
Identification of Regeneration Times in MCMC Simulation, with

Application to Adaptive Schemes

Anthony E. Brockwell and Joseph B. Kadane

June 16, 2004

Abstract

Regeneration is a useful tool in Markov chain Monte Carlo simulation, since it can be used to

side-step the burn-in problem and to construct better estimates of the variance of parameter es-

timates themselves. It also provides a simple way to introduce adaptive behaviour into a Markov

chain, and to use parallel processors to build a single chain. Regeneration is often difficult to

take advantage of, since for most chains, no recurrent proper atom exists, and it is not always

easy to use Nummelin’s splitting method to identify regeneration times. This paper describes

a constructive method for generating a Markov chain with a specified target distribution and

identifying regeneration times. As a special case of the method, an algorithm which can be

“wrapped” around an existing Markov transition kernel is given. In addition, a specific rule

for adapting the transition kernel at regeneration times is introduced, which gradually replaces

the original transition kernel with an independence-sampling Metropolis-Hastings kernel using

a mixture normal approximation to the target density as its proposal density. Computational

gains for the regenerative adaptive algorithm are demonstrated in examples.

Keywords: regenerative simulation, adaptive Markov chain Monte Carlo, splitting, atoms, burn-

in, mixture approximations, parallel processing

1

1 Introduction

Markov chain Monte Carlo (MCMC) methods have become popular in the last decade as a tool

for exploring properties of distributions which are known only up to a constant of proportionality.

The basic idea is to construct an ergodic Markov chain whose limiting distribution is the same as

the distribution of interest π (called the target distribution). Further details, as well as information

about various aspects of implementation, are given in a variety of sources, including Tierney (1994),

Gilks et al. (1996), and Robert and Casella (1999). Development of the underlying probabilistic

theory of Markov chains taking values in a general state-space can be found in Revuz (1975),

Nummelin (1984), and Meyn and Tweedie (1993).

There are several important problems associated with standard methods of constructing Markov

chains for Monte Carlo simulation. The first is a convergence problem, sometimes known as the

“burn-in problem”. One does not generally know how long it takes before the chain is (by some

measure) sufficiently close to its limiting distribution. A standard approach to dealing with this

is simply to discard some initial portion of the chain, labelling it as a “burn-in” component of

the chain. However, without the ability to start the chain with a “perfect sample” from the

target distribution, the problem, although reduced, still remains. A second problem is the inherent

correlation between successive elements of the chain, which makes it difficult to estimate the variance

of the Monte Carlo estimates. One widely-adopted method for estimating this variance is the batch-

means method, which relies on division of the Markov chain into equal-length segments. As pointed

out by Glynn and Iglehart (1990), batch-means estimates using fixed batch sizes are not consistent

for the true normalized variance, although Chien et al. (1997) point out that by allowing the batch

size to increase along with the length of the chain, one can obtain a consistent estimator. A related

problem is that the chain might “mix” poorly. Even if the chain starts in exactly the limiting

distribution, it may take a long time for the chain to explore all interesting parts of the state-

space, particularly when the correlation between successive elements of the chain is high. A fourth

problem is the simple computational burden required to carry out MCMC simulation. Errors in

2

integrals approximated by MCMC simulation are approximately proportional to the inverse of the

square root of the length of the chain, hence Markov chains often need to be relatively long to give

accurate estimates of integrals.

Regenerative simulation provides a means of dealing with all of these problems. As discussed

in Crane and Iglehart (1975a), Crane and Iglehart (1975b), Crane and Lemoine (1977), Ripley

(1987), and more recently in Mykland et al. (1995), Jones and Hobert (2001),and Robert (1995),

regenerative simulation can be used to avoid the burn-in problem and to get consistent estimates

of the variance of estimators themselves. Gilks et al. (1998) show how regeneration can be used to

introduce so-called “adaptive” schemes into MCMC simulation. These schemes allow parameters of

the transition kernel to be modified as the chain is being generated, to improve mixing properties.

Mykland et al. (1995) also hint at the possibility of using regeneration to “parallelize” generation of a

Markov chain. Constructing a Markov chain on parallel processors can give dramatic improvements

in speed. (See, e.g. Geyer, 1992, for discussion of the relative merits of constructing a single long

chain rather than multiple short chains.)

Loosely speaking, a regenerative process “starts again” probabilistically at each of a set of random

stopping times, called regeneration times. If regeneration times can be identified in an ergodic

Markov chain, then tours of the chain between these times are independent and identically dis-

tributed (iid) entities. By generating a fixed number of tours (this is typically done by starting

the chain in its regenerative state and stopping it at a regeneration time), one is able to estimate

the variance of estimators themselves, and furthermore, there is no need for the tours to be gen-

erated on a single processor - they can be generated separately on different processors and then

“patched together” in any order which doesn’t depend on the contents of the tours themselves.

Since tours are iid, the problem of burn-in is avoided. In addition, results of Gilks et al. (1998)

establish that parameters (which could be, for instance, variances of proposal distributions used in

a Metropolis-Hastings chain) can be modified at each regeneration time, without disrupting consis-

tency of MCMC estimators. This procedure, carried out carefully, can significantly improve mixing

3

of the chain.

Although every ergodic Markov chain is regenerative (this follows from Theorem 5.2.3 of Meyn and

Tweedie, 1993), identification of regeneration times in a Markov chain is generally a difficult problem

(unless the chain takes values in a finite state-space). Mykland et al. (1995) give an ingenious

method, based on the splitting technique of Nummelin (1978) for identifying regeneration times in

a large class of Markov chains (including chains generated by the standard algorithms for MCMC

simulation). Their method relies on establishing a so-called “minorization condition”, which is

essentially a decomposition of the transition kernel of the chain into two components, one of which

does not depend on the current state of the chain. Geyer and Thompson (1995) also describe

a method of identifying regeneration times in a chain generated using their simulated tempering

approach, assuming that it is possible to generate independent samples at a particular temperature

level. However, it can be problematic to determine how to obtain the independent samples.

In this paper, we present an alternative way of identifying regeneration times, which relies on

constructing a Markov chain on an enlarged state-space. The chain is then (by construction)

guaranteed to satisfy the minorization condition, and regeneration times are trivial to identify.

The idea is to modify the initial target distribution π by mixing it with a point mass concentrated

on an “artificial atom” α which is outside the state-space E. It is then a straightforward matter

(for instance, using the Metropolis-Hastings Algorithm) to construct a Markov chain with the

new target distribution. For this chain, the state α is Harris-recurrent (i.e. with probability one, it

occurs infinitely many times). By the Markov property, the times at which the new chain hits α are

regeneration times. On the face of it, this might not seem useful, since the new chain doesn’t have

the desired target distribution. However, to recover an ergodic chain with limiting distribution π,

one can simply delete every occurrence of the state α from the new chain. The points immediately

after the (deleted) occurrences of the state α are then regeneration times in a Markov chain with

limiting distribution π. This makes identification of regeneration times trivial. Møller and Nicholls

(2001) use a generalized form of this mixed target distribution for purposes of perfect-sampling.

4

They do not, however address applications in regenerative simulation or parallel processing. (Note

also that this approach cannot be regarded as a special case of simulated tempering with the

distribution for one temperature level being a point mass concentrated on α, since the simulated

tempering method requires distributions on adjacent levels to have the same support.)

