $\mathscr{NB}(m,p)$  distribution, we can take

$$\pi_1(\lambda) = 1/\lambda$$
  
 $\pi_2(m, p) = \frac{1}{M} \mathbb{I}_{\{1,\dots,M\}}(m) \mathbb{I}_{[0,1]}(p)$ 



then

$$B_{12} = \frac{\int_{0}^{\infty} \frac{\lambda^{x-1}}{x!} e^{-\lambda} d\lambda}{\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{\infty} {m \choose x-1} p^{x} (1-p)^{m-x} dp}$$
  
=  $1 / \frac{1}{M} \sum_{m=x}^{M} {m \choose x-1} \frac{x! (m-x)!}{m!}$   
=  $1 / \frac{1}{M} \sum_{m=x}^{M} x/(m-x+1)$ 

Example (Poisson versus Negative binomial (3))

- does not make sense because π<sub>1</sub>(λ) = 10/λ leads to a different answer, ten times larger!
- same thing when both priors are improper

Improper priors on common (nuisance) parameters do not matter (so much)

Prior selection and model choice Bayesian Model Choice Bayes factors

#### Vague proper priors are not the solution

Taking a proper prior and take a "very large" variance (e.g., BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley's paradox)

If testing  $H_0: \theta = 0$  when observing  $x \sim \mathcal{N}(\theta, 1)$ , under a normal  $\mathcal{N}(0, \alpha)$  prior  $\pi_1(\theta)$ ,

 $B_{01}(x) \xrightarrow{\alpha \longrightarrow \infty} 0$ 

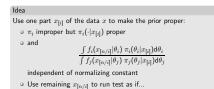
Prior selection and model choice Bayesian Model Choice Bayes factors

## Vague proper priors are not the solution (cont'd)

Example (Poisson versus Negative binomial (4))

$$\begin{split} B_{12} &= \frac{\displaystyle \int_{0}^{1} \frac{\lambda^{\alpha + x - 1}}{x!} e^{-\lambda\beta} \mathrm{d}\lambda}{\displaystyle \prod_{m} \sum_{m} \frac{x}{m - x + 1} \frac{\beta^{\alpha}}{\Gamma(\alpha)}} \quad \text{if } \lambda \sim \mathcal{G}a(\alpha, \beta) \\ &= \frac{\Gamma(\alpha + x)}{x! \, \Gamma(\alpha)} \beta^{-x} \Big/ \frac{1}{M} \sum_{m} \frac{x}{m - x + 1} \\ &= \frac{(x + \alpha - 1) \cdots \alpha}{x(x - 1) \cdots 1} \beta^{-x} \Big/ \frac{1}{M} \sum_{m} \frac{x}{m - x + 1} \\ \text{expends on choice of } \alpha(\beta) \text{ or } \beta(\alpha) \longrightarrow 0 \end{split}$$

| Prior selection and model choice | Prior selection and model choice |  |
|----------------------------------|----------------------------------|--|
| Bayesian Model Choice            | Bayesian Model Choice            |  |
| Pseudo-Bayes factors             | Pseudo-Bayes factors             |  |
| Pseudo-Bayes factors             | Motivation                       |  |



- Working principle for improper priors
- Gather enough information from data to gain properness
- . and use this properness to run the test on remaining data
- does not use x twice as in Aitkin's (1991)

Prior selection and model choice Bayesian Model Choice Pseudo-Bayes factors

## Details

Since 
$$\pi_1(\theta_1|x_{[i]}) = \frac{\pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)}{\int \pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)d\theta_1}$$

then

$$\begin{split} B_{12}(x_{[n/i]}) &= \frac{\int f_{[n/i]}^1(x_{[n/i]}|\theta_1)\pi_1(\theta_1|x_{[i]})d\theta_1}{\int f_{[n/i]}^2(x_{[n/i]}|\theta_2)\pi_2(\theta_2|x_{[i]})d\theta_2} \\ &= \frac{\int f_1(x|\theta_1)\pi_1(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi_2(\theta_2)d\theta_2} \frac{\int \pi_2(\theta_2)f_{[i]}^2(x_{[i]}|\theta_2)d\theta_2}{\int \pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)d\theta_1} \\ &= B_{12}^{N_2}(x)B_{21}(x_{[i]}) \end{split}$$

© Independent of scaling factor!

