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Abstract

The emergence in the past years of Bayesian

analysis in many methodological and applied

fields as the solution to the modeling of com-

plex problems cannot be dissociated from ma-

jor changes in its computational implementation.

We show in this review how the advances in

both Bayesian analysis and statistical computa-

tion are intermingled.

Keywords: Monte Carlo methods, importance
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1 Introduction

When one reads through the other papers in
this special issue of Statistical Science, there
is one common denominator in addition to
Bayesian analysis, namely the complexity of
the models envisioned and processed by these
papers. This complexity may be at the pa-
rameter level, as in non-parametric models,
it may be at the observation level, as the

∗The third author is grateful to Peter Green for his
suggestions on the contents of this paper, as well as to
Jean-Michel Marin for suggesting some improvements
on an earlier version.

large and convoluted datasets found in ge-
nomics and machine learning, or it may be at
the inferential level, as in model choice and
model determination. One must then real-
ize that this level of complexity was unheard
of in Bayesian statistics at the end of the
80’s where (retrospectively) crude approxi-
mations were used in simpler models like mix-
tures, even though simulation methods like
importance sampling were already available
at that time (see, e.g, Hammersley and Hand-
scomb, 1964, Ripley, 1987, Oh and Berger,
1993). The prodigious advances made by
Bayesian analysis in methodological and ap-
plied directions during the previous decade
have only been made possible by advances of
the same scale in computing abilities with,
at the forefront, Markov Chain Monte Carlo
(MCMC) methods, but also considerable im-
provements in existing techniques like the
EM algorithm (Meng and Rubin, 1992, Meng
and van Dyk, 1997), both as a precursor to
the Gibbs sampler in missing data models
(Section 3.3) and as a statistically tuned op-
timization method. Other earlier methods
like quadrature representations and Laplace
approximations (Robert and Casella, 1999,
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Chap. 3) did not lead to the same break-
throughs, because they required both more
analytical input and did not provide intuitive
evaluations of the degree of approximation in-
volved.

Most obviously, there have been many
books and reviews on MCMC methods (see,
e.g., Smith and Roberts, 1993, Gilks et al.,
1996, Robert and Casella, 1999, 2004, Cappé
and Robert, 2000, Liu, 2001). In addition, a
majority of papers in this volume make use
of such methods. Therefore, we will both
abstain from engaging into a review of the
numerous applications of MCMC methods in
Bayesian statistics and providing an illustra-
tion of the potential force of such methods
since the contents of most of the papers in
this volume are enough of a testimony to this
force. We rather aim at giving a very quick
sketch of the principles of MCMC methods
(for those readers outside Statistics and those
few fellow statisticians just back from a ten
year sabbatical leave in the Outer Hebrides...)
and then indicate the most recent advances in
this field as well as point out some of the nu-
merous interactions between computational
and Bayesian statistics. We conclude this
review with a more prospective section on
the renewed interest in importance sampling
methods.

2 The Basics of MCMC

2.1 Genesis

Since this is the main theme of our review,
let us stress that, from the start, simula-
tion methods have been boosted by applica-
tions and their need for high computational
power. It is indeed because nuclear scientists
at Los Alamos could not compute the behav-
ior of the A bomb that, within a few months,
Feynman, Metropolis, Teller, Ulam, von Neu-
mann, and others built one of the first com-

puters and designed algorithms to run on this
machine and reproduce the dynamic of par-
ticles during an A bomb explosion... Build-
ing a nuclear bomb is certainly far from the
best way of starting a field, but, fortunately,
Monte Carlo methods have since then found
much less destructive applications, and this
genesis illustrates our point, namely that,

– major advances in simulation have al-
ways been the result of demands from
other (applied) disciplines; and that

– these advances have been highly depen-
dent on/subsidiaries of the current state
of computers.