In addition to presenting this “constructive” method for identification of regeneration times, we

describe how an existing transition kernel can be embedded into a new kernel for which identification

of regeneration times is trivial. This is described in terms of our state-space augmentation approach,

but the embedding can also be thought of as effectively adding an independence-sampler in between

each application of the original kernel (Mykland et al., 1995, also advocate this idea at the end of

their Section 4), and provides a convenient way to make the transition from standard to regenerative

MCMC simulation.

We also describe an adaptive algorithm which progressively replaces an original kernel, with an

independence sampler for which the proposal distribution is constructed as a crude mixture ap-

proximation to the target distribution. This adaptation is easily incorporated into the framework

we use to identify regeneration times, and the idea is very similar to that used by Chauveau and

Vandekerkhove (2002), but avoids problems associated with construction of a histogram to repre-

sent a current approximation to the target distribution. In terms of mixing, the adaptive algorithm

typically outperforms non-adaptive algorithms. Other adaptive schemes have been proposed, in-

cluding the adaptive direction sampling method of Gilks et al. (1994) and the normal kernel coupling

method of Warnes (2000). These methods are not adaptive in the sense that the transition kernel

changes over time, however. Instead, they create parallel chains, and allow updates for each chain

to depend not only on its own current value, but also on the current values of the other chains. Fur-

thermore, both adaptive direction sampling and normal kernel coupling represent generalizations

of random walk proposal based samplers. As such, they are not necessarily useful in cases where

random walk proposals perform poorly. Tierney and Mira (1999) also describe a scheme in which

rejected proposals may be retried, effectively allowing the data to determine which of two forms of

5

proposal distribution is preferred. In contrast with all of these approaches, the scheme described

in this paper allows the transition kernel itself to be modified (at regeneration times) based on the

entire past history of the chain. In general, this allows for greater flexibility in the class of adaptive

schemes. As Tierney and Mira (1999) point out, there is a significant variety of adaptive schemes,

and usually, choice of the best scheme will be highly problem-specific. Thus we do not carry out

numerical comparisons of performance between our proposed scheme and other existing adaptive

schemes, as one could almost always find examples which favor one particular scheme. Rather, our

goal is to introduce a flexible and relatively generic adaptive scheme, and to demonstrate that it is

easy to incorporate into the method we propose for identifying regeneration times.

Section 2 introduces the proposed method for constructing a regenerative chain. Section 3 gives

more explicit details on how it can be used for purposes of regenerative and adaptive simulation.

A general adaptive algorithm is given for estimating the expectation of a function of an unknown

parameter as well as the variance of the estimator itself, and a specific adaptation mechanism is

described. In Section 4, we present examples of application of the method. Proofs, additional

theoretical results, and additional analysis of examples are given in an on-line supplemental docu-

ment available at http://www.amstat.org/publications/jcgs/ftp.html.

2 The Method

We propose the following method for constructing a Markov chain and identifying regeneration

times.

The main idea is to enlarge the state-space from E to

E∗ = E ∪ α,

where α is a new state called the artificial atom. (Note that the artificial atom is an abstract creation

which should not be confused with, for instance, any member of the set E, or any particular number

6

on the real line.) Then it is possible (as described in Subsection 3.2) to construct a Markov chain

{Yt, t = 0, 1, 2, . . .} with Y0 = α and with limiting distribution

π∗
p(A) = (1 − p)π(A \ α) + pIA(α), (1)

defined on appropriate subsets A of E∗, where p is some constant in the interval (0, 1). The new

limiting distribution π∗
p is a mixture distribution which assigns mass p to the new state α and mass

(1 − p) to the original distribution π. Next let τY (j), j = 1, 2, . . . , denote the jth time after time

zero that the chain {Yt} hits the state α, with τY (0) = 0, so that

τY (j) = min{k > τY (j − 1) : Yk = α}, j = 1, 2, 3, . . . , (2)

and define the tours Y 1, Y 2, . . . to be the segments of the chain between the hitting times, that is

Y j = {Yt, τY (j − 1) < t ≤ τY (j)}, j = 1, 2, (3)

Once the Markov chain {Yt} has been generated, the next step is to recover a regenerative chain

with limiting distribution π. This can be done quite simply. Define the chain {Zt, t = 0, 1, 2, . . .}
to be exactly the chain {Yt}, with every occurrence of the state α removed. Since the state α occurs

exactly once at the end of each tour Y j , {Zt} can be constructed by stringing together the tours Y j

whose length is larger than one, after removing the last element (which is equal to α) from each one.

Tours Zj of {Zt} are then defined by their correspondence to the truncated tours of {Yt}. We denote

by Tj the time at which the (j + 1)th tour of {Zt} begins, for j = 0, 1, 2, . . ., with the convention

that T0 is equal to zero, so we can then write the tour lengths as Nj = Tj − Tj−1, j = 1, 2,

The following result, proved in the on-line supplemental document, establishes the validity of this

procedure.

Theorem 2.1 Suppose that {Yt, t = 0, 1, 2, . . .} is an ergodic Markov chain taking values in E∗

with Y0 = α and limiting distribution π∗
p given by (1). Let the process {Zt} be constructed from

{Yt} in the manner described above. Then {Zt} is an ergodic Markov chain taking values in E

7

with limiting distribution π. Furthermore, the times Tj , j = 0, 1, 2, . . . are regeneration times for

the chain. In other words, the Markov chains {Zt−Ti , t = Ti, Ti + 1, . . .}, i ≥ 0 are identically

distributed, and given any Ti and non-negative integers s and t, Zs and Zt are independent if

s < Ti < t.

Furthermore, the following result, also proved in the on-line supplemental document, establishes a

connection between this method and the minorization condition approach of Mykland et al. (1995).

Theorem 2.2 Let {Zt} be the Markov chain constructed as described above. Also define the tran-

sition kernels Q(x,A) = Pr [Zt+1 ∈ A|Zt = x] and P (x,A) = Pr [Yt+1 ∈ A|Yt = x]. Then Q(·, ·)
satisfies the minorization condition

Q(x,A) ≥ s(x)ν(A),

with s(x) = P (x, α) and ν(A) = P (α,A)
1−P (α,α) .

Theorem 2.2 states that the prescribed construction of {Zt} automatically ensures that the mi-

norization condition is satisfied. In fact, with the given values of s(x) and ν(A), the procedure

given by Mykland et al. (1995) would identify exactly the same regeneration times as those speci-

fied by Theorem 2.1.

3 Simulation Algorithms

In this section, we briefly review the technique of estimation using regenerative simulation, as

discussed in Crane and Lemoine (1977) and, more recently, by others. We also explicitly state

regenerative and adaptive MCMC simulation algorithms based on the construction we have intro-

duced.

