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Université Paris Dauphine and CREST-INSEE
http://www.ceremade.dauphine.fr/~xian
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Target

General purpose

Given a density π known up to a normalizing constant, and a
function h, compute

Π(h) =

∫
h(x)π(x)µ(dx) =

∫
h(x)π̃(x)µ(dx)∫
π̃(x)µ(dx)

when
∫
h(x)π̃(x)µ(dx) is intractable.
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Monte Carlo basics

Generate an iid sample x1, . . . , xN from π and estimate Π(h) by

Π̂MC
N (h) = N−1

N∑

i=1

h(xi).

LLN: Π̂MC
N (h)

as−→ Π(h)

If Π(h2) =
∫
h2(x)π(x)µ(dx) <∞,

CLT :
√
N
(

Π̂MC
N (h)− Π(h)

)
L N

(
0,Π

{
[h− Π(h)]2

})
.

Caveat

Often impossible or inefficient to simulate directly from Π
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MCMC basics

Generate
x(1), . . . , x(T )

ergodic Markov chain (xt)t∈N with stationary distribution π

Estimate Π(h) by

Π̂MCMC
N (h) = N−1

T∑

i=T−N
h
(
x(i)
)

[Robert & Casella, 2004]
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MCMC

A generic algorithm

Metropolis–Hastings algorithm:

Given x(t) and a proposal q(·|·),

1. Generate Yt ∼ q(y|x(t))

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1− ρ(x(t), Yt),

where

ρ(x, y) = min

{
π(y)

π(x)

q(x|y)

q(y|x)
, 1

}
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MCMC

A generic MH: RWMH

Choose for proposal the random walk

q(x|y) = g(y − x) = g(x− y)

• local exploration of the space
• posterior-ratio acceptance probability
• only requires a scale but does require a scale!
• often targeted at optimal acceptance rate



Population Monte Carlo and adaptive sampling schemes

Crash course in simulation

MCMC

Example (Mixture models)

π(θ|x) ∝
n∏

j=1

(
k∑

`=1

p`f(xj |µ`, σ`)
)
π(θ)

Metropolis-Hastings proposal:

θ(t+1) =

{
θ(t) + ωε(t) if u(t) < ρ(t)

θ(t) otherwise

where

ρ(t) =
π(θ(t) + ωε(t)|x)

π(θ(t)|x)
∧ 1

and ω scaled for good acceptance rate
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Random walk MCMC output for .7N (µ1, 1) + .3N (µ2, 1)
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MCMC difficulties

MCMC difficulties

Trapping modes may remain undetected

Convergence to the stationary distribution can be very slow or
intractable

Difficult adaptivity
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MCMC difficulties

Noisy AR2
1

scale equal to .1

scale equal to .5
Adaptive MCMC?!
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A wee problem with Gibbs on mixtures
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[Marin, Mengersen & Robert, 2005]
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MCMC difficulties

Trapping modes may remain undetected

Convergence to the stationary distribution can be very slow or
intractable

Difficult adaptivity
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Example (Bimodal target)

Density

f(x) =
exp−x2/2√

2π

4(x− .3)2 + .01

4(1 + (.3)2) + .01
.

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

and use of random walk Metropolis–Hastings algorithm with
variance .04
Evaluation of the missing mass by

T−1∑

t=1

[θ(t+1) − θ(t)] f(θ(t)) (1)

[Philippe & Robert, 2001]
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MCMC difficulties

Trapping modes may remain undetected

Convergence to the stationary distribution can be very slow or
intractable

Difficult adaptivity
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MCMC difficulties

Simple adaptive MCMC is not possible

 Algorithms trained on-line usually invalid:
using the whole past of the “chain” implies that this is not a
Markov chain any longer!

To controlled MCMC
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Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑

i=1

θ(i) and σ2
t =

1

t

t∑

i=1

(θ(i) − µt)2 ,

Metropolis–Hastings algorithm with acceptance probability

n∏

j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ ∼ N (µt, σ
2
t ).
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Example (Poly t distribution (2))

Invalid scheme:

when range of initial values too small, the θ(i)’s cannot
converge to the target distribution and concentrates on too
small a support.

long-range dependence on past values modifies the
distribution of the sequence.

using past simulations to create a non-parametric
approximation to the target distribution does not work either
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Adaptive scheme for a sample of 10 xj ∼ T3 and initial
variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5.
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Sample produced by 50, 000 iterations of a nonparametric
adaptive MCMC scheme and comparison of its distribution
with the target distribution.
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Simply forget about it!