For instance, the paper of Hastings (1970)
appeared “too early” to have an impact in
the field because computers were not power-
ful enough to allow for the implementation
of simulations of this nature: just imagine
using a stack of computer cards to program
the random walk Metropolis–Hastings algo-
rithm (defined below) for a generalized linear
model. On the other hand, Geman and Ge-
man (1984) came ten years later and had a
much deeper influence, even though the fo-
cus of their paper was on a very specialized
topic (optimization in Markov random fields),
mostly because, by that time, personal com-
puters and higher computational powers were
available. And, when MCMC methods came
to full-fledged status with Gelfand and Smith
(1990), computing limitations were much less
of an hindrance, being able to allow for hun-
dreds of thousands of simulations of high
dimensional models, while handling much
larger datasets and much more complex mod-
els in genomics, data mining, or signal pro-
cessing, was then beyond the state-of-the-art
computing abilities.

Earlier simulation techniques also had a
more limited goal: examples of these are the
stochastic search algorithms like the Robbins-
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Monro stochastic gradient algorithm (Rob-
bins and Monro, 1951, Kiefer and Wolfowitz,
1952). Indeed, these techniques were only
used as numerical devices to approximate
likelihood and other M-estimators, i.e., as
pointwise tools rather than distributional
tools. This remark is not intended to be de-
meaning as the Mathematics behind the con-
vergence of these algorithms is far from easy
and, besides, the pioneering work leading to
these techniques is quite fundamental in the
study of adaptive MCMC algorithms, where
the transition kernel changes with time. In
this spirit, we can also note that the seminal
paper of Metropolis et al. (1953) set up the
basis for both general MCMC algorithms and
for simulated annealing (see also Kirkpatrick
et al., 1983), but that only the latter got im-
mediate success, because of its more focused
applicability.

The evolution of programming languages
also gave impetus to simulation methods and
simulation software: more user-friendly inter-
faces like R make teaching Monte Carlo meth-
ods in undergraduate classes possible, even
though they cannot be considered for large
scale simulations because of the Curse of the
Loop that is the bane of interpreted languages
like R and Matlab.

2.2 Towards maturity

Since the introduction by Gelfand and Smith
(1990) of the Gibbs sampler to the statisti-
cal community, the picture of MCMC meth-
ods has been de-blurred of some unneces-
sary early features: the core principle is that
any iterative construction of a homogeneous
Markov chain that is irreducible and associ-
ated with an invariant probability distribution
π is acceptable for simulation purposes, from
the approximation of integrals under π to the
exploration of the support of π. (Theoreti-
cal details and more complete results are pro-

vided in Roberts and Tweedie (2004).)
While this generic principle remains fairly

formal, there exist, most astoundingly, sev-
eral classes of universal implementations of
this principle.

First, the slice sampler is based on the Fun-
damental Theorem of Simulation (Robert and
Casella, 2004, Chap. 3): given a density func-
tion π, known up to a normalizing constant,

π(θ) ∝ π̃(θ) ,

simulation from π is equivalent from uniform
simulation on the subgraph of π̃

S π = {(θ, ω); 0 ≤ ω ≤ π̃(θ)} .

This is the principle behind Accept–Reject
methods, but when those are not available,
a general MCMC/Gibbs algorithm is to gen-
erate a random walk on S π, since random
walks are associated with uniform distribu-
tions as invariant distributions. (By random
walk, we mean a Markov chain (Xt) such
that the probability of going from Xt = x
to Xt+1 = y is the same as the probabil-
ity of going from Xt = y to Xt+1 = x.)
The random walk of the slice sampler is in-
spired from the geometry of S π: starting
from (θ(t), ω(t)), ω(t+1) is generated as a uni-
form U ([0, π̃(θ(t))]) and then θ(t+1) is gener-
ated uniformly on the slice

S π
θ =

{
θ; π̃(θ) ≥ ω(t+1)

}
.

The most important fact about that method
is not whether it is a good simulation method
but rather that it directly relates to the origi-
nal basis of simulation methods and it applies
in principle to all settings.

In practice, however, slice sampling can be
difficult to implement, though, because of the
inversion of the inequality π̃(θ) ≥ ω(t+1) as a
set of θ’s. Although this is not of the ut-
most importance in the perspective of this
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review, we may still note that the slice sam-
pler enjoys very good convergence properties
for large classes of π’s: for instance, Roberts
and Rosenthal (1999) show that, under some
conditions on π, the slice sampler converges
to within 1% of the limiting distribution (in
total variation norm) in less than 525 itera-
tions!