8

3.1 Estimating Functionals of the Target Distribution

One is often interested primarily in estimating

πh =
∫

E
h(x)dπ(x)

for some integrable function h : E → R. Let tours Zj, tour lengths Nj , and cumulative tour lengths

Tj of the Markov chain {Zt} with limiting distribution π be as defined in the previous section. Also

let

Hj =
Tj−1∑

t=Tj−1

h(Zt), (4)

and assume that Hj and Nj have finite variances. (This assumption is generally difficult to check,

but Hobert et al., 2002, give sufficient conditions for it to hold.) Then by the strong law of large

numbers, the ratio estimator

Ĥn =

∑n
j=1 Hj∑n
j=1 Nj

=

∑n
j=1 Hj

Tj
(5)

converges almost surely to πh, and it follows from the central limit theorem that
√

n(Ĥn − πh)

converges to a N(0, σ2) distribution.

One way of estimating σ2 is as follows. Let Vj = Hj − πhNj, so that {Vj} is an i.i.d. sequence of

random variables, and define V̄n = n−1
∑n

j=1 Vj , N̄n = n−1
∑n

j=1 Nj , and µN = EN1. Then

E(
√

n(Ĥn − πh)2) = nE(V̄n/N̄n)2 (6)

� nE(V̄n/µN)2

=
1

µ2
N

Var(V1) � σ̂2
n,

where

σ̂2
n =

n−1
∑n

j=1(Hj − ĤnNj)2

N̄2
. (7)

In the preceding argument, in order to avoid dealing with the ratio of random variables in (6), N̄ is

effectively treated as the constant µN . Hence, although σ̂2
n is a consistent estimator of σ2, to limit

the error in the approximation for finite n, it is desirable for the coefficient of variation cn of N̄ to

9

be small. Mykland et al. (1995) suggest that the estimator should not be used if the coefficient is

larger than 0.01. The coefficient of variation cn depends on the distribution of the tour lengths Nj ,

which is usually not known. However, it may be estimated by

ĉn =
n∑

j=1

(Nj/Tn − 1/n)2. (8)

Furthermore, noting that cn (apart from some random variation) is proportional to n−1, if we have

ĉn1 > ε, then approximately n2 = n1(ĉn1ε
−1−1) additional tours are required to ensure that cn1+n2

is less than ε.

3.2 Constructing a Chain with Limiting Distribution π∗
p

In this section we give two methods which can be used to construct a chain taking values in E∗

with limiting distribution π∗
p (recall the definition (1)), (Note that the constant p is not specified in

advance, but the methods given below yield a Markov chain with limiting distribution π∗
p for some

unknown p in the interval (0, 1). The value of p depends on the unknown normalizing constant β.)

3.2.1 Metropolis-Hastings

One of the most obvious ways to construct {Yt} is simply to use the standard Metropolis-Hastings

Algorithm, making appropriate modifications to densities so that they are defined on E∗ instead

of only on E.

Assume that the measure π has a density (not necessarily with respect to Lebesgue measure),

which, for the sake of simplicity, we will also denote by π. In order to allow for the usual case

where the density is known only to within a constant of proportionality, we will assume that the

density integrates to an unknown constant β.

10

Define the density

π∗(y) =

⎧⎪⎨
⎪⎩

π(y), y ∈ E,

k, y = α

on E∗, where k is some positive constant, and let gθ(Yt, ·) denote a family of proposal distributions

on E∗, satisfying the property that for each θ, gθ(y, α) > 0 for all y ∈ E and gθ(α,A) > 0 for all

sets A such that π(A) > 0. Also define the acceptance probabilities

a1(Yt, Z) = min
(

1,
π∗(Z)gθ(Z, Yt)
π∗(Yt)gθ(Yt, Z)

)
, Y, Z ∈ E∗.

We introduce the parameter θ so that we can use adaptive methods for modifying the proposal dis-

tribution as the chain runs; this is described in the next subsection. Then the standard Metropolis-

Hastings Algorithm using proposal density gθ(·, ·), acceptance probabilities a1(·, ·), and target den-

sity π∗, generates a Markov chain with limiting distribution π∗
p, p = k(β + k)−1, on the augmented

space E. (Note that p is always strictly between 0 and 1, as required, in spite of the fact that β is

not known.)

Example 3.1: Suppose the original un-normalized target density on R is π(y) = exp(−y2/2). For

y ∈ {R ∪ α}, define π∗(y) = π(y) if y ∈ R, and π∗(y) = 1 if y = α. In order for the Metropolis-Hastings

chain to be irreducible, the proposals must allow the chain to be able to reach the state α with positive

probability, and to be able to reach sets in R of positive Lebesgue measure with positive probability. The

proposal density could be chosen for instance, as

g(y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.1, y ∈ R, z = α,

0.9(2π)−1/2 exp[−(z − y)2/2], y ∈ R, z ∈ R

(20π)−1/2 exp(−z2/20) y = α, z ∈ R,

0 y = α, z = α.

Thus for y ∈ R, the proposal z is a mixture of a random walk proposal on the real line, and a point mass

concentrated on α. For y = α, the proposal is on the real line, and has a N(0,10) distribution.

11

3.2.2 A Hybrid Kernel

An alternative method for constructing {Yt} is to build a hybrid kernel around an existing transition

kernel. (Gilks et al., 1998, also briefly mention the possibility of using a hybrid kernel.)

Suppose that a kernel Pθ(·, ·) is given for an ergodic Markov chain with limiting distribution π,

for instance, a Metropolis-Hastings or Gibbs sampling chain. The hybrid kernel consists of two

components. The first component leaves the state at α if it is already α, otherwise it updates

the state using the π-invariant kernel Pθ(·, ·). (Again, θ is a parameter which will enable us to

use adaptive methods as described in the next section.) The second component is a Metropolis-

Hastings step, in which the proposal is α if the current state is in E, and is drawn from a “re-entry

proposal distribution” φ on E if the current state is α. It is not difficult to verify that each of these

components has invariant distribution π∗
p for some p ∈ (0, 1), and that the hybrid kernel inherits

properties of irreducibility, aperiodicity, etc. from Pθ(·, ·).

Let

a2(V,W) =

⎧⎪⎨
⎪⎩

min(1, kφ(V)
π(V)), W = α

min(1, π(W)
kφ(W)), W ∈ E.

,

where k is some positive constant. The following algorithm uses this hybrid kernel approach,

building around an existing π-invariant kernel Pθ(·, ·) to obtain a Markov chain with limiting

distribution π∗
p, where (as in the previous subsection) p = k(β + k)−1

12

Algorithm 3.1: Hybrid Metropolis-Hastings

Is Yt = α?

With probability a2(V, W), set Yt+1 = W.
Otherwise set Yt+1 = V.

Replace t by t + 1.

Initialize: Set t = 0, Y0 = α.

Set V = α. Draw W from φ.

Yes

Draw V from Pθ(Yt, ·).
Set W = α.

No

In the on-line supplemental document, it is proved that, as long as the re-entry proposal distribution

φ has the same support as π (i.e. φ(A) > 0 ⇐⇒ π(A) > 0), the chain {Yt, t = 0, 1, 2, . . .} generated

by Algorithm 3.1 is ergodic with limiting distribution π∗
p.

