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Readership: intended to be broad, including an advanced undergraduate
audience, but students may lack the necessary maturity for this endeavour
and the book would more likely benefit more senior readers.

A Comparison is pleasant to read, written in a congenial style (especially
the final ”fatherly advices”!), and the decision-theoretic background is well-
set. Its self-declared purpose of “identify[ing] the boundary between Bayes
estimators which tend to outperform standard frequentist estimators and
Bayes estimators which don’t” is commendable in that an objective com-
parison of Bayesian versus frequentist estimators should appeal to anyone.
However, the focus of A Comparison ends up being too narrow to appeal to a
wide audience, given that the book revolves around papers written jointly or
singly by the author on this topic and that it is set within a point estimation
framework where there exists a “best” unbiased estimator, a condition ab-
sent from most estimation problems (Lehmann and Casella, 1998). (Other
inferential aspects like testing are not covered.)

Towards the comparison of frequentist and Bayesian procedures, since
under a given prior G, the optimal procedure always is associated with
G, A Comparison introduces a “true prior” G0 that should calibrate the
comparison. Unsurprisingly, the conclusion is that if G is close enough to G0,
then the Bayesian procedure does better than the frequentist one. Since this
improvement depends on an unknown “truth”, the practical implications are
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limited. From a Bayesian perspective, inference under “wrong” priors has
been studied in the 90’s as Bayesian robustness (Berger et al., 1996).

A Comparison insistance in using conjugate (proper) priors is inappro-
priate in conjunction with shrinkage estimation, since truly Bayesian shrink-
age estimators correspond to hierarchical priors (Berger and Robert, 1990).
Furthermore, the appeal of self-consistency (Chapter 6) is limited: a prior
is self-consistent if, when prior expectation and observation coincide, prior
and posterior expectations are equal. This constraint focus on a zero proba-
bility event and is not parameterisation-invariant, while being restricted to
natural conjugate priors, e.g. excluding mixtures of conjugate priors.

Chapter 9 offers a new perspective on non-identifiability, but focus on
the performances of the Bayesian estimates of the non-identifiable part. The
appeal of the Bayesian approach is rather to infer on the identifiable part
by integrating out non-identifiable parameters. Chapters 10–11 about com-
bining experiments are interesting but a modern Bayesian analysis would
ressort to a non-parametric modelling rather than to empirical Bayes tech-
niques.

In conclusion, A Comparison does not revolutionarise the time-old de-
bate about the relevance of Bayesian procedures towards frequentist effi-
ciency or about relying on frequentist estimates under weak prior informa-
tion. Given my reservations, I would have difficulties to advertise it as a
textbook.
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