Second, the random walk Metropolis–
Hastings algorithm starts from an (almost)
arbitrary transition kernel/conditional distri-
bution satisfying

q(θ − θ′) = q(θ′ − θ)

to build the actual transition as follows:
starting from θ(t), a value ξ(t+1) simulated as

ξ(t+1) ∼ q(ξ − θ(t))

is accepted, that is, θ(t+1) = ξ(t+1) with prob-
ability

min

(
1,
π̃(ξ(t+1))

π̃(θ(t))

)

and rejected otherwise, that is, θ(t+1) = θ(t).
Unless the support of π is disconnected, this
algorithm enjoys basic convergence proper-
ties, although it is not geometrically ergodic
outside special situations (see Roberts and
Tweedie, 2004, Chap. 10).

In practice, the random walk Metropolis–
Hastings algorithm is the most successful uni-
versal MCMC algorithm, but it requires tun-
ing for the scale of the proposal q: too small a
scale will see the chain stuck in the vicinity of
the starting point and too large a scale will re-
sult in a chain that changes values very rarely
(see Robert and Casella, 1999, Chap. 6). Neal
(2003) also criticizes random walk type algo-
rithms in that they take unnecessarily long
times to go from one point to another: typ-
ically, the time required is the square of the
distance. More elaborate sampling schemes,
including variations on the slice sampler, are
advocated by Neal (2003) as ways of avoiding

the random walk behavior, but they require
some more or less elaborate tuning that dis-
qualifies them as universal schemes.

When we said earlier that the picture
is now clearer than in Gelfand and Smith
(1990), we meant that the theoretical ba-
sis of MCMC algorithms has been simpli-
fied: at any stage, a Markov transition kernel
with the correct stationary distribution can
be used in place of the said distribution. This
principle being stated, let us note that there
still is a large range of uncertainty or arbi-
trariness linked to MCMC algorithms in that
the unlimited number of possible transition
kernels is very rarely controlled by clearly de-
fined convergence properties.

Note also that, within the theory of MCMC
algorithms, the use of adaptive transition ker-
nels Kt that depend on the past behavior of
the chain is not usually allowed because it
may jeopardize the convergence properties of
the chain and the applicability of the ergodic
theorem. For instance, using a Gaussian pro-
posal centered at the average of the past val-
ues and scaled from the scale of the past val-
ues is unlikely to capture the true scale of the
problem unless the first trials are particularly
lucky! This is not to say that adaptivity is
impossible, but simply that it is better pro-
cessed outside than within the MCMC frame-
work, as discussed in Section 4.

2.3 Later days

There have been many recent improvements
and extensions within the past years and it
is impossible to include them all within this
review. Some will be mentioned in other sec-
tions (sequential Monte Carlo methods, Sec-
tion 4), or in other papers (like variational
methods, Jordan, 2004, this volume; Titter-
ington, 2004, this volume).

One particularly exciting development
took place in the mid 1990’s with the dis-
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covery by Propp and Wilson (1996) of perfect
sampling and the ability to simulate exactly
from π while using solely a Markov transition
kernel with stationary distribution π (for an
introduction, see Casella et al., 2001). These
methods are all based on a coupling principle
that erases the influence of the starting value
and, for most statistical applications, on some
device (trick?!) that allows for the reduction
of the continuum of starting values into a few
points. For instance, ? exhibit a natural link
between slice sampling and perfect sampling.

Implementing perfect sampling has a cost,
though, and it seems, eight years after Propp
and Wilson (1996), that this cost may be
too high since perfect sampling has all but
become a standard of the MCMC toolbox.
The genuine difficulty in implementing per-
fect sampling is that there is a strong de-
gree of tuning and calibration involved for
every new model, as discussed in Robert and
Casella (2004, Chap. 11). Moreover, the set-
tings where coupling is guaranteed to work
are quite restricted since they roughly corre-
spond to uniformly ergodic kernels (Foss and
Tweedie, 1998).