Inspecting the form of the acceptance probability a2(V,W), it is clear that in order for the chain

to have high probabilities of acceptance in going from E to α and also in going from α to E, it is

necessary to have kφ(x) approximately equal to π(x) for values x in high-density regions of π. Thus

as a general rule, it is desirable to choose a re-entry proposal distribution φ which is reasonably

close to the normalized version of the target distribution π, and to choose k to be roughly of the

order of magnitude of φ(x)/π(x), where x is some point in a high-density region for π. (Recall that

we do not assume that the density π is normalized. Also note the parallel discussion in Mykland

et al., 1995, after Theorem 3, of the desirability of choosing a constant c appropriately.) Empirical

observations indicate that as φ becomes less similar to the normalized version of π, the coefficient

13

of variation of the distribution of tour lengths Nj tends to increase. In particular, more very large

and very small tour lengths are observed.

One can control the expected tour length (but not its variance) by adjusting the parameter k.

Increasing k reduces the expected tour length, while decreasing it increases the expected length.

(This follows directly from Theorem A.1, stated and proved in the on-line supplemental document.)

In the extreme case, if kφ(x) ≥ π(x) for all x ∈ E, then the algorithm becomes exactly a rejection-

sampling algorithm, yielding a chain which alternates between α and E, in which the non-α values

are i.i.d. draws from the target distribution.

In practice, a small segment of a chain generated using the original kernel Pθ(·, ·) can be used

to determine φ and k. In many cases, φ can be taken to be a mixture normal approximation to

the distribution of the elements of the initial segment, obtained, for instance, using the method

described later in this section. The constant k can then be selected to be approximately the average

value of π, evaluated over the elements of the initial segment (recall that π is not normalized),

divided by the average value of the density φ, evaluated over a number of draws from φ itself.

Algorithm 3.1 is particularly useful since it provides a simple means of wrapping up an exist-

ing MCMC algorithm for sampling from π to yield a Markov chain with limiting distribution π∗
p.

However, it is important to note that Algorithm 3.1 does not necessarily improve mixing of the un-

derlying kernel Pθ(·, ·). If Pθ(·, ·) mixes badly and the re-entry distribution is a poor approximation

to π, then the resulting chain {Yt} is also likely to mix badly. On the other hand, if Pθ(·, ·) mixes

badly and the re-entry distribution is a good approximation of π, the resulting chain will typically

exhibit improved mixing, since every tour’s first element will be close in distribution to π.

Example 3.2: Suppose again that the un-normalized target density is π(y) = exp(−y2/2). Assume

that Pθ(·, ·) is a random walk Metropolis-Hastings step. Given Yt ∈ R, it generates a random walk proposal

Z ∼ N(Yt, θ), computes the corresponding acceptance probability, and either accepts or rejects the proposal.

Assume that θ = 1. The re-entry proposal density could be chosen as φ(y) = (20π)−1/2 exp(−y2/20) and k

could be chosen to be equal to one. The chain would have initial state Y0 = α, and Algorithm 3.1 would

14

then generate Yt+1 from Yt by the following procedure.

1. If Yt = α, then set V = α. Otherwise generate V using the standard Metropolis-Hastings update as

follows.

(a) Draw a proposal Z ∼ N(Yt, θ).

(b) With probability min(π(Z)/π(Yt), 1), set V = Z. Otherwise set V = Yt.

2. If V ∈ R, then set

Yt+1 =

⎧⎪⎨
⎪⎩

α with probability min(1, φ(V)/π(V)),

V otherwise.

On the other hand, if V = α, draw a proposal W from φ, and set

Yt+1 =

⎧⎪⎨
⎪⎩

W with probability min(1, π(W)/φ(W)),

α, otherwise.

3.3 Adaptive Modification of the Kernel

Implementation of MCMC sampling schemes typically requires significant effort to be devoted

to design of a transition kernel in order to ensure that the chain is well-mixing. This design

procedure can include the selection of an appropriate parameterization of the quantities of interest,

as well as potential parameters of proposal distributions in a Metropolis-Hastings chain. It is

tempting to construct algorithms which modify these design parameters automatically as the chain

runs. However, even if for each fixed set of parameter values the kernel has the correct limiting

distribution, introduction of self-tuning can alter the limiting distribution of the process (which

will not necessarily be Markovian any more). Gelfand and Sahu (1994) give an interesting example

where this problem occurs. One way around this problem is to adopt the approach of Gilks et al.

(1998), who show that if the Markov chain is regenerative, then one can modify design parameters

at each regeneration time, and estimators are still well-behaved. In particular, Theorems 1 and 2

of Gilks et al. (1998) establish that under this self-tuning scheme, if some technical conditions are

15

satisfied, then (recall the definitions (5) and (7)) Ĥn is MSE-consistent for πh, and the quantity

σ2
n
∗ =

n
∑n

j=1(Hj − πhNj)2

T 2
n

(9)

converges in probability to σ2. The difference (σ2
n
∗ − σ̂2

n) (recall the definition (7)) is

σ2
n
∗ − σ̂2

n =
1

nN̄2

n∑
j=1

[
N2

j (Ĥ2
n − π2

h) − 2HjNj(Ĥn − πh)
]

= N̄−2(Ĥn + πh)(Ĥn − πh)n−1
n∑

j=1

N2
j − 2N̄−2(Ĥn − πh)n−1

n∑
j=1

HjNj .

Assuming that EHjNj, ENj, EN2
j , EH2

j N2
j , and EN4

j exist and are finite (as mentioned before,

this is generally difficult to check), then each of the terms (nN̄)−2, Ĥn + πh, Ĥn − πh, n−1
∑

N2
j ,

and n−1
∑

HjNj, converges in probability to some finite constant, with (Ĥn − πh) converging in

probability to zero. It follows that (σ2
n
∗ − σ̂2

n) converges in probability to zero, and hence that σ̂2
n

is a consistent estimator of σ2.

Thus in Algorithm 3.1, the kernel parameter θ can be changed every time the chain hits the state α,

based on an analysis of the past behaviour of the chain. Even though the process itself is no longer

(necessarily) Markovian, it consists of a sequence of tours which, in isolation, are each Markovian,

and the estimates Ĥn and σ̂2
n still have the desired consistency properties.

We now state an algorithm, based on the ideas presented in the previous sections, which estimates

the expection (with respect to the probability measure π) of a “function of interest” h(·), and allows

for adaptive modification of a tuning parameter θ. Let Qθ(·, ·) denote the transition kernel for a

chain whose limiting distribution is π∗
p. Given a desired number of tours M > 0, the following

algorithm constructs a regenerative chain, an estimate ĤM of
∫

h(x)dπ(x), and an estimate of the

variance of ĤM itself.

Intuitively, the new algorithm, stated below, works as follows. It repeatedly generates tours of a

Markov chain {Yt} with limiting distribution π∗
p, using the kernel Qθ(·, ·). Tours of length one (that

is, tours which consist only of the state α) are thrown out. Remaining tours are truncated just

before they hit α so as to become tours of a chain {Zt} with limiting distribution π. The sum over

16

each tour of the function of interest, evaluated at the chain’s state, is recorded, as is the length of

the tour. At the end of the mth tour, the tuning parameter θm+1 can be chosen based on analysis of

past history of the chain. Once a total of M tours have been generated, the algorithm terminates,

and equations (5) and (7) can be used to obtain the desired estimates.

Algorithm 3.2:

Initialize: Set Y0 = α, m = 1, t = 0, T0 = 0.
Choose some tuning parameter θ1.

Draw Yt+1 from Qθm(Yt, ·).
Replace t by t+1.

Is Yt = α?

Is Yt = α?