Warning:
One should not constantly adapt the proposal on past
performances

Either adaptation ceases after a period of burnin
or the adaptive scheme must be theoretically assessed on its own
right...

out-of-control MCMC
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Controlled MCMC

Optimal choice of a parameterised proposal K(x, dy; θ) against a
proposal minimisation problem

θ∗ = arg min Ψ(η(θ))

where

η(θ) =

∫

X
H(θ, x)µθ(dx)

[Andrieu & Robert, 2001]

Coerced acceptance

Autocorrelations

Moment matching
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Two-time scale stochastic approximation

Set ξi = (ηi, η̇i)
Corresponding recursive system

xi+1 ∼ K(xi, dxi+1; θi)

ξi+1 = (1− γi+1)ξi + γi+1ξ(θi, xi+1)

θi+1 = θi − γi+1εi+1η̇iΨ
′(ηi)

where {γi} and {εi} go to 0 at infinity
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MCMC difficulties

Two-time scale stochastic approximation (2)

Convergence conditions on {γi} and {εi}
{γi} and {εi} go to 0 at infinity

slow decrease to 0:

∑

i

γiεi =∞
∑

i

γ2
i <∞

[Andrieu & Moulines, 2002]

Warning

Hidden difficulties...
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Importance Sampling

For Q proposal distribution such that Q(dx) = q(x)µ(dx),
alternative representation

Π(h) =

∫
h(x){π/q}(x)q(x)µ(dx).

Principle

Generate an iid sample x1, . . . , xN ∼ Q and estimate Π(h) by

Π̂IS
Q,N (h) = N−1

N∑

i=1

h(xi){π/q}(xi).
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Importance Sampling

Then
LLN : Π̂IS

Q,N (h)
as−→ Π(h) and if Q((hπ/q)2) <∞,

CLT :
√
N(Π̂IS

Q,N (h)− Π(h))
L N

(
0, Q{(hπ/q − Π(h))2}

)
.

Caveat

If normalizing constant unknown, impossible to use Π̂IS
Q,N

Generic problem in Bayesian Statistics: π(θ|x) ∝ f(x|θ)π(θ).
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Self-Normalised Importance Sampling

Self normalized version

Π̂SNIS
Q,N (h) =

(
N∑

i=1

{π/q}(xi)
)−1 N∑

i=1

h(xi){π/q}(xi).

LLN : Π̂SNIS
Q,N (h)

as−→ Π(h)

and if Π((1 + h2)(π/q)2) <∞,

CLT :
√
N(Π̂SNIS

Q,N (h)− Π(h))
→
L N

(
0, π((π/q)(h− Π(h))2)

)
.

The quality of the SNIS approximation depends on the choice of Q
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Importance Sampling

Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]

Theorem (Bootstraped importance sampling)

If a sample (x?i )1≤i≤m is derived from the weighted sample
(xi, ωi)1≤i≤n by multinomial sampling with weights ω̄i, then

x?i ∼ π(x)

where ω̄i,t = ωi,t/
∑N

j=1 ωj,t

Note

Obviously, the x?i ’s are not iid
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Pros & cons

Pros and cons of importance sampling vs. MCMC

Production of a sample (IS) vs. a Markov chain (MCMC)

Dependence on importance function (IS) vs. on previous value
(MCMC)

Unbiasedness (IS) vs. convergence to the true distribution
(MCMC)

Variance control (IS) vs. learning costs (MCMC)

Recycling of past simulations (IS) vs. progressive adaptability
(MCMC)

Processing of moving targets (IS) vs. handling large
dimensional problems (MCMC)

Non-asymptotic validity (IS) vs. difficult asymptotia for
adaptive algorithms (MCMC)
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Population Monte Carlo Algorithm

1 Crash course in simulation

2 Population Monte Carlo Algorithm
Sequential importance sampling
Population Monte Carlo Algorithm
Choice of the kernels Qi,t

3 Illustrations

4 Further advances
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Sequential importance sampling

Sequential importance sampling

Idea Apply dynamic importance sampling to simulate a sequence of
iid samples

x(t) = (x
(t)
1 , . . . , x(t)

n )
iid≈ π(x)

where t is a simulation iteration index (at sample level)