Prior selection and model choice Bayesian Model Choice

Pseudo-Bayes factors

More problems (cont'd)

#### Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a training sample is allocated to *each* component Reason If

$$x_1,\ldots,x_n\sim\sum_{i=1}^k p_i f(x|\theta_i)$$

and

$$\pi(\theta) = \prod_i \pi_i(\theta_i) \text{ with } \int \pi_i(\theta_i) d\theta_i = +\infty,$$

the posterior is never defined, because

Pr("no observation from  $f(\cdot|\theta_i)$ ") =  $(1 - p_i)^n$ 

Prior selection and model choice Bayesian Model Choice Pseudo-Bayes factors

## More problems

• depends on the choice of 
$$x_{[i]}$$
  
• many ways of combining pseudo-Bayes factors  
• AIBF =  $B_{ji}^{N} \frac{1}{L} \sum_{\ell} B_{ji}(x_{[\ell]})$   
• MIBF =  $B_{ji}^{N} \text{ med}[B_{ij}(x_{[\ell]})]$   
• GIBF =  $B_{ji}^{N} \exp \frac{1}{L} \sum_{\ell} \log B_{ij}(x_{[\ell]})$   
• or the face must Param

not often exact Bayes

[Berger & Pericchi, 1996]

Prior selection and model choice Bayesian Model Choice Intrinsic priors

#### Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean)  
Take 
$$x \sim \mathcal{N}(\theta, 1)$$
 with either  $\theta = 0$  ( $\mathfrak{M}_1$ ) or  $\theta \neq 0$  ( $\mathfrak{M}_2$ ) and  $\pi_2(\theta) = 1$ .  
Then  

$$B_{21}^{AIBF} = B_{21} \frac{1}{\sqrt{2\pi}} \frac{1}{\pi} \sum_{i=1}^{n} e^{-x_1^2/2} \approx B_{21} \quad \text{for } \mathcal{N}(0, 2)$$

$$B_{21}^{MIBF} = B_{21} \frac{1}{\sqrt{2\pi}} e^{-\text{med}(x_1^2)/2} \approx 0.93B_{21} \quad \text{for } \mathcal{N}(0, 1.2)$$
[Berger and Pericchi, 1998]

When such a prior exists, it is called an intrinsic prior

Prior selection and model choice Bayesian Model Choice Intrinsic priors

## Intrinsic priors (cont'd)

#### Example (Exponential scale)

 $\begin{array}{ll} \text{Take} & x_1,\ldots,x_n \overset{\text{i.i.d.}}{\sim} \exp(\theta-x)\mathbb{I}_{x\geq \theta} \\ \text{and} & H_0: \theta=\theta_0, \ H_1: \theta>\theta_0 \quad , \ \text{with} \ \pi_1(\theta)=1 \\ \text{Then} & & \\ \end{array}$ 

$$B_{10}^A = B_{10}(x) \frac{1}{n} \sum_{i=1}^n \left[ e^{x_i - \theta_0} - 1 \right]^{-1}$$

is the Bayes factor for

$$\pi_2(\theta) = e^{\theta_0 - \theta} \left\{ 1 - \log \left( 1 - e^{\theta_0 - \theta} \right) \right\}$$

Most often, however, the pseudo-Bayes factors do not correspond to any true Bayes factor

Prior selection and model choice Compatible priors Principle

Principle

Difficulty of finding simultaneously priors on a collection of models  $\mathfrak{M}_i \ (i \in \mathfrak{I})$ 

Easier to start from a single prior on a "big" model and to derive the others from a coherence principle

[Dawid & Lauritzen, 2000]

Prior selection and model choice Compatible priors

## 2 Compatible priors

Bayesian Model Choice

#### 2 Compatible priors

- Principle
- Exponential families
- Linear regression
- Variable selection
- Extension

3 Symmetrised compatible priors

#### [Joint work with C. Celeux, G. Consonni and J.M. Marin]

Prior selection and model choice Compatible priors Principle

#### Projection approach

For  $\mathfrak{M}_2$  submodel of  $\mathfrak{M}_1, \pi_2$  can be derived as the distribution of  $\theta_2^{\perp}(\theta_1)$  when  $\theta_1 \sim \pi_1(\theta_1)$  and  $\theta_2^{\perp}(\theta_1)$  is a projection of  $\theta_1$  on  $\mathfrak{M}_2$ , e.g.

$$d(f(\cdot |\theta_1), f(\cdot |\theta_1^{\perp})) = \inf_{\theta_2 \in \Theta_2} d(f(\cdot |\theta_1), f(\cdot |\theta_2)).$$

where d is a divergence measure

[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

 $d(f(\cdot |\theta_1), f(\cdot |\theta_1^{\perp}))$ 

[Goutis & Robert, 1998]

Prior selection and model choice Compatible priors Principle

#### Operational principle for variable selection

Selection rule

Among all subsets  ${\mathcal A}$  of covariates such that

$$d(\mathfrak{M}_g, \mathfrak{M}_A) = \mathbb{E}_x[d(f_g(\cdot|x, \alpha), f_A(\cdot|x_A, \alpha^{\perp}))] < \epsilon$$

select the submodel with the smallest number of variables.