Set n = 1, x = h(Yt).

Draw Yt+1 from Qθm(Yt, ·).
Replace t by t+1.

Replace x by x + h(Yt).
Replace n by n+1.

No

Nm = n. Replace m by m+1.

Is m ≤ M?

Yes

Yes

Terminate and compute
desired estimates.

No

Choose θm,
based on analysis of

Y1, . . . , Yt.

No

Yes

Set hm = x, Tm = Tm−1 + n,

Most of Algorithm 3.2 is easily implemented. The only complicated part, obtaining draws from

a kernel Qθm(·, ·) with invariant distribution π∗
p, can be carried out using the basic Metropolis-

Hastings Algorithm appropriately modified as described in Section 3.2.1, or Algorithm 3.1. Some

consideration should be given also to the method by which the kernel parameter θm is updated,

17

although in the simplest case, one can construct a non-adaptive chain by fixing θm = θ∗ for all m.

Example 3.3: Suppose again that the un-normalized target density is π(y) = exp(−y2/2). The

approach described in Example 3.2 can be used, augmented by the following additional step.

3. If Yt = α and Yt+1 ∈ R, then a new tour has just begun. At this point, alter the value of θ as follows.

Let q be the proportion of acceptances in applications of Pθ(·, ·) from time 0 to time t. If q < 1/2,

then replace θ by 0.9θ. Otherwise replace θ by 1.1θ.

This scheme would adaptively adjust the random walk step size θ, aiming to reach an approximate average

acceptance rate of 1/2. It relies on the basic property that if θ is too small, then the acceptance probability

is roughly equal to one, while if θ is too large, the acceptance probability becomes close to zero.

3.4 An Adaptation Rule

Algorithm 3.2 allows for adaptation through selection (at the end of the mth tour) of the parameter

θm+1, which determines the form of the kernel Qθm+1(·, ·) used in the (m+1)th tour. In this section

we describe one method of doing this when the state space E is R
c, based on the concept that an

independence sampler with a proposal distribution closely matching the target distribution is near-

optimal in terms of mixing. (There are, of course, many other possible ways of adapting parameters

of a Markov chain; some of these are discussed briefly in Gilks et al., 1998)

Our approach is to start with a kernel Q0(·, ·), and as time goes by, to transform it progressively

into an independence-sampling kernel which uses a normal mixture approximation to the target

distribution as its proposal distribution. The mixture approximation itself is updated at the end

of each tour, based on the contents of the tour itself. We use a simple recursive update procedure,

described by Titterington (1984), to compute our mixture approximations. The update rule is as

follows. Given a multivariate normal mixture

ξm ∼
d∑

i=1

αiN(µi,Σi),

18

for which the parameters αi, µi,Σi, i = 1, 2, . . . , d are unknown, and an infinite sequence of draws

Y1, Y2, . . . from ξm, parameter estimates α̂
(j)
i , µ̂

(j)
i , Σ̂(j)

i can be updated sequentially, once after each

draw, by the formulae

µ̂
(j+1)
i ← µ̂

(j)
i +

w
(j)
i

jα̂
(j)
i

(yj+1 − µ̂
(j)
i)

Σ̂(j+1)
i ← Σ̂(j)

i +
w

(j)
i

jα̂
(j)
i

[(yj+1 − µ̂j
i)(yj+1 − µ̂

(j)
i)T − Σ̂(j)

i]

α̂
(j+1)
i ← α̂

(j)
i + j−1(w(j)

i − α̂
(j)
i),

where w
(j)
i ∝ α̂j

iφ(yj+1; µ̂
(j)
i , Σ̂(j)

i) with
∑d

i=1 w
(j)
i = 1, φ(·; ·, ·) denoting the multivariate normal

density. As Titterington (1984) points out, there is no guarantee of consistency of these sequentially

updated estimators, but for our purposes, since the mixture approximation is to be used to generate

proposals, we only require a crude approximation to the target distribution, and consistency is not

necessary for our adaptive method. Better methods for constructing mixture approximations have

been widely studied (see, e.g. McLachlan and Peel, 2000), but the majority of these methods cannot

be implemented sequentially, which prevents them from being useful in the procedure we propose.

We now state the full adaptive procedure to be used in Algorithm 3.2. Let the adaptive parameters

be defined by θm = (ηm, ξm), where, for each m, ηm is a constant in the interval (0, 1) and ξm is a

set of weights, mean vectors, and covariance matrices, defining a normal mixture distribution. We

denote the density of the mixture distribution by ξm(·).

Let

Qθ(x,A) = (1 − η)Q0(x,A) + ηRξ(x,A),

where Rξ(x,A) is an independence-sampling Metropolis-Hastings kernel, in which the proposals

have density ξ(·), that is,

Rξ(x,A) = IA(x)
∫

E
ξ(y)[1 − a3(x, y)]dy +

∫
A

ξ(y)a3(x, y)dy,

with a3(x, y) = min(1, π(y)ξ(x)(π(x)ξ(y))−1). Thus the kernel Qθ(·, ·) is a mixture of the original

kernel Q0(·, ·) and the independence-sampling Metropolis-Hastings kernel.

19

To initialize the adaptive parameters, let η1 = 0, and let ξ1 be some initial normal mixture approx-

imation to π. Then, at the end of the mth tour (m = 1, 2, . . .), carry out the following updates

1. Set ηm+1 = min(1.0 − (1.0 − ηm) ∗ κ, ζ), for some constants κ and ζ in the interval [0, 1].

2. Calculate the parameters of ξm+1 by starting with the mixture distribution ξm and updating

it sequentially using the rules given above, once for each element of the mth tour.

The first of these two updates increases the relative contribution of the independence sampler in

Qθm+1(·, ·), to a “maximal” proportional contribution of ζ. Choosing ζ = 1 allows the kernel to be

(as time increases to infinity) completely replaced by the independence sampler, and is potentially

dangerous if ζ becomes very close to one before ξ provides a reasonable approximation to the target

density. Choosing ζ < 1 ensures that some of the original kernel Q0(·, ·) is always retained, and

guards against the possibility of building an independence sampler based on the potentially false

belief that all important parts of the space have already been explored. The second update simply

refines the normal mixture approximation to the target distribution.

Under ideal circumstances, this procedure for adapting θ will gradually replace the original kernel

with an independence sampling Metropolis-Hastings kernel, whose proposal density ξm becomes

close to the true target density as m increases.

In some cases (particularly when the state-space E is high-dimensional), it can be impractical

to construct approximations to the target distribution on the entire state-space. However, if the

original kernel Q0(·, ·) consists of Metropolis-Hastings block-updates for subspaces of E, it often

makes sense to use the same basic idea, but to restrict approximations to the appropriate conditional

target densities on the subspaces, and progressively replace the original block-update rules with

Metropolis-Hastings independence sampling steps whose proposals are the respective conditional

approximations. If conditional target densities are difficult to approximate, a slightly less optimal

approach is to use the respective marginal target densities.

20

4 Examples

To examine the performance of Algorithm 3.2 we apply to it two problems.