Sequential Monte Carlo applied to a fixed distribution π
[Iba, 2000]
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Sequential importance sampling

Adaptive IS

Fact

IS can be generalized to encompass much more adaptive/local
schemes than thought previously

Adaptivity means learning from experience, i.e., to design new
importance sampling functions based on the performances of
earlier importance sampling proposals

Incentive

Use previous sample(s) to learn about π and q
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Sequential importance sampling

Iterated importance sampling

As in Markov Chain Monte Carlo (MCMC) algorithms,
introduction of a temporal dimension :

x
(t)
i ∼ qt(x|x

(t−1)
i ) i = 1, . . . , n, t = 1, . . .

and

Ît =
1

n

n∑

i=1

%
(t)
i h(x

(t)
i )

is still unbiased for

%
(t)
i =

πt(x
(t)
i )

qt(x
(t)
i |x

(t−1)
i )

, i = 1, . . . , n
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Sequential importance sampling

Fundamental importance equality

Preservation of unbiasedness

E
[
h(X(t))

π(X(t))

qt(X(t)|X(t−1))

]

=

∫
h(x)

π(x)

qt(x|y)
qt(x|y) g(y) dx dy

=

∫
h(x)π(x) dx

for any distribution g on X(t−1)
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Population Monte Carlo Algorithm

PMCA: Population Monte Carlo Algorithm

At time t = 0

Generate (xi,0)1≤i≤N
iid∼ Q0

Set ωi,0 = {π/q0}(xi,0)

Generate (Ji,0)1≤i≤N
iid∼M(1, (ω̄i,0)1≤i≤N )

Set x̃i,0 = xJi,0

At time t (t = 1, . . . , T ),

Generate xi,t
ind∼ Qi,t(x̃i,t−1, ·)

Set ωi,t = {π(xi,t)/qi,t(x̃i,t−1, xi,t)}
Generate (Ji,t)1≤i≤N

iid∼M(1, (ω̄i,t)1≤i≤N )
Set x̃i,t = xJi,t,t.

Self-norm’ed weights
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Population Monte Carlo Algorithm

Links with sequential Monte Carlo (1)

Hammersley & Morton’s (1954) self-avoiding random walk
problem

Wong & Liang’s (1997) and Liu, Liang & Wong’s (2001)
dynamic weighting

Chopin’s (2001) fractional posteriors for large datasets

Rubinstein & Kroese’s (2004) cross-entropy method for rare
events
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Links with sequential Monte Carlo (2)

West’s (1992) mixture approximation is a precursor of smooth
bootstrap

Gilks & Berzuini (2001) SIR+MCMC: the MCMC step uses a
πt invariant kernel

Hürzeler & Künsch’s (1998) and Stavropoulos &
Titterington’s (1999) smooth bootstrap

Warnes’ (2001) kernel coupler

Mengersen & Robert’s (2002) “pinball sampler” (MCMC
version of PMC)

Del Moral & Doucet’s (2003) sequential Monte Carlo sampler,
with Markovian dependence on the past x(t) but (limited)
stationarity constraints
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Choice of the kernels Qi,t

After T iterations of the previous algorithm, the PMC estimator of
Π(h) is given by

Π̂PMC
N,T (h) =

N∑

i=1

ω̄i,Th(xi,T ).

or

Π̄PMC
N,T (h) =

1

N

T∑

t=1

N∑

i=1

ω̄i,th(xi,t).

Given FN,t−1, how to construct Qi,t(FN,t−1)?
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Choice of the kernels Qi,t

D kernel PMC

Idea:

Take for Qi,t a mixture of D fixed transition kernels

D∑

d=1

αtd qd(x, ·)

and set the weights αt+1
d equal to previous survival rates

Survival of the fittest:

The algorithm should automatically fit the mixture to the target
distribution
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Choice of the kernels Qi,t

DPMCA: D-kernel PMC Algorithm

At time t = 0, use PMCA.0 and set α1,N
d = 1/D

At time t (t = 1, . . . , T ),

Generate (Ki,t)1≤i≤N
iid∼M(1, (αt,Nd )1≤d≤D)

Generate (xi,t)1≤i≤N
ind∼ QKi,t(x̃i,t−1, ·)

and set ωi,t = π(xi,t)/qKi,t(x̃i,t−1, xi,t);