[Dupuis & Robert, 2001]

Prior selection and model choice Compatible priors Principle

## Kullback proximity

#### Alternative

Definition (Compatible prior)

Given a prior  $\pi_1$  on a model  $\mathfrak{M}_1$  and a submodel  $\mathfrak{M}_2$ , a prior  $\pi_2$  on  $\mathfrak{M}_2$  is compatible with  $\pi_1$  when it achieves the minimum Kullback divergence between the corresponding marginals:  $m_1(x;\pi_1) = c_1 f(x)[\theta_1\pi(\theta)d\theta$  and

$$m_1(x, \pi_1) = \int_{\Theta_1} f_1(x|\theta) \pi_1(\theta) d\theta d\theta,$$
  
$$m_2(x); \pi_2 = \int_{\Theta_2} f_2(x|\theta) \pi_2(\theta) d\theta,$$

$$\pi_2 = \arg\min_{\pi_2} \int \log\left(\frac{m_1(x;\pi_1)}{m_2(x;\pi_2)}\right) m_1(x;\pi_1) \, \mathrm{d}x$$

| Prior selection and model choice | Prior selection and model choice |
|----------------------------------|----------------------------------|
| Compatible priors                | Compatible priors                |
| Principle                        | Exponential families             |
| Difficulties                     | Case of exponential families     |

Models

$$\mathfrak{M}_1$$
 : { $f_1(x|\theta), \theta \in \Theta$ }

and

$$\mathfrak{M}_2$$
: { $f_2(x|\lambda), \lambda \in \Lambda$ ]

sub-model of  $\mathcal{M}_1$ ,

$$\forall \lambda \in \Lambda, \exists \theta(\lambda) \in \Theta, f_2(x|\lambda) = f_1(x|\theta(\lambda))$$

Both  $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are natural exponential families

$$f_1(x|\theta) = h_1(x) \exp(\theta^T t_1(x) - M_1(\theta))$$
  

$$f_2(x|\lambda) = h_2(x) \exp(\lambda^T t_2(x) - M_2(\lambda))$$

- $\bullet$  Does not give a working principle when  $\mathfrak{M}_2$  is not a submodel  $\mathfrak{M}_1$
- $\odot$  Depends on the choice of  $\pi_1$
- Prohibits the use of improper priors
- Worse: useless in unconstrained settings...

Prior selection and model choice Compatible priors Exponential families

## Conjugate priors

Prior selection and model choice Compatible priors Exponential families

## Conjugate compatible priors

#### Parameterised (conjugate) priors

$$\pi_1(\theta; s_1, n_1) = C_1(s_1, n_1) \exp(s_1^{\mathsf{T}} \theta - n_1 M_1(\theta))$$
  
$$\pi_2(\lambda; s_2, n_2) = C_2(s_2, n_2) \exp(s_2^{\mathsf{T}} \lambda - n_2 M_2(\lambda))$$

with closed form marginals (i = 1, 2)

$$m_i(x; s_i, n_i) = \int f_i(x|u) \pi_i(u) du = \frac{h_i(x)C_i(s_i, n_i)}{C_i(s_i + t_i(x), n_i + 1)}$$

(Q.) Existence and unicity of Kullback-Leibler projection

$$\begin{split} s^{s}_{2}, n^{*}_{2}) &= &\arg\min_{(s_{2}, n_{2})} \mathfrak{KE}(m_{1}(\cdot; s_{1}, n_{1}), m_{2}(\cdot; s_{2}, n_{2})) \\ &= &\arg\min_{(s_{2}, n_{2})} \int \log\left(\frac{m_{1}(x; s_{1}, n_{1})}{m_{2}(x; s_{2}, n_{2})}\right) m_{1}(x; s_{1}, n_{1}) dx \end{split}$$

| Prior selection and model choice | Prior selection and model choice |
|----------------------------------|----------------------------------|
| Compatible priors                | Compatible priors                |
| Exponential families             | Linear regression                |
| A sufficient condition           | Application to linear regression |

Sufficient statistic  $\psi = (\lambda, -M_2(\lambda))$ 

Theorem (Existence)

If, for all  $(s_2, n_2)$ , the matrix

$$\mathbb{V}_{s_2,n_2}^{\pi_2}[\psi] - \mathbb{E}_{s_1,n_1}^{m_1}[\mathbb{V}_{s_2,n_2}^{\pi_2}(\psi|x)]$$

is semi-definite negative, the conjugate compatible prior exists, is unique and satisfies

$$\begin{split} \mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}[\lambda] & - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}[\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}(\lambda|x)] & = & 0\\ \mathbb{E}_{s_{1}^{*},n_{2}^{*}}^{\pi_{2}}(M_{2}(\lambda)) & - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}[\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}(M_{2}(\lambda)|x)] & = & 0. \end{split}$$

