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Both papers by Cornford et al. and Haario et al. are impressive pieces of work that are perfect represen-
tative of the issues pertaining to Inverse Problems: huge amounts of (satellite) data, intractable likelihood
functions, large dimensions and speed processing requirements. They also illustrate the necessity for multiple
levels of approximations that arises in such problems and the correlated difficulty in assessing the effects of
such approximations. In addition, they provide sophisticated additions to the theory and practice of MCMC
algorithms.

Ultimately, the approximations used by the authors in both cases are Gaussian: in Haario et al., the

integral defining T abs
λ,l is discretised into Tl(Nl) and the base-level observations yl are normal N (Tl(Nl), Cl).

In Cornford et al., a normal mixture is built for the inverse model,

(1) vi|s0
i ∼

4∑

k=1

αk(s0
i )N2(µk(s0

i ), σ
2
k(s0

i )I2) ,

with neural network estimation for the functions αk, µk, σk, but the MCMC processing of the resulting model
is found to be too slow and sequential Gaussian approximations are used instead for the dynamic case. (As
an aside, notice that the issue of additional Gaussian noise N2(0, τ2I2) in the mixture model does not modify
the mixture structure since it simply transforms the variance in (σ2

k + τ2) I2).) Still, it seems that a model
like

p(V|S0) ∝
∏

i

p(vi|s0
i )

p(vi)
p(V, ,

where the p(vi|s0
i )’s are the mixtures of (1) should be manageable for simulation as is, given that the

parameters of the mixtures are known: the function can be computed analytically and either a missing data
structure can be introduced for Gibbs sampling simulation (Diebolt and Robert, 1994) or a random walk
Metropolis algorithm can be implemented. The fact that the modes of p(V|S0) need to be known in advance
is only an apparent challenge in that the bimodality is a consequence of the lack of identifiability of the
direction of the wind.

Even though the papers work within the Bayesian paradigm, I find the prior input fairly vague and
limited, as far as the description goes in both papers. For Haario et al., although some further knowledge

on the ρabs{z(s)}’s, other than its positivity, could be used (altitude and gas correlations could also appear
in the prior), it seems that the main prior modelling is related to the discretisation/regularisation choice
γ = ±1,±2

xi = x̂i ± εreg√(∆zγ) .

For the model of Cornford et al., there also seems to be very little prior input, either in terms of spatial
modelling or geophysical and historical knowledge. One reason for this limited use of the possibilities offered
by the Bayesian approach is the restriction imposed by the Gaussian structure of the model, especially in
the case of the scatterometer data. (The last sentence of §4 in Cornford et al. is also fairly intriguing in
that it seems to imply that prior distributions are simply stabilising devices, rather than summaries of prior
information.)

As stated above, an interesting feature of both papers is the devising of novel simulation methodologies
to handle the complex posterior distributions found there. The adaptive MCMC algorithm of Haario et al.
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Fig. 1. Random walk Metropolis simulation of the t posterior distribution
∏5
j=1

[
ν + (xj − θ)2

]−(ν+1)/2 using a normal
proposal with variance (top) σ̂2

t = 5
t

∑t
i=1(θ(i) − µ̂t)2 , where µ̂t is the average of the θ(i)’s, and (bottom) a ridge-type

version σ̃2
t = 5

t

∑t
i=1(θ(i) − µ̂t)2 + ε, where ε = .1. The left plots represent the sequences of simulated values and

the right plots give the histograms of these values against the true posterior distribution of θ. In both cases, the fit is
satisfactory, despite the lack of theoretical guarantees for the top scheme.

has been introduced in Haario, Saksman and Tamminen (1999, 2001, 2003) to overcome the difficulty of
scaling the random walk Metropolis algorithm by an only adaptation

Ct = sdcov(X1, . . . , Xt) + sdεId

and these papers are forerunners of an emerging class of more efficient MCMC algorithms (Robert and
Casella, 2004). While ergodicity of the resulting process is necessary to establish the validity of the simulation
method as an approximating technique, one may wonder about the practical relevance of such constraints.
Figures 1 and 2 show that not all adaptive schemes are providing correct approximations to the distribution
of interest. As noted in Andrieu and Moulines (2003), other schemes could be used while preserving the
stability of the proper distribution. For instance, the updating of the covariance matrix of the proposal
could be embedded in a grand chain (X (t),Σ(t)) by adding a performance component to the stationary
distribution in a tempering mode, exp{−αH(Σ)}. It would also be of considerable interest to understand
better why the single-site one-dimensional update SCAM can be so efficient in high-dimensional models since
the performances of the Gibbs algorithm usually deteriorate in higher dimensions.

In the case of Cornford at al., simulation technology is used at two levels, mode jumping MCMC (§4.1)
and variational approximation (§4.2). The specific algorithm of §4.1 is not particularly appealing, given
that it requires knowledge of the two modes of the posterior distribution. Local, Rao–Blackwellised and
population Monte Carlo algorithms could be used as well (Cappé et al., 2004, Robert and Casella, 2004). In
particular, a particle filter (Doucet et al., 2001) provides an efficient alternative to the two-stage approach
of the authors that allows for simultaneous mode detection and simulation from the posterior. (This is even
truer in a dynamic setting.) The variational Gaussian approximation in §4.2 is presented as an alternative
to the costly MCMC algorithm of §4.1, but one must stress that the focus is also different, this technique
providing acceptable approximations only to the first two moments of the posterior distribution and only
when the latter is unimodal.

While the various approximations used by the authors are all acceptable as a result of the Reality con-
straint that makes a truly Bayesian resolution impossible (?) to implement, more elaborate assessments that
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Fig. 2. Influence of the variance of the starting distribution in an adaptive MCMC algorithm with proposals N (µ̂t, σ̂
2
t ), in

the same setting as Figure 1. The starting variances are .1 (top), 1 (middle) and 5 (bottom). Even the largest variance
fails to provide a convergent approximation to the stationary distribution, while the middle graph exhibits a case of poor
mixing.

these approximations have limited consequences would be welcomed. Similarly, when iterative algorithms
are used, the assessment (or non assessment) that convergence is not a problem should somehow appear. To
conclude, I want to congratulate both groups of authors for obtaining a nonetheless satisfactory inference in
such complex but comprehensive inverse problems where Statistics must play a role and I thus unreservedly
propose the vote of thanks!
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