As a measure of the mixing quality of Markov chains obtained, we compute the sample precision

per iteration (SPPI) of our estimates, which we define to be (σ̂2
nTM/M)−1, where M is the number

of tours generated, TM is the total length of the chain, and σ̂2
M is the estimator given by (7). For

the sake of comparison with results obtained non-regeneratively, we will also compute the SPPI

using the batch-means estimator for σ2. Since the SPPI is itself a random variable, we generate

multiple realizations of Markov chains, and show box-plots of the resulting SPPI values over the

different realizations.

Assuming that computational cost to obtain an iteration is roughly invariant, precision per iteration

is a direct measure of the computational efficiency of an MCMC simulation. It can be easily trans-

formed into other mixing measures, such as the efficiency measure used in Section 3.4 of Roberts

(1996). We adopt this particular measure for several reasons. Firstly, it is a direct measure of the

amount of information gained about a parameter per iteration of the chain. Given the SPPI and

the chain length, we can immediately compute a confidence interval for the parameter. Secondly,

it is additive - for instance, one would obtain roughly double the precision by doubling the total

number of tours generated (and hence approximately doubling the length of the chain). Finally,

the SPPI inherits consistency properties of σ̂2
n. It is consistent for the precision of the parameter

estimate divided by the chain length.

4.1 Dugongs

First we consider a data set used in Ratkowsky (1983), which has also been considered in Carlin and

Gelfand (1991). Length (Y) and age (X) measurements were made of 27 specimens of a particular

species of sea cows (dugongs), captured near Townsville, Queensland. As discussed in Ratkowsky

21

(1983), a frequently-used model for such a data set is

Yi ∼ N(µi, τ
−1)

µi = α − βγXi (10)

for the data, where Xi and Yi are the age and length of the ith dugong, respectively, and α > 0, β >

0, γ ∈ (0, 1), and τ > 0 are unknown model parameters. We assign the (relatively uninformative)

priors α ∼ N(0, 10000), β ∼ N(0, 10000), γ ∼ U(0, 1), and τ ∼ Gamma(0.001, 0.001). Our objective

is to determine the posterior mean of α, β, γ, and τ−1.

A Markov chain with the posterior as its limiting distribution can be constructed by computing full-

conditional distributions and updating each of the four parameters in turn. The parameters α,β and

τ have conjugate priors for the likelihood (10). Hence they can be updated by sampling directly

from their respective full-conditional distributions. The parameter γ does not have a conjugate

prior. However, it can be updated by using a single Metropolis-Hastings step whose target density

is proportional to the full-conditional density of γ. As our proposal distribution for the γ-update,

we choose a uniform distribution on the interval [0, 1). Denote this kernel by P (·, ·).

We simulate using

(A) the kernel P (no regeneration),

(B) the kernel P embedded into Algorithm 3.1, with a “bad” re-entry distribution,

(C) the kernel P embedded into Algorithm 3.1, with a “good” re-entry distribution, and

(D) the kernel P embedded into Algorithm 3.1, along with the adaptive scheme of Section 3.4.

For case (C), the (four-dimensional) re-entry proposal distribution φ is constructed by running the

original chain for 1000 iterations, and using these iterations to construct a normal approximation

to the target density, using the update rules described in Section 3.4. For case (B), we use the

re-entry proposal distribution of case (C), after subtracting 3 marginal standard deviations from

22

Parameter Estimates

Case A Case D

Function Post. Mean Std. Err. Post. Mean Std. Err.

α 2.6611 0.0013 2.6636 0.0004

β 0.9800 0.0003 0.9807 0.0002

γ 0.8659 0.0006 0.8669 0.0002

τ−1 0.00903 0.00001 0.00902 0.00001

Table 1: Posterior means, along with standard error estimates using the

regenerative method, from case (A): a non-adaptive, non-regenerative

chain (total length 1300000, batch length 4000), and case (D): the corre-

sponding regenerative adaptive chain (2000 tours, total length 1295719).

each component of the mean. In each case, the constant k is chosen so that log(k) is equal to

the average log-target density over the 1000 iterations, minus the average log-density of φ(·) over

1000 draws, minus a constant which is chosen (experimentally) to adjust the distribution of the

tour-lengths. For case (D), we use Algorithm 3.2, with the adaptation rule described in Section 3.4,

with parameters κ = 0.01 and ζ = 0.95. Sampling from the full-conditional is retained for α, β and

τ , but the uniform proposals for the γ-update are gradually replaced with independent proposals

coming from the conditional distribution of γ in a two-component mixture normal approximation

to the marginal target density of the full parameter vector.

In cases (B),(C),and (D), we simulate 200 chains, each of 2000 tours, with total length approx-

imately 1,300,000, and compute estimates and SPPIs using the regenerative approach. For the

non-regenerative case (A), we simulate 200 chains, each of length 1,300,000, and use the batch-

means method with batch size 4000 to compute SPPIs.

Table 1 gives posterior means along with their standard errors, estimated using both the original

23

(A) (B) (C) (D)

0
1

2
3

4
5

SPPIs of alpha

(A) (B) (C) (D)

0
5

10
15

20
25

SPPIs of beta

(A) (B) (C) (D)

0
5

10
15

20
25

SPPIs of lambda

(A) (B) (C) (D)

0
50

00
15

00
0

25
00

0
SPPIs of Inv(tau)

Figure 1: Box plots of sample precision per iteration (SPPI) for each

of the four parameters in the Dugong problem, for (A) non-regenerative

case, as well as for regenerative cases with (B) poor re-entry distributions

and (C) good re-entry distribution, and (D) regenerative and adaptive

case.

24

Median SPPIs

Parameter Case A Case B Case C Case D

α 0.41 0.39 0.40 3.59

β 5.28 6.03 5.79 13.59

λ 2.24 2.20 2.24 14.30

τ−1 3420.20 6156.24 5824.19 11867.50

Table 2: Median SPPI for each of the four parameters in the Dugong

problem, for each of the four cases.

kernel with no-regeneration, and using the regenerative method to construct an adaptive chain.

Figure 1 shows box plots of the SPPI over 200 separate regenerative chains, each one consisting of

2000 tours, in all four cases, and the median SPPI values are given in Table 2. The improvement

in SPPI due to use of the adaptive algorithm is clearly substantial. Roughly speaking, it appears

that one iteration of the adaptive chain is worth two to ten iterations of the non-adaptive chain,

with the gain also depending on which parameter is being considered. Furthermore, in this case,

mixing performance is relatively robust to poor choice of the re-entry distribution. This robustness

may be due in part to the fact that average tour length is around 650, so the distribution of the

first element of a tour makes a relatively small contribution to the overall quality of mixing. It

should be noted, however, that in cases where the re-entry distribution is substantially worse than

in case (B), Algorithm 3.1 can become virtually impossible to implement, since the probability of

obtaining an extremely long tour can increase to the point where the waiting time for the longest

of 2000 tours to be completed becomes unacceptable.

It is also informative to consider the distribution of tour lengths in both adaptive and non-adaptive

cases. Histograms, along with discussion, are given in the on-line supplemental document.

25

4.2 Monkeys and Free-Knot Splines

We next consider a more complicated problem. Ventura et al. (2002) describe experiments in which

a macaque monkey watches images appear on a screen. The monkey is trained to move its eyes in

response to certain visual cues, and an electrode measures numbers of “neuron-spikes” occurring

in a neuron in the monkey’s supplementary eye field. (The supplementary eye field is thought to

be involved in generating eye movements in response to stimuli.)

