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Rue, Martino and Chopin are to be congratulated on their impressive and wide-ranging attempt
at overcoming the difficulties in handling latent Gaussian structures. In time series as well as
spatial problems, the explosion in the dimension of the latent variable is indeed a stumbling block
for MCMC implementations and convergence, and recent solutions all resort to approximations
of sorts whose impact was not always completely assessed (see, e.g., Polson et al., 2008). The
double Laplace approximation proposed by the authors is therefore an interesting and competing
alternative in these areas.

Nonetheless, as much as I respect the other major contributions to (Bayesian) Statistics, Math-
ematics, and other branches of Science, of my fellow Norman, Pierre Simon de Laplace, and despite
earlier uses in Bayesian Statistics (Tierney et al., 1989), I have always (Robert, 1992, 1994) been
wary of Laplace’s approximation because

• it is not parameterisation invariant,

• it requires some analytic computation or/and some black-box numerical differentiation, while
being based on a standard second-order Taylor approximation to the log-density, and

• it misses a clean evaluation of the associated error.

In the present paper by Rue et al., the amount of recourse to this approximation is particularly
intense since both π(x|θ,y) and π(xi|θ,x−i,y) are approximated by multi-level (nested) Laplace
approximations. I however contend that a less radical interpretation of the approximation (3) as a
proposal could lead to an manageable MCMC implementation, at least in some settings.

My first reservation is that the calibration of those Laplace approximations seems to require
a high level of expertise that conflicts with the down-the-shelf features advertised in the final
section of the paper. Designing the approximation then represents an overwhelming portion of
the analysis time, while computation indeed becomes close to instantaneous, unless one aban-
dons the analytical derivation for a numerical version that is difficult to entirely trust. After
reading the paper, I certainly feel less than confident in implementing this type of approxima-
tion, although I did not try to use the generic Open Source software carefully developed by Rue
and Martino. Attempting at applying this approach to the standard stochastic volatility model
using our own programming thus took us quite a while, even though it produces decent approx-
imations to the marginal π(θ|y) (Casarin and Robert, 2008). I am however wondering whether
or not the approximation (3) is a proper density for any and every model, since it writes as
|Q(θ)|1/2|Q(θ) + diag(c(θ))|−1/2 π(x?(θ), θ,y), where the dependence of both x? and c on θ is quite
obscure.

My second reservation is that, while the pseudo-marginal (3) seems to be an acceptably manage-
able version of the marginal posterior of θ, the additional Laplace approximations in the derivation
of the marginals of the xi’s do not appear as crucial or necessary. Indeed, once (3) is available as a
(numerical) approximation to π(θ|y), given that θ has a limited number of components, as hinted
at on several occurrences of the paper, a regular MCMC strategy targeted at this distribution is
likely to work. This would result in a much smaller cost than the discretisation underlying Fig-
ure 1 (which cannot resist the curse of dimensionality, unless cruder approximations as in Section
6.5 are used, but at a cost in accuracy). Once simulations of the θ’s are available, simulations of
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the x’s can also be produced using the Gaussian approximation as a proposal and the true target
as a Metropolis-Hastings correction. (It is thus possible to envision the whole simulation of the
pair (θ,x).) Indeed, the derivation of π̃(xi|θ, y) is awfully complex and thus difficult to assess.
In particular, the construction is partly numeric and must be repeated for a large number of θ’s,
even though I understand this does not induce high computing costs. Given that the π̃(xi|θ, y)’s
are averaged over several values of θ, it somehow is delicate to get convinced that this complex
construction is worthwhile, when compared with a original Gaussian approximation coupled with
an MCMC simulation. Simulating a single xi or the whole vector x from the Gaussian approxi-
mation has the same precision (in xi), therefore the dimension of x cannot be advanced as having
a negative impact on the convergence of the MCMC algorithm. Furthermore, a single run of the
chain produces approximations for all xi’s.

My last reservation is that the error resulting from this approximation is not, despite the
authors’ efforts, properly assessed. We can indeed check on the simpler examples that the error
resulting from one of the schemes is indeed minimal but the O(n−1

d ) error rates do little for my
reassurance as (a) they involve the sample size, even though we are dealing with a fixed sample, and
not a computational effort that seems to be restricted to the size of the grid in the θ space and (b)
they do not calibrate the error resulting from the Bayesian inference based on this approximation.
Using and comparing different approximations all based on the same principle (Laplace’s!) does
not provide a clear indicator of the performances of those approximations. Furthermore, resorting
to Spiegelhalter et al. (2002) measure of effective dimension does not bring an additional validation
to the approximation.

A minor side remark is that, from a Bayesian point of view, I find rather annoying that latent
variables and parameters or hyperparameters with Gaussian priors are mixed together in x (as in
the stochastic volatility example) and that θ coalesces all leftovers without paying any attention
to the model hierarchy (as in Section 1.3 with θ1 versus θ2). Of course, this does not impact
the sampling performances of the method, but it still feels awkward. In addition, this may push
towards a preference for Gaussian priors, since the more (hyper-) parameters with Gaussian priors,
the smaller m and the less costly the numerical integration step.

Given the potential advances resulting from [as well as the challenges posed by] this paper, both
in terms of modelling and of numerical approximation, I am unreservedly glad to second the vote
of thanks.
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