 $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are two nested Gaussian linear regression models with Zellner's g-priors and the same variance  $\sigma^2 \sim \pi(\sigma^2)$ :

(1)  $\mathfrak{M}_1$ :

$$y|\beta_1, \sigma^2 \sim \mathcal{N}(X_1\beta_1, \sigma^2), \quad \beta_1|\sigma^2 \sim \mathcal{N}\left(s_1, \sigma^2 n_1(X_1^{\mathsf{T}}X_1)^{-1}\right)$$

where  $X_1$  is a  $(n \times k_1)$  matrix of rank  $k_1 \le n$  $\mathfrak{M}_2$ :

$$y|\beta_2, \sigma^2 \sim \mathcal{N}(X_2\beta_2, \sigma^2), \quad \beta_2|\sigma^2 \sim \mathcal{N}\left(s_2, \sigma^2 n_2(X_2^{\mathsf{T}}X_2)^{-1}\right),$$

where  $X_2$  is a  $(n \times k_2)$  matrix with span $(X_2) \subseteq$  span $(X_1)$ 

For a fixed  $(s_1,n_1),$  we need the projection  $(s_2,n_2)=(s_1,n_1)^{\perp}$ 

Prior selection and model choice Compatible priors

## Compatible g-priors

Since  $\sigma^2$  is a nuisance parameter, we can minimize the Kullback-Leibler divergence between the two marginal distributions conditional on  $\sigma^2$ :  $m_1(y|\sigma^2; s_1, n_1)$  and  $m_2(y|\sigma^2; s_2, n_2)$ 

Theorem

Conditional on  $\sigma^2$ , the conjugate compatible prior of  $\mathfrak{M}_2$  wrt  $\mathfrak{M}_1$  is

 $\beta_2 | X_2, \sigma^2 \sim \mathcal{N}\left(s_2^*, \sigma^2 n_2^* (X_2^T X_2)^{-1}\right)$ 

with

$$s_2^* = (X_2^T X_2)^{-1} X_2^T X_1 s_1$$
  
 $n_2^* = n_1$ 

Compatible priors Variable selection

## Variable selection

Regression setup where y regressed on a set  $\{x_1, \ldots, x_p\}$  of p potential explanatory regressors (plus intercept)

Corresponding  $2^p$  submodels  $\mathfrak{M}_\gamma,$  where  $\gamma\in \mathsf{F}=\{0,1\}^p$  indicates inclusion/exclusion of variables by a binary representation

Prior selection and model choice Compatible priors

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^T X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

 $\pi(\sigma^2) \propto \sigma^{-2}$ 

Noninformative g

# $\begin{array}{l} \textbf{Resulting compatible prior} \\ \mathcal{N}\left(\left(X_{t_{l}(\gamma)}^{\mathsf{T}}X_{t_{l}(\gamma)}\right)^{-1}X_{t_{1}(\gamma)}^{\mathsf{T}}X\tilde{\beta},c\sigma^{2}\left(X_{t_{l}(\gamma)}^{\mathsf{T}}X_{t_{l}(\gamma)}\right)^{-1}\right) \end{array}$

[Surprise!]

#### Prior selection and model choice Compatible priors

#### Variable selection

### Notations

For model  $\mathfrak{M}_{\gamma}$ ,

- $\circ q_{\gamma}$  variables are included
- t<sub>1</sub>(γ) = {t<sub>1,1</sub>(γ),...,t<sub>1,qγ</sub>(γ)} are the indices of those variables and t<sub>0</sub>(γ) the indices of the variables *not* included
   For β ∈ ℝ<sup>p+1</sup>,

$$\begin{array}{lll} \beta_{t_1(\gamma)} &=& \left[\beta_0,\beta_{t_{1,1}(\gamma)},\ldots,\beta_{t_{1,q\gamma}}(\gamma)\right] \\ \beta_{t_0(\gamma)} &=& \left[\beta_{t_{0,1}(\gamma)},\ldots,\beta_{t_{0,p-q\gamma}}(\gamma)\right] \\ X_{t_1(\gamma)} &=& \left[\mathbf{1}_n|x_{t_{1,1}(\gamma)}|\ldots|x_{t_{1,q\gamma}}(\gamma)\right]. \end{array}$$

Submodel  $\mathfrak{M}_{\gamma}$  is thus

$$y|\beta, \gamma, \sigma^2 \sim \mathcal{N}\left(X_{t_1(\gamma)}\beta_{t_1(\gamma)}, \sigma^2 I_n\right)$$

Prior selection and model choice Compatible priors Variable selection

#### Model index

For the hierarchical parameter  $\gamma$ , we use

$$\pi(\gamma) = \prod_{i=1}^p \tau_i^{\gamma_i} (1-\tau_i)^{1-\gamma_i},$$

where  $\tau_i$  corresponds to the prior probability that variable i is present in the model.