Another development of the mid 1990’s
with a much broader basis is reversible jump
MCMC and variable dimension models, fol-
lowing the path-breaking formalization of
Green (1995). Since this major advance
strongly relates to the corresponding devel-
opment of Bayesian model choice, we will
dwell on its justification in Section 3 rather
than here. Let us simply recall that Green
(1995) built a formalism that allows for
Markov chains on variable dimension spaces.
While this can be seen as a sequence of lo-
cal fixed-dimension moves (see, e.g., Robert
and Casella, 2004, Sec. 9.2.2), it nonetheless
gained immediate popularity by setting up
the right framework for the MCMC analy-
sis of this kind of problems. It also subsumes
earlier and later attempts, like the birth-and-

death jump process of Preston (1976), Ripley
(1977), Stephens (2000) and the saturation
schemes of Carlin and Chib (1995) and God-
sill (2001). Recent developments by Brooks
et al. (2003) aim at higher efficiency levels in
the selection of jump proposals.

As mentioned above, adaptive MCMC al-
gorithms have also been introduced recently,
although the development of adaptive algo-
rithms is much easier outside the MCMC
framework (Section 4): in fact, the difficulty
with adaptivity is that the dependence on
the past performances must be controlled to
preserve the Markovian structure, as for in-
stance in renewal schemes (Mykland et al.,
1995, Gilks et al., 1998, ?) unless ergodic-
ity is directly established (Haario et al., 1999,
2001, Andrieu and Robert, 2001).

3 Mutual Attractions

Many things happened in Bayesian analysis
because of MCMC and conversely many fea-
tures of MCMC are only there because of
Bayesian analysis! We think the current state
of Bayesian analysis would not have been
reached without MCMC techniques and also
that the upward surge in the level of complex-
ity of the models analyzed by Bayesian meth-
ods contributed to the very fast improvement
in MCMC methods.

Some of the domains where the interaction
between Bayesian analysis and MCMC meth-
ods has been very intense are represented
within this special issue: genomics, nonpara-
metric Bayes, epidemiological studies, clinical
trials, machine learning, Bayesian and neu-
ral networks, graphical models, all those (and
others) are showcases where Bayesian exper-
tise only came to the forefront because of the
corresponding computation abilities.
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3.1 Bayes factors

While the overall usefulness of Bayes fac-
tors in Bayesian testing may be argued for
or against (Kass and Raftery, 1995, Bayarri
and Berger, 2004, this volume, Walker, 2004,
this volume), they are nonetheless part of the
standard Bayesian toolbox, if only as a refer-
ence value, for the comparison of models M1

and M2. Being ratios of integrals,

B12 =
P (M1)

P (M2)
=

∫

Θ1

f1(x|θ1)π1(θ1)dθ1

∫

Θ2

f2(x|θ2)π2(θ2)dθ2

,

those most often unavailable in closed form,
they require special simulation techniques
that have been developed in the mid-1990’s
by Chen and Shao (1997), Gelman and Meng
(1998), and Meng and Wong (1996), under
the names of bridge sampling and umbrella
sampling. These are special versions of im-
portance sampling connected to some earlier
methods used in the Physics literature.

Indeed, the presence of several models in
competition is advantageous for importance
sampling methods since the same simulated
sample θ1, . . . , θT can be recycled for several
models if they all share parameters of the
same nature. While earlier attempts treated
numerator and denominator of B12 separately
(see, e.g., Newton and Raftery, 1994), the
more advanced bridge sampling estimator of
Meng and Wong (1996) links both terms. For
instance,

BS
12 =

1

n2

n2∑

i=1

π1(θ2i)f1(x|θ2i)h(θ2i)

1

n1

n1∑

i=1

π2(θ1i)f2(x|θ1i)h(θ1i)

, (1)

where the θji’s are simulated from πj(θ|x)
(j = 1, 2, i = 1, . . . , nj), are convergent es-
timators of B12 for any function h(θ) (these

functions are called bridge functions). Fur-
ther improvements, always pertaining to im-
portance sampling, can be found in Gelman
and Meng (1998) and Chen et al. (2000).

This enhanced ability to compute Bayes
factors also brought new life to the theoreti-
cal debate about the use of improper priors in
point null hypothesis testing, which is prohib-
ited from a purely Bayesian point but which
can be implemented via cross-validation tech-
niques into pseudo-Bayes factors like the in-
trinsic Bayes factors of Berger and Pericchi
(1996, 2001).

3.2 Model selection

MCMC certainly changed the way model
selection and model comparison are imple-
mented within Bayesian statistics. The call
for algorithms that can handle this model se-
lection issue equally contributed to the devel-
opment of an adequate simulation methodol-
ogy, namely the class of reversible jump algo-
rithms already discussed in Section 2.3.