Figure 2 shows the number of spikes yk observed in time intervals [0.03k, 0.03(k + 1)), k =

0, 1, 2, . . . , 99, time measured in seconds, for one such task.

We assume that the observations {y0, . . . , y99} are Poisson with a time-varying rate, and can be

modelled by

Yk|r(·) ∼ Poisson(exp(r(k/99)), σ2), (11)

where r(·) is a cubic spline function with four knots, that is,

r(x) = β0 + β1x + β2x
2 + β3(x − ξ1)3+

+β4(x − ξ2)3+ + β5(x − ξ3)3+ + β6(x − ξ4)3+, x ∈ [0, 1],

where (x)+ = max(x, 0). The knot positions ξ1, . . . , ξ4 ∈ [0, 1] and the coefficients β0, . . . , β6 are

not known.

We adopt a Bayesian approach, assigning a Dirichlet(3, 3, 3, 3, 3) prior distribution to the gaps

between the knots, that is, to the vector (ξ1, ξ2 − ξ1, ξ3 − ξ2, ξ4 − ξ3, 1 − ξ4)T . The coefficients

βj are assigned (the relatively uninformative) independent normal priors with mean zero and

variance 1012. The likelihood for the model is easily computed from (11). Our objective is

to determine the posterior distribution of the “function of interest” h(·) consisting of the 100

fitted values r(k/99), k = 0, . . . , 99, as well as the squares of these values, arg max r(·), and

[arg max r(·)]2. Keeping track of the squares enables us to compute posterior standard deviations

for r(k/99), k = 0, . . . , 99 and arg max r(·).

26

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

S
pi

ke
 C

ou
nt

Time in Seconds

Figure 2: Monkey neuron spike counts, denoted by ’+’ symbols, in suc-

cessive 30 millisecond intervals, along with (dashed lines) posterior mean

of rates exp(r(t)), plus/minus 1.96 times the square root of posterior

variance of the fitted values, for one realization of an adaptive chain,

with 1000 tours and a total length of 131,560. Vertical lines show the

estimated 95% posterior interval for arg max r(x), rescaled to the [0, 3]

time scale of the original data.

27

In order to apply Algorithm 3.2, we first construct a transition kernel for a chain whose limiting

distribution is the posterior distribution of the parameter vector (ξ1, . . . , ξ4, β0, . . . , β6). We build

a hybrid kernel, which consists of Metropolis-Hastings kernels P1, P2, and P3, with proposals which

can be summarized as follows. Let β̂(ξ1, . . . , ξ4) denote the maximum likelihood estimate of the

coefficient vector (β0, . . . , β6) given the knot positions ξ1, . . . , ξ4, and let Σβ(ξ1, . . . , ξ4) denote the

estimated covariance matrix of β̂(ξ1, . . . , ξ4), plus a small constant times the identity matrix. (These

are straightforward to obtain, since conditioned on knot positions, the model (11) is simply a gen-

eralized linear model.) The proposal for P1(·, ·) is generated by adding a Dirichlet(30,30,30,30,30)

random variable, minus the vector (0.2,0.2,0.2,0.2,0.2), to the vector of knot gaps. Conditioned

on the proposed knot position ξ∗ = (ξ∗1 , . . . , ξ∗4), the proposed coefficients are drawn from a multi-

variate normal distribution with mean β̂(ξ∗) and covariance matrix Σβ(ξ∗). For P2, the proposal

is generated by leaving the knots alone and choosing an entirely new set of coefficients, in the

same manner as for P1(·, ·). For P3, the (random walk) proposal is generated by leaving the knot

positions alone and moving each of the coefficients a random distance proportional to the square

root of the corresponding element of the covariance matrix Σβ(ξ1, . . . , ξ4).

The hybrid kernel consisting of successive application of kernels P1, P2, and P3 generates a Markov

chain on R
11 whose limiting distribution is the posterior distribution of the parameter vector. As in

the previous examples, in order to identify regeneration points for our chain, we embed this hybrid

kernel into Algorithm 3.1, and then into Algorithm 3.2.

For this problem, the re-entry proposals are generated by first drawing the knots gaps from a

Dirichlet(3,3,3,3,3) distribution, and then conditioning on those knot positions, drawing a coefficient

vector from the multivariate normal as described for kernels P1, P2, and P3 above. Using this

re-entry distribution, the constant k is determined using the same procedure as in the previous

example.

To construct an adaptive version of this algorithm, we use the approach described in Section 3.4,

constructing a mixture normal approximation to the set of knot positions and gradually replacing

28

Non−adaptive Adaptive

0
10

0
20

0
30

0
40

0
50

0
60

0

SPPIs of ArgMax(r(t))

Figure 3: Box plots of sample precision per iteration (SPPI) for the

posterior mean of arg max r(·) in the free-knot spline problem, for both

non-adaptive and adaptive chains generated using Algorithm 3.2. SP-

PIs are evaluated for 100 non-adaptive and 100 adaptive chains, each

consisting of exactly 2000 tours, with length approximately equal to

180000.

the knot-shifting proposals in P1 with independence proposals drawn from the mixture approxima-

tion. Adaptation parameters are chosen to be κ = 0.1 and ζ = 0.95.

Figure 2 shows posterior fitted values, and posterior fitted values plus and minus 1.96 times their

estimated standard deviations, obtained using an adaptive chain of 1000 tours, with a total length

of 131,560 iterations. Vertical lines are shown at the estimate of arg max r(·) plus and minus 1.96

times its estimated standard deviation.

To measure performance of the adaptive chain relative to the non-adaptive chain, we generate 100

independent chains using each method, each consisting of 2000 tours, with average chain length

approximately 180000. The SPPI for arg max r(·) is computed for each chain, and box-plots of the

29

results are given in Figure 3. For this example, the gains in SPPI are again noticeable. Again, it

is informative to consider the distribution of tour-lengths in both the adaptive and non-adaptive

cases. Histograms and discussion are given in the on-line supplemental document.

Both the non-adaptive and adaptive chains perform an order of magnitude better than the original

hybrid kernel P3 ◦ P2 ◦ P1. Generating a chain of length 80, 000, 000 using the original kernel and

using the batch means approach with batch sizes 1, 000, 000, we obtain a SPPI of approximately

0.737, which is over 100 times worse than those obtained using the regenerative scheme. In this

case, it appears to be largely due to the fact that the posterior distribution for knot positions is

bimodal, and the original chain has great difficulty making the transition between modes, while

introduction of the Dirichlet proposals for knot positions in the re-entry distribution gets around

this problem. (Note that as discussed in Section 5 of this paper, if the re-entry distribution is

chosen to cover only one of the modes, the variance of the tour-length distribution can become

unacceptably large.)

5 Discussion

Regeneration in Markov chains is useful since it can be used to avoid the burn-in problem, to obtain

good estimates of the variance of MCMC estimators, to introduce indefinite adaptation into a chain,

and to use parallel processors to construct a single long chain with a specified target distribution.

We have described a new way to think about identification of regeneration times in a Markov

chain and demonstrated potential computational gains, measured by the sample precision per

iteration, obtained by using regeneration to introduce adaptive behaviour into MCMC simulation.