Typically, when no prior information is available,

 $au_1=\ldots= au_p=1/2$ , ie a uniform prior

$$\pi(\gamma) = 2^{-\eta}$$

Prior selection and model choice Compatible priors

## Posterior model probability

Can be obtained in closed form:

$$\pi(\gamma|y) \propto (c+1)^{-(q\gamma+1)/2} \left[ y^\mathsf{T} y - \frac{c}{c+1} y^\mathsf{T} P_1 y + \frac{1}{c+1} \tilde{\beta}^\mathsf{T} X^\mathsf{T} P_1 X \tilde{\beta} - \frac{2}{c+1} y^\mathsf{T} P_1 X \tilde{\beta} \right]^{-n/2}$$

Conditionally on  $\gamma$ , posterior distributions of  $\beta$  and  $\sigma^2$ :

$$\begin{split} & \beta_{tq}(\gamma) \sigma^2, y, \gamma &\sim & \delta(\phi_{\sigma-q\gamma}), \\ & \beta_{t_1}(\gamma) \sigma^2, y, \gamma &\sim & \mathcal{N}\left[\frac{c}{c+1}(U_1y+U_1X\beta/c), \frac{\sigma^2c}{c+1}\left(X_{t_1}^T(\gamma)X_{t_1}(\gamma)\right)^{-1}\right], \\ & \sigma^2|y, \gamma &\sim & \mathcal{I}D\left[\frac{n}{2}, \frac{y^2}{2} - \frac{c}{2(c+1)}y^TP_1y + \frac{\beta^TX^TP_1X}{2(c+1)} - \frac{1}{c+1}y^TP_1X\beta\right] \end{split}$$

| Prior selection and model choice | Prior selection and model choice |  |
|----------------------------------|----------------------------------|--|
| Compatible priors                | Compatible priors                |  |
| Variable selection               | Variable selection               |  |
| Noninformative case              | Influence of c                   |  |

Use the same compatible informative g-prior distribution with  $\tilde{\beta} = 0_{p+1}$  and a hierarchical diffuse prior distribution on  $c_r$ 

$$\pi(c) \propto c^{-1} \mathbb{I}_{\mathbb{N}^*}(c)$$

The choice of this hierarchical diffuse prior distribution on c is due to the model posterior sensitivity to large values of c:

Taking  $\tilde{\beta} = \mathbf{0}_{p+1}$  and c large does not work

Consider the 10-predictor full model

$$y|\beta, \sigma^2 \sim \mathcal{N}\left(\beta_0 + \sum_{i=1}^3 \beta_i x_i + \sum_{i=1}^3 \beta_{i+3} x_i^2 + \beta_{1} x_1 x_2 + \beta_{0} x_1 x_3 + \beta_{0} x_2 x_3 + \beta_{10} x_1 x_2 x_3, \sigma^2 I_n\right)$$

where the  $x_i$ s are iid  $\mathscr{U}(0, 10)$ 

[Casella & Moreno, 2004]

True model: two predictors  $x_1$  and  $x_2$ , i.e.  $\gamma^* = (1, 1, 0, \dots, 0)$ , and  $(\beta_0, \beta_1, \beta_2) = (5, 1, 3)$ , and  $\sigma^2 = 4$ .

Prior selection and model choice Compatible priors Variable selection

Influence of  $c^{2} \\$ 

| $\gamma$ | c = 10  | c = 100 | $c = 10^3$ | $c=10^4$ | $c=10^6$ |
|----------|---------|---------|------------|----------|----------|
| 0,1,2    | 0.04062 | 0.35368 | 0.65858    | 0.85895  | 0.98222  |
| 0,1,2,7  | 0.01326 | 0.06142 | 0.08395    | 0.04434  | 0.00524  |
| 0,1,2,4  | 0.01299 | 0.05310 | 0.05805    | 0.02868  | 0.00336  |
| 0,2,4    | 0.02927 | 0.03962 | 0.00409    | 0.00246  | 0.00254  |
| 0,1,2,8  | 0.01240 | 0.03833 | 0.01100    | 0.00126  | 0.00126  |