The impact of this evolution on Bayesian
statistics is clearly major: notions like model
averaging are now standard in Bayesian data
analysis and model building, while they were
almost always impossible to compute earlier
on. The range of uses of model selection
has also considerably expanded as discussed
in Robert (2001, Chap. 7). Model averag-
ing (Madigan and Raftery, 1994) is the sim-
ple realization that, for some purposes, model
choice and testing are not necessary and that
the whole collection of models can be used
simultaneously through the predictive distri-
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bution

f(y|x) =

∫

Θ

f(y|θ)π(θ|x)dθ

=
∑

k

∫

Θk

fk(y|θk)π(k, θk|x)dθk

=
∑

k

p(Mk|x)

∫
fk(y|θk)πk(θk|x) dθk ,

where Θ denotes the union of all parameter
spaces.

Model averaging does not answer all the
difficulties related to the multiple facets of
model selection, since some perspectives re-
quire the elimination of all models but one,
but the associated algorithms like reversible
jumps offer a wide variety of interpretation of
their output. For instance, in the special case
of variable selection in a generalized linear
model, these algorithms bypass the need for
elaborate schemes like “upward” or “down-
ward” strategies, since the most important
models are visited by the associated Markov
chain and the others are ignored. (Modulo a
proper implementation of the corresponding
reversible jump algorithm, that is, such that
the probability that the Markov chain visits
all models with high enough posterior proba-
bility is high.) This perspective also created
new avenues for research on prior distribu-
tions on families of models, as illustrated in
Clyde and George (2004, this volume).

3.3 Latent variable models

Latent variable models are models such that
the representation

π(θ) ∝
∫
π̃(θ, ξ) dξ

of the posterior distribution on θ is natu-
rally associated with the (observed) model;
they have been partially presented in Jordan
(2004, this volume). We can first note that

such models were at the origin of the EM al-
gorithm (Dempster et al., 1977) and that the
two-stage structure of this algorithm, is very
similar to the Gibbs sampling data augmen-
tation of Tanner and Wong (1987), where θ is
simulated from π(θ|ξ) and then ξ from π(ξ|θ).

The use of new computational tools has al-
lowed for the Bayesian processing of much
more complex models of this type, including
hidden Markov models (Cappé and Rydén,
2004, see also Section 4.2), hidden semi-
Markov models like the ion channel model
(Hodgson, 1999), where the observed likeli-
hood cannot be computed, and the increas-
ingly complex models found in Econometrics
like stochastic volatility models (Kim et al.,
1998), where (1 ≤ t ≤ T )

yt ∼ N (0, σ2
t )

and

log σ2
t |σ2

t−1 ∼ N (µ+ % log σ2
t−1, τ

2) ,

but only (yt) is observed. The most recent
developments have allowed for the process-
ing of more challenging continuous time mod-
els, where radically new computational tech-
niques are necessary (Roberts et al., 2001).

3.4 Design of experiments

While this can be seen in part in Berry (2004,
this volume), let us stress that new levels of
computational powers have brought a lot to
the design of experiments, a field somehow
neglected by Bayesian statistics in the past.
As described in Müller (1999), the optimal
design problem can be described as an opti-
mization setting where d? is the maximum of

U(d) =

∫
u(d, θ, x)π(θ)f(x|θ, d) dxdθ ,

that is, the objective function is the expected
utility of the design d. This setup thus gath-
ers both an integration and a maximization
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problem. As in other integration problems,
Monte Carlo and MCMC approximations can
be used in place of the expected utility, but
some economy of scale must be found if the
distribution of the data also depends on the
design d. The most interesting perspective is
to include d in the variables to be simulated,
for instance by considering the distribution

π̃(d, θ, x) ∝ u(d, θ, x)π(θ)f(x|θ, d) .

The optimal design d? is thus the marginal
mode (in d) of π̃(d, θ, x). While regular sim-
ulation may be too slow to converge to the
solution d?, various modifications of the dis-
tribution to be simulated from and of the sim-
ulation steps may be implemented. For in-
stance, since the maxima of U(d) and U(d)T

are the same, simulated annealing results can
be invoked, through the artificial duplication
of θ and x, given that U(d)T is the marginal
of

T∏

i=1

u(d, θi, xi)π(θi)f(xi|θi, d) .

