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Introduction

Let (X,B(X), Π) be a probability space.

(A1) Π ¿ µ and Π(dx) = π(x)µ(dx).

(A2) π is known up to a normalizing constant:

• π(x) =
π̃(x)∫

π̃(x)µ(dx)
;

• π̃ is known;

• the calculation of
∫

π̃(x)µ(dx) < ∞ is intractable.
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Problem: for some Π-measurable applications h, approximate

Π(h) =
∫

h(x)π(x)µ(dx) =

∫
h(x)π̃(x)µ(dx)
∫

π̃(x)µ(dx)

(A3) the calculation of
∫

h(x)π̃(x)µ(dx) is intractable.

Applications in Bayesian statistic: (π(θ|x) ∝ f(x|θ)π(θ)).
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The Monte Carlo framework

1) Monte Carlo methods (MC)

=⇒ Generate an iid sample x1, . . . , xN from Π and to estimate Π(h) by

Π̂MC
N (h) = N−1

N∑

i=1

h(xi).

Π̂MC
N (h) −→as Π(h)

If Π(h2) =
∫

h2(x)π(x)µ(dx) < ∞,
√

N(Π̂MC
N (h)−Π(h)) −→L N (0, Π((h−Π(h))2)).

Often impossible to simulate directly from Π!
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2) Markov Chain Monte Carlo methods (MCMC)

=⇒ Generate x(1), . . . , x(T ) from a Markov chain (xt)t∈N with stationary
distribution Π and estimate Π(h) by

Π̂MCMC
N (h) = N−1

T∑

i=T−N

h
(
x(i)

)
.

Convergence to the stationary distribution could be very slow!
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3) Importance sampling

Let Q be a probability distribution on (X,B(X)). Suppose that Π ¿ Q ,
Q ¿ µ and that Q(dx) = q(x)µ(dx):

Π(h) =
∫

h(x){π/q}(x)q(x)µ(dx).

=⇒ Generate an iid sample x1, . . . , xN from Q, called the proposal dis-
tribution, and to estimate Π(h) by

Π̂IS
Q,N (h) = N−1

N∑

i=1

h(xi){π/q}(xi).

Π̂IS
Q,N (h) −→as Π(h).
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If Q((hπ/q)2) < ∞,
√

N(Π̂IS
Q,N (h)−Π(h)) −→L N

(
0, Q((hπ/q −Π(h))2)

)
.

For many h, a sufficient condition for Q((hπ/q)2) < ∞ is that π/q is
bounded.

The normalizing constant of Π is unknown, not possible to use Π̂IS
Q,N .

It is natural to use the self-normalized version of the IS estimator,

Π̂SNIS
Q,N (h) =

(
N∑

i=1

{π/q}(xi)

)−1 N∑

i=1

h(xi){π/q}(xi).
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Π̂SNIS
Q,N (h) −→as Π(h).

If Π((1 + h2)(π/q)2) < ∞,
√

N(Π̂SNIS
Q,N (h)−Π(h)) −→L N

(
0, Q((π/q)2(h−Π(h))2)

)
.

The quality of the SNIS approximation depends on the choice of the pro-
posal distribution Q.
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PMC algorithms

The notion of importance sampling can actually be greatly generalized
to encompass much more adaptive and local schemes than thought previ-
ously.

This extension is to learn from experience, that is, to build an impor-
tance sampling function based on the performances of earlier importance
sampling proposals.

By introducing a temporal dimension to the selection of the importance
function, an adaptive perspective can be achieved at little cost, for a
potentially large gain in efficiency.
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FN,t = σ {(xi,j , Ji,j)1≤i≤N,0≤j≤t} , FJ
N,t = FN,t

W
σ {(xi,t+1)1≤i≤N} (t ≥ 0)

Q0 ¿ µ (q0) and Qi,t(FN,t−1) ¿ µ (qi,t(FN,t−1))

Generic PMC algorithm

• At time 0,

a) Draw (xi,0)1≤i≤N iid according to Q0 and set ωi,0 = {π/q0}(xi,0);

b) Conditionally on σ {(xi,0)1≤i≤N},
generate (Ji,0)1≤i≤N

iid∼ M(1, (ω̄i,0)1≤i≤N ).