Prior selection and model choice Compatible priors Variable selection

## Noninformative case (cont'd)

In the noninformative setting,

$$\pi(\gamma|y,c) \propto (c+1)^{-(q_{\gamma}+1)/2} \left[ y^{\mathsf{T}}y - \frac{c}{c+1} y^{\mathsf{T}} P_1 y \right]^{-n/2}$$

and

$$\pi(\gamma|y) \propto \sum_{c=1}^{\infty} c^{-1} (c+1)^{-(q_{\gamma}+1)/2} \left[ y^{\mathsf{T}}y - \frac{c}{c+1} y^{\mathsf{T}} P_1 y \right]^{-n/2}$$

which converges for all y's

| Prior selection and model choice | Prior selection and model choice |  |
|----------------------------------|----------------------------------|--|
| Compatible priors                | Compatible priors                |  |
| Variable selection               | Variable selection               |  |
| Casella & Moreno's example       | Gibbs approximation              |  |

| When $p$ large, impossible to compute the posterior probabilities of |
|----------------------------------------------------------------------|
| all of the 2 <sup>p</sup> models.                                    |
| Use of a simulation approximation of $\pi(\gamma y)$                 |

#### Gibbs sampling

- At t = 0, draw γ<sup>0</sup> from the uniform distribution on Γ;
- At t, for  $i = 1, \dots, p$ , draw  $\gamma_i^t \sim \pi(\gamma_i | y, \gamma_1^t, \dots, \gamma_{i-1}^t, \dots, \gamma_{i+1}^{t-1}, \dots, \gamma_p^{t-1})$

| γ       | $\sum_{i=1}^{10^5} \pi(\gamma y,c)\pi(c)$ | $\sum_{i=1}^{10^6} \pi(\gamma y,c)\pi(c)$ |
|---------|-------------------------------------------|-------------------------------------------|
| 0,1,2   | 0.77969                                   | 0.78071                                   |
| 0,1,2,7 | 0.06229                                   | 0.06201                                   |
| 0,1,2,4 | 0.04138                                   | 0.04119                                   |
| 0,1,2,8 | 0.01684                                   | 0.01676                                   |
| 0,1,2,5 | 0.01611                                   | 0.01604                                   |

Prior selection and model choice Compatible priors Variable selection

### Gibbs approximation (cont'd)

#### Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full model

$$y|\beta, \sigma^2 \sim \mathcal{N}\left(\beta_0 + \sum_{i=1}^{20} \beta_i x_i, \sigma^2 I_n\right)$$

where  $x_i = z_i + 3z$ , the  $z_i$ 's and z are iid  $\mathcal{N}_n(0_n, I_n)$ . True model with n = 180,  $\sigma^2 = 4$  and seven predictor variables  $x_1, x_3, x_5, x_6, x_{12}, x_{18}, x_{20}$ ,  $(\beta_0, \beta_1, \beta_3, \beta_5, \beta_6, \beta_{12}, \beta_{13}, \beta_{20}) = (3, 4, 1, -3, 12, -1, 5, -6)$  Prior selection and model choice Compatible priors Variable selection

## Gibbs approximation (cont'd)

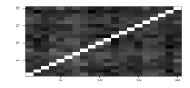


Figure: Correlations between the 20 predictors (white=1, black=0)

## Prior selection and model choice Prior selection and model choice Compatible priors Compatible priors Compatible priors Extension Extension Extension

| Example (Simulated data (2)) |                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                            |                                                                                                  |         |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|
| Results                      |                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                            |                                                                                                  |         |
|                              |                                                                                                                                                                                                                                                                                            |                                                                                                  | -                                                                                                          |                                                                                                  |         |
|                              | γ                                                                                                                                                                                                                                                                                          | $\pi(\gamma y)$                                                                                  | $\widehat{\pi(\gamma y)}^{GIBBS}$                                                                          | $\widehat{\pi(\gamma y)}^{PMC}$                                                                  |         |
|                              | $\begin{array}{c} 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,15,18,20\\ 0,1,3,5,6,12,18,20\\ 0,1,3,5,6,12,18,20\\ \end{array}$ | 0.1893<br>0.0588<br>0.0223<br>0.0220<br>0.0216<br>0.0212<br>0.0199<br>0.0197<br>0.0196<br>0.0193 | 0.1822<br>0.0598<br>0.0226<br>0.0193<br>0.0222<br>0.0233<br>0.0222<br>0.0182<br>0.0182<br>0.0196<br>0.0197 | 0.1891<br>0.0596<br>0.0335<br>0.0248<br>0.0212<br>0.0282<br>0.0129<br>0.0200<br>0.0168<br>0.0142 |         |
|                              | = 100,000 and d $D=$ 20) resu                                                                                                                                                                                                                                                              |                                                                                                  |                                                                                                            |                                                                                                  | 10,000, |

When models  $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are not embedded, difficult choice of  $\mathfrak{M}_1$  versus  $\mathfrak{M}_2$  in above principle.

Idea of an iterative prior determination by successive replacements of  $\pi_1$  and  $\pi_2$  by their respective compatible priors...

Should get to the two sets of hyperparameters closest to one another.