If T increases slowly enough along the iter-
ations of this heterogeneous Markov chain,
the corresponding sequence of d(t) converges
to the optimal design. Doucet et al. (2002)
exploit the same feature to derive marginal
modes in missing data problems, introducing
the SAME algorithm.

4 Importance sampling

revisited

4.1 Generalized importance
sampling

While the previous paragraphs may give the
opposite impression, MCMC is not a goal
per se from the point of view of Bayesian
Statistics! Other techniques that work just

as well, or even better, are obviously accept-
able. In particular, when reconsidering im-
portance sampling in the light of MCMC ad-
vances, it appears that much more general
importance functions can be considered than
those of earlier days. Importance functions
can, in particular, be tuned to the problem at
hand in light of previous simulations, without
the associated drawbacks of adaptive MCMC
schemes. Indeed, at time or iteration t, given
earlier samples and their associated impor-
tance weights, a new proposal function gt can
be designed in any way from this weighted
sample and still retain the original unbiased-
ness property of an importance function.

While details are provided in Cappé et al.
(2004), let us stress here the fundamental dif-
ference with MCMC: given a weighted sam-
ple (θ

(t)
i , ω

(t)
i ) (i = 1, . . . , n) at iteration t, the

proposal distribution gt+1 can be based on the
whole sample in any possible way and still re-
tain the unbiasedness property of an impor-
tance function, namely that

E
[
π(θ)

gt+1(θ)
h(θ)

]
= Eπ [h(θ)] (2)

when the left hand side expectation is associ-
ated with the joint distribution of θ ∼ gt+1(θ)
and of gt+1 (in the sense that this density de-

pends on the random sample of the θ
(t)
i ’s).

The reason for this general result is that the
distribution of the sample (θ

(t)
i , ω

(t)
i ) does not

intervene in (2). Although the potential ap-
plications of this principle are not so far fully
exploited, related algorithms are found under
various denominations like quantum Monte
Carlo, particle filters or population Monte
Carlo (Iba, 2000). As discussed below, they
can mostly be envisioned within a sequential
setting.

4.2 Sequential problems

In many scenarios it might be of interest to
sample sequentially from a series of probabil-
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ity distributions {πt; t ∈ N} defined on a se-
quence of spaces, say {Θt}. By sequential, we
mean here that samples from πt are required
before samples from πt+1 can be produced.
There are many situations where this is the
case: Before describing a generic algorithm
attuned to this goal, we detail two, appar-
ently unrelated, problems for which sequen-
tial sampling is either required or of interest.

For the first case, we assume that the num-
ber of observations available for inference
on θ is not constant, but rather increases
over time. It might be of interest to update
our knowledge about θ each time a new
observation is produced, rather than waiting
for a complete set of data (which might
be infinite). This is the case for statistical
filtering, and to a lesser extend for the static
parameter inference, as for instance in the
stochastic volatility model of Section 3.3.

Problem 1: Statistical Filtering. Consider a
hidden Markov model, that is, an unobserved
real Markov process (θt), such that

θt+1|θt ∼ f(θt+1|θt)

with initial distribution θ1 ∼ µ(θ1), and
for which the only available information
consists of the “indirect observations”
yt ∼ g(yt|θt). The distributions of inter-
est are then the posterior distributions
πt(θ1, . . . , θt) = π(θ1, . . . , θt|y1, . . . , yt) with
Θt = Θt. In addition, the data arrives
sequentially in time and information about
θt is requested at each time t. Of particular
interest in practice is the estimation of the
marginal posterior distribution πt(θt), called
the filtering distribution. (See Doucet et al.
(2001) for complete motivations.)

Problem 2: Population Monte Carlo and Se-
quential Monte Carlo Samplers. Consider
again the simulation of a series of probabil-
ity distributions πt. However, whereas stan-

dard sequential MC methods apply to the
case where Θt = Θt as in Problem 1, we are
here interested in the case where Θt = Θ.
Rather than directly sampling from a given
πt, an alternative is to construct a sequence
of joint distributions {π̃t} defined on Θt that
satisfy the constraint∫

Θt−1

π̃t(θ1:t)dθ1:t−1 = πt(θt),

that is, such that πt is the marginal distri-
bution of the π̃t’s with respect to the last
component. This scheme has been recently
proposed in various papers, including Cappé
et al. (2004), del Moral and Doucet (2002),
and Del Moral and Doucet (2003), and it
allows for a straightforward construction of
adaptive importance functions, that is, of
importance functions that take advantage of
earlier simulations.