• At time t (t = 1, . . . , T ),

a) Conditionally on FN,t−1, generate independent xi,t ∼ Qi,t(FN,t−1) and set

ωi,t = {π/qi,t(FN,t−1)}(xi,t);

b) Conditionally on FJ
N,t−1, generate (Ji,t)1≤i≤N

iid∼ M(1, (ω̄i,t)1≤i≤N ).

ω̄i,t = ωi,t/
PN

j=1 ωj,t
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After T iterations of the previous algorithm, the PMC estimator of Π(h)
is given by

Π̂PMC
N,T (h) =

N∑

i=1

ω̄i,T h(xi,T ).

It is also possible to use the cumulated PMC estimator according to the
iterations.

Given FN,t−1, how to construct Qi,t(FN,t−1)?

Adap’Ski Meeting (January 11, 2004) Page 11



D-kernel PMC schemes

Idea: construct Qi,t (FN,t−1) as a mixture of D different transition kernels
whose weights are proportional to their survival rates in the previous
resampling step.

Purpose: the algorithm would automatically adapt the mixture to the
target distribution

Consider (Qd)1≤d≤D a family of transition kernels on X× B(X):

(Qd(x, ·))1≤d≤D,x∈X ¿ µ, ∀A ∈ B(X), Qd(x,A) =
∫

A
qd(x, x′)µ(dx′).
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D-kernel PMC algorithm

• At time 0, use the same step as in the generic PMC algorithm to produce

the sample (xi,0, Ji,0)1≤i≤N and set p1,N
d = 1/D.

• At time t (t = 1, . . . , T ),

a) Conditionally on σ
n

(K̃i,t−1)1≤i≤N

o
(if t 6= 1), generate

(Ki,t)1≤i≤N
iid∼ M(1, (pt,N

d )1≤d≤D)

b) Conditionally on σ {(x̃i,t−1, Ki,t)1≤i≤N}, generate independent

(xi,t)1≤i≤N ∼ QKi,t(x̃i,t−1, ·)

and set ωi,t = π(xi,t)/qKi,t(x̃i,t−1, xi,t);

c) Conditionally on σ {(x̃i,t−1, Ki,t, xi,t)1≤i≤N}, generate

(Ji,t)1≤i≤N
iid∼ M(1, (ω̄i,t)1≤i≤N )

and set (x̃i,t, K̃i,t) = (xJi,t,t, KJi,t,t) , pt+1,N
d = N−1 PN

i=1 Id(K̃i,t).
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(A1) ∀k ∈ {1, . . . , D},Π⊗Π
{
π(x′)

/
qk(x, x′) < ∞}

= 1.

We denote by γu the uniform distribution on {1, . . . , D}.

We can then deduce a LLN on the pairs (xi,t,Ki,t) produced by the pre-
vious algorithm

Proposition 1 Under (A1), for h ∈ L1
Π⊗γu

and for all T ≥ 1,

N∑

i=1

ω̄i,T h(xi,T ,Ki,T ) N→∞−→P Π⊗ γu(h).
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This result is negative because, while it implies that

N∑

i=1

ω̄i,T h(xi,T )

is a convergent estimator of π(h), it also shows that, for T ≥ 1,

N−1
N∑

i=1

IK̃i,T =k
N→∞−→P

1
D

.

Therefore, at each iteration, the weights of all kernels converge to 1/D

when the number of points in the sample grows to infinity. This translates
in the lack of learning properties for the D-kernel PMC algorithm: its
properties at iteration 1 and at iteration 10 are the same.
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In importance sampling as well as in MCMC settings, the conditioning
improvement brought by Rao-Blackwellization may be significant.