Generate (Ji,t)1≤i≤N
iid∼M(1, (ω̄i,t)1≤i≤N )

and set x̃i,t = xJi,t,t , α
t+1,N
d =

∑N
i=1 ω̄i,tId(Ki,t).
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Choice of the kernels Qi,t

An initial LLN

Under the assumption

(A1) ∀d ∈ {1, . . . , D},Π⊗ Π {qd(x, x′) = 0} = 0

with γu the uniform distribution on {1, . . . , D},

Proposition

If (A1) holds, for h ∈ L1
Π⊗γu and every t ≥ 1,

N∑

i=1

ω̄i,th(xi,t,Ki,t)
N→∞−→P Π⊗ γu(h).
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Choice of the kernels Qi,t

Bad!!!

Even very bad because, while

N∑

i=1

ω̄i,th(xi,t)
N→∞−→P Π(h),

convergence to γu implies that

N∑

i=1

ω̄i,tIKi,t=d
N→∞−→P

1

D
.

At each iteration, every weight converges to 1/D:
the algorithm fails to learn from experience!!!
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Choice of the kernels Qi,t

Saved by Rao-Blackwell !!

Idea:

Use Rao-Blackwellisation by deconditioning the chosen kernel

[Gelfand & Smith, 1990]

Use the whole mixture in the importance weights

π(xi,t)∑D
d=1 α

t,N
d qd(x̃i,t−1, xi,t)

instead of
π(xi,t)

qKi,t(x̃i,t−1, xi,t)

and in the kernels weights αt,Nd
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Choice of the kernels Qi,t

RBDPMCA: Rao-Blackwellised D-kernel PMC Algorithm

At time t (t = 1, . . . , T ),

Generate

(Ki,t)1≤i≤N
iid∼ M(1, (αt,Nd )1≤d≤D)

and
(xi,t)1≤i≤N

ind∼ QKi,t(x̃i,t−1, ·)

Set ωi,t = π(xi,t)

/∑D
d=1 α

t,N
d qd(x̃i,t−1, xi,t)

Generate

(Ji,t)1≤i≤N
iid∼ M(1, (ω̄i,t)1≤i≤N )

and set x̃i,t = xJi,t,t, α
t+1,N
d =

∑N
i=1 ω̄i,tα

t
d.
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Choice of the kernels Qi,t

LLN (2) and convergence

Proposition

Under (A1), for h ∈ L1
Π and for every t ≥ 1,

1

N

N∑

k=1

ω̄i,th(xi,t)
N→∞−→P Π(h)

αt,Nd
N→∞−→P αtd

where (1 ≤ d ≤ D)

αtd = αt−1
d

∫ (
qd(x, x′)

∑D
j=1 α

t−1
j qj(x, x′)

)
Π⊗ Π(dx, dx′).

Population Monte Carlo and adaptive sampling schemes

Population Monte Carlo Algorithm

Choice of the kernels Qi,t

Kullback divergence

For α ∈ S,

KL(α) =

∫ [
log

(
π(x)π(x′)

π(x)
∑D

d=1 αdqd(x, x′)

)]
Π⊗ Π(dx, dx′)

Kullback divergence between Π and the mixture.

Goal

Obtain the mixture of qd’s closest to Π for the Kullback divergence
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Choice of the kernels Qi,t

Recursion on the weights

Define

Ψ(α) =

(
αd

∫ [
qd(x, x′)

∑D
j=1 αjqj(x, x

′)

]
Π⊗ Π(dx, dx′)

)

1≤d≤D

on the simplex

S =

{
α = (α1, . . . , αD); αd ≥ 0 , 1 ≤ d ≤ D and

D∑

d=1

αd = 1

}
.

and
αt+1 = Ψ(αt)
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Choice of the kernels Qi,t

Connection with RBDPMCA ??

Under the assumption (1 ≤ d ≤ D)

(A2) −∞ <

∫
log(qd(x, x′))Π⊗ Π(dx, dx′) <∞

Assumption automatically satisfied when all π/qd’s are bounded.