Of course, improved SPPI through the use of adaptive schemes is not the only reason to use the

methods described here. As discussed in the introduction and pointed out previously by others,

two benefits, which come about simply as results of the use of regenerative simulation, are that

the issue of burn-in can be avoided and that consistent estimates of the variances of estimators are

30

easily obtained.

Although we have not given explicit algorithms for parallel generation of a single Markov chain

in this paper, the concept is simple. Since tours of a regenerative chain are independent of each

other, one can generate tours concurrently on separate processors and patch them together. There

are, however, some important considerations when adaptive schemes are used. These are discussed

briefly in the on-line supplemental document.

One issue which we have not considered in detail in this paper is the manner in which the chain

makes transitions from the state α to the remainder of the state-space, or, in the context of

Algorithm 3.2, selection of the re-entry distribution φ and the constant k. In theory, the methods

work as long as the chain can, with positive probability, jump from α to any set of positive π-

measure, but choice of the transition kernel from α affects the tour-length distribution. While

the dugong example exhibited a certain amount of robustness to poor choice of φ, at a certain

point (for instance, in the dugong example, if the re-entry distribution is approximately the target

distribution, shifted by 10 standard deviations) Algorithm 3.2 becomes virtually unusable, as it

becomes highly likely that an extremely long tour will be generated.

A common problem in MCMC simulation is that of getting trapped in one mode of a multimodal

distribution. If the original kernel has this problem, and Algorithm 3.2 is used, but φ only captures

one mode of a multimodal distribution, then the probability of a jump to α becomes very small

when the chain enters one of the other modes. This leads to a situation where one sees many small

tours restricted to the main mode, and an occasional very long tour which enters another mode,

then has to return to the original mode before it has a significant probability of returning to α.

In such a case, the danger is that without generating enough tours, one might never observe one

of the very long tours. A further danger in this situation is that many diagnostics fail. The SPPI

measure used in Section 4, for instance, could give overly optimistic assessments of performance

if only one mode was explored, since the variance would appear smaller. On the other hand, use

of a very widely-spread re-entry proposal distribution in the algorithms in this paper can improve

31

a chain’s ability to make transition between modes, with the state α functioning as a “conduit”

(as in the free-knot spline example of this paper). One potentially useful way to addressing this

multimodality problem more generally could be to embed the simulated tempering kernels discussed

by Geyer and Thompson (1995) into the algorithms described in this paper. Since the “hot” level of

the simulated tempering kernel is designed to reduce the effect of multimodality, one could expect

this to potentially reduce the associated tour-length distribution problems in the context of the

algorithms discussed in this paper.

6 Acknowledgements

The authors are grateful to Brad Carlin, Chris Genovese, Steve Knox, Antonietta Mira, Peter

Müller, Geoff Nicholls, Mark Schervish, Mike Steele, Luke Tierney, and Valerie Ventura, and two

anonymous referees for their comments and suggestions. This research was supported in part by

the National Science Foundation under grants DMS-9819950, DMS-9801401, and IIS-0083148.

References

B.P. Carlin and A.E. Gelfand. An iterative Monte Carlo method for nonconjugate Bayesian analysis.

Statistics and Computing, 1:119–128, 1991.

D. Chauveau and P. Vandekerkhove. Improving convergence of the Hastings-Metropolis algorithm

with an adaptive proposal. Scandinavian Journal of Statistics, 29(1), 2002.

C. Chien, D. Goldsman, and B. Melamed. Large-sample results for batch means. Management

Science, 43:1288–1295, 1997.

M.A. Crane and D.L. Iglehart. Simulating stable stochasting systems, I: General multi-server

queues. Journal of the Association of Computing Machinery, 21:103–113, 1975a.

32

M.A. Crane and D.L. Iglehart. Simulating stable stochasting systems, II: Markov chains. Journal

of the Association of Computing Machinery, 21:114–123, 1975b.

M.A. Crane and A.J. Lemoine. An Introduction to the Regenerative Method for Simulation Analysis,

volume 4 of Lecture Notes in Control and Information Sciences. Springer, 1977.

A. E. Gelfand and S. K. Sahu. On Markov chain Monte Carlo acceleration. Journal of Computa-

tional and Graphical Statistics, 3:261–276, 1994.

C. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7(4):473–483, 1992.

C. J. Geyer and E. A. Thompson. Annealing Markov chain Monte Carlo with applications to

ancestral inference. Journal of the American Statistical Association, 90:909–920, 1995.

R. Gilks, G.O. Roberts, and S.K. Sahu. Adaptive Markov chain Monte Carlo through regeneration.

Journal of the American Statistical Association, 93(443):1045–1054, 1998.

W.R. Gilks, S. Richardson, and D.J.Spiegelhalter. Markov Chain Monte Carlo in Practice. CRC

Press, 1996.

W.R. Gilks, G.O. Roberts, and E.I. George. Adaptive direction sampling. The Statistician, 43:

179–189, 1994.

P.W. Glynn and D.L. Iglehart. Simulation output analysis using standardized time series. Math.

Oper. Research, 15:1–16, 1990.

J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal. On the applicability of regenerative

simulation in Markov chain Monte Carlo. Biometrika, 89(4):731–744, 2002.

G.L. Jones and J.P. Hobert. Honest exploration of intractable probability distributions via Markov

chain Monte Carlo. Statistical Science, 16(4):312–334, 2001.

G. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer, 1993.

33

J. Møller and G.K. Nicholls. Perfect simulation for sample-based inference. Statistics and Comput-

ing, To appear, 2001.

P. Mykland, L. Tierney, and B. Yu. Regeneration in Markov chain samplers. Journal of the

American Statistical Association, 90:233–241, 1995.

E. Nummelin. A splitting technique for Harris recurrent Markov chains. Zeitschrift für Wahrschein-

lichkeitstheorie und Vervandte Gebiete, 43:309–318, 1978.

E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cambridge Uni-

versity Press, Cambridge, 1984.

D.A. Ratkowsky. Nonlinear Regression Modeling. Dekker, 1983.

D. Revuz. Markov Chains. North-Holland, 1975.

B.D. Ripley. Stochastic Simulation. Wiley, 1987.

C.P. Robert. Convergence control methods for Markov chain Monte Carlo algorithms. Statistical

Science, 10:230–253, 1995.

C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, New York, 1999.

G.O. Roberts. Markov chain concepts related to sampling algorithms. In Markov Chain Monte

Carlo in Practice, pages 45–57. CRC Press, 1996.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statistics, 22:

1701–1728, 1994.

L. Tierney and A. Mira. Some adaptive Monte Carlo methods for inference. Statistics in Medicine,

18:2507–2515, 1999.

D.M. Titterington. Recursive parameter estimation using incomplete data. Journal of the Royal

Statistical Society, Series B (Methodological), 46:257–267, 1984.

34

V. Ventura, R. Carta, R.E. Kass, C.R. Olson, and S.N. Gettner. Statistical analysis of temporal

evolution in single-neuron firing rates. Biostatistics, 1(3):1–20, 2002.

G. Warnes. The Normal Kernel Coupler: An adaptive Markov Chain Monte Carlo method for

eciently sampling from multi-modal distributions. PhD thesis, University of Washington, 2000.

35