Prior selection and model choice Symmetrised compatible priors

### 3 Symmetrised compatible priors

Prior selection and model choice Symmetrised compatible priors Postulate

## Postulate

Bayesian Model Choice

2 Compatible priors

③ Symmetrised compatible priors

- Postulate
- Properties
- Examples

[Joint work with J.A. Cano and D. Salmerón]

Previous principle requires embedded models (or an encompassing model) and proper priors, while being hard to implement outside exponential families

Now we determine prior measures on two models  $\mathfrak{M}_1$  and  $\mathfrak{M}_2,\,\pi_1$  and  $\pi_2,$  directly by a compatibility principle.

#### Prior selection and model choice Symmetrised compatible priors

Generalised expected posterior priors

#### [Perez & Berger, 2000]

#### EPP Principle

Starting from reference priors  $\pi_1^N$  and  $\pi_2^N$ , substitute by prior distributions  $\pi_1$  and  $\pi_2$  that solve the system of integral equations

$$\pi_1(\theta_1) = \int_{\mathscr{X}} \pi_1^N(\theta_1 \mid x) m_2(x) dx$$

and

$$\pi_2(\theta_2) = \int_{\mathscr{X}} \pi_2^N(\theta_2 \mid x) m_1(x) dx,$$

where x is an imaginary minimal training sample and  $m_{\rm 1},\,m_{\rm 2}$  are the marginals associated with  $\pi_{\rm 1}$  and  $\pi_{\rm 2}$  respectively.

Prior selection and model choice Symmetrised compatible priors Postulate Motivation

Eliminates the "imaginary observation" device and proper-isation through part of the data by integration under the "truth"

Assumes that both models are  $\mathit{equally}$  valid and equipped with ideal unknown priors

 $\pi_i, \quad i = 1, 2,$ 

that yield "true" marginals balancing each model wrt the other

For a given  $\pi_1$ ,  $\pi_2$  is an expected posterior prior Using both equations introduces symmetry into the game Prior selection and model choice Symmetrised compatible prior Properties

#### Dual properness

Theorem (Proper distributions)

If  $\pi_1$  is a probability density then  $\pi_2$  solution to

$$\pi_2(\theta_2) = \int_{\mathscr{X}} \pi_2^N(\theta_2 | x) m_1(x) dx$$

is a probability density

© Both EPPs are either proper or improper.

Prior selection and model choice Symmetrised compatible priors Properties

#### Bayesian coherence

Theorem (True Bayes factor) If  $\pi_1$  and  $\pi_2$  are the EPPs and if their

If  $\pi_1$  and  $\pi_2$  are the EPPs and if their marginals are finite, then the corresponding Bayes factor

 $B_{1,2}(x)$ 

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Obviously only interesting when both  $\pi_1$  and  $\pi_2$  are improper.

Prior selection and model choice Symmetrised compatible priors Properties

Existence/Unicity

Theorem (Recurrence condition)

When both the observations and the parameters in both models are continuous, if the Markov chain with transition

$$Q\left(\theta_{1}' \mid \theta_{1}\right) = \int g\left(\theta_{1}, \theta_{1}', \theta_{2}, x, x'\right) \mathrm{d}x \mathrm{d}x' \mathrm{d}\theta_{2}$$

where

$$g\left(\theta_{1},\theta_{1}^{\prime},\theta_{2},x,x^{\prime}\right)=\pi_{1}^{N}\left(\theta_{1}^{\prime}\mid x\right)\,f_{2}\left(x\mid\theta_{2}\right)\pi_{2}^{N}\left(\theta_{2}\mid x^{\prime}\right)f_{1}\left(x^{\prime}\mid\theta_{1}\right),$$

is recurrent, then there exists a solution to the integral equations, unique up to a multiplicative constant. Prior selection and model choice Symmetrised compatible priors

#### Consequences

- If the M chain is positive recurrent, there exists a unique pair of proper EPPS.
- $\circ\,$  The transition density  $Q\left(\theta_{1}'\,|\,\theta_{1}\right)$  has a dual transition density on  $\Theta_{2}.$
- There exists a parallel M chain on Θ<sub>2</sub> with identical properties; if one is (Harris) recurrent, so is the other.
- Duality property found both in the MCMC literature and in decision theory

#### [Diebolt & Robert, 1992; Eaton, 1992]

 When Harris recurrence holds but the EPPs cannot be found, the Bayes factor can be approximated by MCMC simulation Symmetrised compatible priors

#### Point null hypothesis testing

Testing 
$$H_0$$
:  $\theta = \theta^*$  versus  $H_1$ :  $\theta \neq \theta^*$ , i.e.

$$\mathfrak{M}_1$$
 :  $f(x | \theta^*)$ ,  
 $\mathfrak{M}_2$  :  $f(x | \theta), \theta \in \Theta$ .