As stressed above, there are many poten-
tial applications of these algorithms.

Example 1.—Static parameter inference:
the filtering problem, which is characterized
by the dynamic nature of the statistical
model involved, as in Problem 1, has been
the main motivation for the development
of efficient sequential MC techniques in
recent years. However, these methods
can also be very useful when one seeks
to make inference about a fixed or static
parameter θ with posterior distribution(s),
say, {p(θ|y1:t); t ∈ T } where T can be any
subset of N, including singletons. For the
multiple reasons mentioned earlier, samples
from p(θ|y1:t) might be needed in order to
estimate quantities of interest. For instance,
in some cases, sampling from p(θ|y1:T ) might
be difficult even with advanced MCMC
techniques, whereas sampling progressively
from πt(θ) = p(θ|y1:t) when t goes from 1 to
T might be easier and more efficient. This is
the approach advocated in Chopin (2002).

9



Example 2.—Simulation and Optimization of
a fixed posterior distribution: to sample from
a fixed posterior distribution, say p (θ| y), it is
possible to use sequential Monte Carlo meth-
ods with πt(θ) = p(θ|y). It may even be more
efficient to build an artificial series of M dis-
tributions that moves slowly from an initial
distribution, say µ (θ), to the target distribu-
tion, p(θ|y). A possible choice, as advocated
by Neal (2001), is to consider

πt(θ) ∝ µγt (θ) p1−γt(θ|y)

with γ1 = 1, γt ≤ γt−1 and γP = 0. For
the derivation of the modes of p(θ|y), a se-
quence inspired from simulated annealing is
(del Moral and Doucet, 2002)

πt(θ) ∝ pγt(θ|y) where lim
t→∞

γt = +∞ .

4.3 Sequential importance
sampling

We now present a generic algorithm that al-
lows one to sample sequentially from the πt’s
defined on Θt = Θt. It is made of two steps:
sampling/mutation and resampling/selection.
If, at time t − 1, we have generated samples
{θ(i)

1:t−1} that approximate πt−1, then the next
generation of samples is produced as follows:

Mutation step

• For i = 1, ..., N , set θ̃
(i)
1:t−1 = θ

(i)
1:t−1 and

sample θ̃
(i)
t ∼ qt(·|θ̃(i)

1:t−1).
• For i = 1, ..., N , evaluate the importance

weights

w
(i)
t ∝

πt(θ̃
(i)
1:t)

qt(θ̃
(i)
t |θ̃(i)

1:t−1)πt−1(θ̃
(i)
1:t−1)

,

and normalize them to 1.
Resampling step

Multiply/Discard particles
{
θ̃

(i)
1:t

}
with respect

to the high/low weights
{
w

(i)
t

}
to obtain sam-

ples
{
θ

(i)
1:t

}
.

The choice of qt(·|θ̃(i)
1:t−1) is application de-

pendent, and various selection schemes are
possible (see Doucet et al. (2001) and del
Moral and Doucet (2002) for discussions).
In fact, and not surprisingly, approximating
{πt} sequentially with a non exploding Monte
Carlo error is impossible in many scenarios of
interest, especially when the size of the Θt’s
increases. However, in the framework of sta-
tistical filtering and population Monte Carlo,
it can be proved under fairly general condi-
tions, that the “end marginal” (i.e. the filter-
ing distribution or π) can be approximated
with a constant error over time (del Moral
and Gionnet, 2001, Del Moral and Doucet,
2003).

4.4 An illustration

Consider the following harmonic regression
model of Andrieu and Doucet (1999)

Y ∼ Nm
(
D (ω) β ,2 Im

)

where Y ∈ Rm, β ∈ R2k, ω ∈ (0, π)k and
D (ω) is a m× 2k matrix such that

[D (ω)]i+1,2j−1 = cos (ωji) ,

[D (ω)]i+1,2j = sin (ωji) .