Proposition

Under (A1) and (A2), for every α ∈ S,

KL(Ψ(α)) ≤ KL(α).

c©The Kullback divergence decreases at every iteration of
RBDPMCA!!!
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Choice of the kernels Qi,t

An integrated EM interpretation

For x̄ = (x, x′) and K ∼M(1, (αd)1≤d≤D),

αmin = arg min
α∈S

KL(α) = arg max
α∈S

∫
log pα(x̄)Π⊗ Π(dx̄)

= arg max
α∈S

∫
log

∫
pα(x̄,K)dK Π⊗ Π(dx̄)

Then αt+1 = Ψ(αt) means

αt+1 = arg max
α

∫∫
Eαt(log pα(X̄,K)|X̄ = x̄)Π⊗ Π(dx̄)

and
lim
t→∞

αt = αmin

Population Monte Carlo and adaptive sampling schemes
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Choice of the kernels Qi,t

CLT

Proposition

Under (A1), for every h such that

min
d∈{1,...,D}

∫
h2(x′)π(x)/qd(x, x′)Π⊗ Π(dx, dx′) <∞

1√
N

N∑

i=1

(ω̄i,th(xi,t)− Π(h))
L N (0, σ2

t )

where

σ2
t =

∫ {
(h(x′)− Π(h))2 π(x′)

∑D
d=1 α

T
d qd(x, x′)

}
Π⊗ Π(dx, dx′).
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Toy (1)

Example (A toy example (1))

Target 1/4N (−1, 0.3)(x) + 1/4N (0, 1)(x) + 1/2N (3, 2)(x)

3 proposals: N (−1, 0.3), N (0, 1) and N (3, 2)

1 0.0500000 0.05000000 0.9000000
2 0.2605712 0.09970292 0.6397259
6 0.2740816 0.19160178 0.5343166
10 0.2989651 0.19200904 0.5090259
16 0.2651511 0.24129039 0.4935585

Table: Weight evolution
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Illustrations

Toy (1)

Figure: Target and mixture evolution
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Illustrations

Toy (2)

Example (A toy example (2))

Target N (0, 1).

3 Gaussian random walks proposals:
q1(x, x′) = fN (x,0.1)(x′),
q2(x, x′) = fN (x,2)(x′)
and q3 = fN (x,10)(x′)

Use of the Rao-Blackwellised 3-kernel algorithm with N = 100, 000
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Toy (2)

1 0.33333 0.33333 0.33333
2 0.24415 0.43145 0.32443
3 0.19525 0.52445 0.28031
4 0.10725 0.72955 0.16324
5 0.08223 0.83092 0.08691
6 0.06155 0.88355 0.05490
7 0.04255 0.92950 0.02795
8 0.03790 0.93760 0.02450
9 0.03130 0.94505 0.02365
10 0.03460 0.94875 0.01665

Table: Evolution of the weights

Population Monte Carlo and adaptive sampling schemes

Illustrations

Toy (2)
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Figure: A few examples of convergence on the divergence surface
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Illustrations

Mixtures

Example (Back to Gaussian mixtures)

iid sample y = (y1, . . . , yn) from

pN
(
µ1, σ

2
)

+ (1− p)N
(
µ2, σ

2
)

where p 6= 1/2 and σ2 are fixed and

µ1, µ2 ∼ N
(
α, σ2/δ

)

Use of the random walk RBDPMC with D different scales

N ((µ)
(t−1)
i , vi)

Population Monte Carlo and adaptive sampling schemes

Illustrations

Mixtures
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Figure: PMC sample (N=1000) after 10 iterations.
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Further advances

1 Crash course in simulation

2 Population Monte Carlo Algorithm

3 Illustrations

4 Further advances
2xRB
Variance minimisation
h-entropy
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Further advances

2xRB

Origin discrimination

Simple RB weight

ωi,t = π(xi,t)

/ D∑

d=1

αt,Nd qd(x̃i,t−1, xi,t)

still too local (dependent on i)

Paradox

Same value + different origin = different weight!

Population Monte Carlo and adaptive sampling schemes

Further advances

2xRB

Double Rao–Blackwellisation

Replace ωi,t with 2×Rao–Blackwellised version

ω2RB
i,t = π(xi,t)

/ N∑

j=1

ω̄2RB
j,t−1

D∑

d=1

αt,Nd qd(x̃j,t−1, xi,t)

c©If xi,t = x`,t, then ω2RB
i,t = ω2RB

`,t

Better recovery in multimodal situations but O(N 2) cost

Population Monte Carlo and adaptive sampling schemes

Further advances

2xRB

New criterion

Marginal divergence

K̃L(α) =

∫ [
log

(
π(x′)∫

Π(dx)
∑D

d=1 αdqd(x, x′)

)]
Π(dx′).