Default priors

$$\pi_1^N(\theta) = \delta_{\theta^*}(\theta)$$
 and  $\pi_2^N(\theta) = \pi^N(\theta)$ 

For x minimal training sample, consider the proper priors

$$\pi_1\left( heta
ight) = \delta_{ heta^*}\left( heta
ight) ext{ and } \pi_2\left( heta
ight) = \int \pi^N\left( heta\,|\,x
ight) f\left(x\,|\, heta^*
ight) \mathsf{d}x$$

Symmetrised compatible priors

## Point null hypothesis testing (cont'd)

Then

$$\int \pi_{1}^{N}\left(\theta \,|\, x\right)m_{2}\left(x\right)\mathsf{d}x = \delta_{\theta^{*}}\left(\theta\right)\int m_{2}\left(x\right)\mathsf{d}x = \delta_{\theta^{*}}\left(\theta\right) = \pi_{1}\left(\theta\right)$$

and

$$\int \pi_{2}^{N}\left(\theta \,|\, x\right)m_{1}\left(x\right)\mathrm{d}x = \int \pi^{N}\left(\theta \,|\, x\right)f\left(x \,|\, \theta^{*}\right)\mathrm{d}x = \pi_{2}\left(\theta\right)$$

(c)  $\pi_1(\theta)$  and  $\pi_2(\theta)$  are integral priors

#### Note

Uniqueness of the Bayes factor Integral priors and intrinsic priors coincide [Moreno, Bertolino and Racugno, 1998]

Prior selection and model choice Prior selection and model choice Symmetrised compatible priors Symmetrised compatible priors Examples

Location models

Two location models

$$\mathfrak{M}_1$$
 :  $f_1(x | \theta_1) = f_1(x - \theta_1)$   
 $\mathfrak{M}_2$  :  $f_2(x | \theta_2) = f_2(x - \theta_2)$ 

Default priors

 $\pi_i^N(\theta_i) = c_i, \quad i = 1, 2$ 

with minimal training sample size one Marginal densities

$$m_i^N(x) = c_i, \quad i = 1, 2$$

Location models (cont'd)

In that case,  $\pi_1^N(\theta_1)$  and  $\pi_2^N(\theta_2)$  are integral priors when  $c_1 = c_2$ :

$$\begin{split} &\int \pi_1^N \left( \theta_1 \, | \, x \right) m_2^N \left( x \right) \mathrm{d}x \;\; = \;\; \int c_2 f_1 \left( x - \theta_1 \right) \mathrm{d}x = c_2 \\ &\int \pi_2^N \left( \theta_2 \, | \, x \right) m_1^N \left( x \right) \mathrm{d}x \;\; = \;\; \int c_1 f_2 \left( x - \theta_2 \right) \mathrm{d}x = c_1. \end{split}$$

(c) If the associated Markov chain is recurrent,

$$\pi_1^N\left(\theta_1\right) = \pi_2^N\left(\theta_2\right) = c$$

are the unique integral priors and they are intrinsic priors [Cano, Kessler & Moreno, 2004] Prior selection and model choice Symmetrised compatible priors Examples

#### Location models (cont'd)

#### Example (Normal versus double exponential)

 $\mathfrak{M}_1$  :  $\mathcal{N}(\theta, 1)$ ,  $\pi_1^N(\theta) = c_1$ ,  $\mathfrak{M}_2$  :  $\mathcal{DE}(\lambda, 1)$ ,  $\pi_2^N(\lambda) = c_2$ .

Minimal training sample size one and posterior densities

$$\pi_1^N(\theta \mid x) = \mathcal{N}(x, 1) \text{ and } \pi_2^N(\lambda \mid x) = \mathcal{D}\mathcal{E}(x, 1)$$

Prior selection and model choice Symmetrised compatible priors

## Location models (cont'd)

#### Example (Normal versus double exponential (2)) Transition $\theta \rightarrow \theta'$ of the Markov chain made of steps :

(a)  $x' = \theta + \varepsilon_1, \varepsilon_1 \sim \mathcal{N}(0, 1)$ (a)  $\lambda = x' + \varepsilon_2, \varepsilon_2 \sim \mathcal{DE}(0, 1)$ (b)  $x = \lambda + \varepsilon_3, \varepsilon_3 \sim \mathcal{DE}(0, 1)$ (c)  $\theta' = x + \varepsilon_4, \varepsilon_4 \sim \mathcal{N}(0, 1)$ i.e.  $\theta' = \theta + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4$ 

random walk in  $\theta$  with finite second moment, null recurrent (c) Resulting Lebesgue measures  $\pi_1(\theta)=1=\pi_2\left(\lambda\right)$  invariant and unique solutions to integral equations