The associated prior is p (ω) p (β| σ2) p (σ2)
with

σ2 ∼ IG (1/2, 1/2) , β| σ2 ∼ N
(
0, σ2Σ0

)
,

where Σ−1
0 = δ−2 DT (ω)D (ω); p (ω) is uni-

form on

Ω =
{
ω ∈ (0, π)k ; 0 < ω1 < . . . < ωk < π

}
.

The marginal posterior density on ω satisfies

p (ω|Y ) ∝
(
1 + Y TPY

)− p+1
2
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with

M−1 = (1 + δ−2)DT (ω)D (ω) ,
P = Im −D (ω)MDT (ω) .

For a simulated dataset of m = 100
observations, with k = 6, σ2 = 5,
ω = (0.08, 0.13, 0.21, 0.29, 0.35, 0.42) and β =
(1.24, 0, 1.23, 0.43, 0.67, 1, 1.11, 0.39, 1.31, 0.16,
1.28, 0.13) , the posterior density is multi-
modal with well-separated modes.

To sample from π (ω) = p (ω|Y ) , we use
an homogeneous SMC sampler with N =
1000 particles where the k components of
ω are updated one by one, using a simple
Gaussian random walk proposal q with vari-
ance σ2

RW . We compare our algorithm with a
MCMC algorithm based on exactly the same
proposal q. In both cases, the initial distri-
bution is the uniform distribution on Ω and
σRW = 0.1.

This example emphasizes the fact that the
SMC approach is more robust to a poor scal-
ing of the proposal, as already noted in Cappé
et al. (2004). Figure 1 provides the marginal
posterior distributions of ω1 and ω2 obtained
after 100 iterations of the SMC sampler. For
fair comparison, we ran 12, 000 iterations of
the MCMC algorithm to keep the compu-
tational expense similar. The result of this
comparison is that the MCMC algorithm is
more sensitive to the initialization that the
SMC sampler: out of 50 realizations, the
SMC always explores the main mode whereas
the MCMC algorithm converges towards it
only 36 times. A similar phenomenon was ob-
served in Celeux et al. (2003) for the stochas-
tic volatility model of Section 3.3.

We can also use an inhomogeneous ver-
sion of the SMC sampler so as to optimize
p (ω|Y ). In this case the target density at
iteration n is

πt (ω) ∝ pγt (ω|Y ) with γt = t

and we use P = 50 iterations. We compare
this algorithm to a simulated annealing ver-

sion of the MH algorithm with 60, 000 itera-
tions and the schedule γt = t/1200. Table 1
displays the results of this comparison: Con-
trary to the simulated annealing algorithm,
the SMC algorithm converges consistently to-
wards the same mode (where the posterior
mode estimate is chosen as the sample gen-
erated during the simulation maximizing the
posterior density) while the simulated anneal-
ing algorithm shows much more variability.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2000

4000

6000

8000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2000

4000

6000

8000

10000

Figure 1: Histograms of the simulated values
of (ω1, ω2) using SMC: approximation of (top)
p (ω1|Y ) and (bottom) p (ω2|Y ).

4.5 Beyond MCMC?

When we look back at the past ten years, the
loosening of the computational constraints on
Bayesian statistics brought by the MCMC
methodology is enormous. A much wider
range of models and assumptions have been
processed by Bayesian means, thanks to these

11



Algorithm SMC SA
Mean of the
log-post. values -326.12 -328.87

Stan. dev. of the 0.12 1.48
log-post. values

Table 1: Performances of SMC and simulated
annealing (SA) optimization algorithms, ob-
tained over 50 iterations

computational advances, as the contributions
to this special issue of Statistical Science
readily assesses. Despite noteworthy and
sustained efforts to bring these new tools
closer to everyday practice, like the exten-
sive BUGS software, there still is some re-
luctance to use MCMC algorithms for both
programming and reliability/convergence is-
sues. It may thus be that the recourse to this
advanced form of importance sampling, built
on the expertise acquired during the develop-
ment of MCMC algorithms while preserving
the unbiasedness perspective that appeals to
many statisticians, will overcome this reluc-
tance and allow for further advances in the
(Bayesian) exploration of complexity.
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