More rational Kullback divergence between Π and the integrated
mixture
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Further advances

2xRB

Weight actualisation

Theoretical EM-like step

αt+1
d = Eπ

[
αtd

∫
Π(dx)qd(x, x′)∫

Π(dx)
∑D

d=1 αdqd(x, x′)

]

Implementation

αt+1
d = αtd

N∑

i=1

ω̄2RB
i,t

∑N
j=1 ω̄

2RB
j,t−1qd(xj,t−1, xi,t)

∑N
j=1 ω̄

2RB
j,t−1

∑D
d=1 α

t
dqd(xj,t−1, xi,t)

[O(N2d2)]

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

Aiming at variance reduction

Estimation perspective for approximating

I =

∫
f(y)π(y) dy

Proposition

The optimal importance distribution

g?(x) =
|f(x)|π(x)∫
|f(y)|π(y) dy

achieves the minimal variance for estimating I

A formal result: requires exact knowledge of
∫
|f(y)|π(y) dy

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

SIS version

For the self-normalised version, the optimum importance function is

g](x) =
|f(x)− I|π(x)∫
|f(y)− I|π(y) dy

Still not available!

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

Weight update

Try instead to get a guaranteed variance reduction, using recursion

αt+1,N
d =

N∑

i=1

ω̄2
i,t


h(xi,t)−N−1

N∑

j=1

ω̄j,th(xj,t)




2

Id(Ki,t)

N∑

i=1

ω̄2
i,t


h(xi,t)−N−1

N∑

j=1

ω̄j,th(xj,t)




2 .
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Further advances

Variance minimisation

Theoretical version

...with theoretical equivalent

Ψ(α) =



νh

(
αdqd(x,x′)

(
PD
l=1 αlql(x,x

′))2

)

σ2
h(α)




1≤d≤D

where

νh(dx, dx′) = π(x′)(h(x′)− π(h))2π(dx)π(dx′)

and

σ2
h(α) = νh

(
1

∑D
d=1 αdqd(x, x′)

)

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

Variance reduction in action

Proposition

Under (A1), for all α ∈ S ,

σ2
h(Ψ(α)) ≤ σ2

h(α) ,

lim
t→∞

αt = αmin and αt,Nd
N→∞−→P αtd

c©The variance decreases at every iteration of RBDPMCA

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

Illustration

Example

Case of a N (0, 1) target, h(x) = x and mixture of D = 3
independent proposals

N (0, 1)

C (0, 1) (a standard Cauchy distribution)

±
√

G a(0.5, 0.5) where s ∼ B(1, 0.5) (Bernoulli distribution
with parameter 1/2) [This is the optimal choice, g∗!]

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation

t δt,N αt,N1 αt,N2 αt,N3 var(δt,N )

1 .00126 .1 0.8 0.1 0.982
2 .00061 .112 0.715 0.173 0.926
3 -.00124 .116 0.607 0.276 0.863
5 .00248 .108 0.357 0.534 0.742

10 .00332 .049 0.062 0.888 0.650
15 .00284 .026 0.015 0.958 0.640
20 .00062 .019 0.004 0.976 0.638

Table: PMC estimates for N = 100, 000 and T = 20.
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Further advances

Variance minimisation

Example (Cox-Ingersol-Ross model)

Diffusion
dXt = k(a−Xt)dt + σ

√
XtdWt

discretised as (δ > 0)

Xt+1 = Xt + k(a−Xt)δ + σ
√
δXtεt

Computation of a European option price E[(K −XT )+]
Requires the simulation of the whole path using independent

1 exact Gaussian distribution shifted by a1

2 exact Gaussian distribution

3 exact Gaussian distribution shifted by a3

Population Monte Carlo and adaptive sampling schemes

Further advances

Variance minimisation
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Figure: Cumulated αd’s
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Further advances

h-entropy

Another Kullback criterion

Given the optimal choice g], another possibility is to minimize the
h-divergence

K̃L(α) =

∫ [
log

(
g](x′)∫

Π(dx)
∑D

d=1 αdqd(x, x′)

)]
Π(dx′).

Plusses

Gets closer to the minimal variance solution and can be extended
to parameterised kernels qd’s