In the context of the D-kernel PMC scheme, the Rao-Blackwellization
argument is that it is not necessary to use the mixture component in the
computation of the importance weight but rather the whole mixture.

The importance weight is therefore

π(xi,t)
/ D∑

d=1

pt,N
d qd(x̃i,t−1, xi,t) rather than π(xi,t)

/
qKi,t(x̃i,t−1, xi,t).
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Rao-Blackwellized D-kernel PMC algorithm

• At time t (t = 2, . . . , T ),

a) Conditionally on σ
n

(K̃i,t−1)1≤i≤N

o
, generate

(Ki,t)1≤i≤N
iid∼ M(1, (pt,N

d )1≤d≤D);

b) Conditionally on σ {(x̃i,t−1, Ki,t)1≤i≤N}, generate independent

(xi,t)1≤i≤N ∼ QKi,t(x̃i,t−1, ·)

and set ωi,t = π(xi,t)

Á DX

k=1

pt,N
k qk(x̃i,t−1, xi,t);

c) Conditionally on σ
n

(x̃i,t−1, K̃i,t−1, xi,t)1≤i≤N

o
, generate

(Ji,t)1≤i≤N
iid∼ M(1, (ω̄i,t)1≤i≤N )

and set (x̃i,t, K̃i,t) = (xJi,t,t, KJi,t,t), pt+1,N
d = N−1 PN

i=1 Id(K̃i,t).
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(A2) ∀(i, j, k, l) ∈ {1, . . . , D}4, ∫
[

qk(x,x′)ql(x,x′)
qi(x,x′)qj(x,x′)

]
Π⊗Π(dx, dx′) < ∞.

Proposition 2 Under (A1) and (A2), for h ∈ L1
Π and for all T ≥ 1,

then
1
N

N∑

k=1

ω̄i,T h(xi,T ) N→∞−→P Π(h)

pT,N
d

N→∞−→P pT
d

and the limiting coefficients (pT
d )1≤d≤D are defined recursively by

pT
d = pT−1

d

∫ (
qd(x, x′)∑D

j=1 pT−1
j qj(x, x′)

)
Π⊗Π(dx, dx′).
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S =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑

d=1

αd = 1

}
.

∀α ∈ S, let us denote by KL(α) the Kullback-Leibler divergence between

Π(dx)
D∑

d=1

αdQd(x, dx′) and Π⊗Π(dx, dx′):

KL(α) =
∫ [

log

(
π(x)π(x′)

π(x)
∑D

d=1 αdqd(x, x′)

)]
Π⊗Π(dx, dx′).

Kullback-Leibler divergence criterion: the best mixture of transition ker-
nels is the one that minimizes KL(α).

Link between this criteria and the Rao-Blackwellized PMC algorithm?
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We define F as the function on S such that

F (α) =

(
αd

∫ [
qd(x, x′)∑D

j=1 αjqj(x, x′)

]
Π⊗Π(dx, dx′)

)

1≤d≤D

and construct the sequence on S




α0 = (1/D, . . . , 1/D)

αt+1 = F (αt) for t ≥ 0

F corresponds to

pT
d = pT−1

d

∫ (
qd(x, x′)∑D

j=1 pT−1
j qj(x, x′)

)
Π⊗Π(dx, dx′).
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(A3) ∀i ∈ {1, . . . , D},−∞ <
∫

[log(qi(x, x′))] Π⊗Π(dx, dx′) < ∞.

Proposition 3 Under (A3), for all α ∈ S,

KL⊗ F (α) ≤ KL(α).

Therefore, the Kullback Leibler divergence criterion decreases at each
step. This property is closely linked with the EM algorithm.
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αmax = arg max
α∈S

KL(α)

Proposition 4 Under (A3),

lim
t→∞

αt = αmax





α0 = (1/D, . . . , 1/D)

αt+1 = F (αt) for t ≥ 0
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Proposition 5 Under (A1) and (A2), for h ∈ L2
Π and for all T ≥ 1,

1√
N

N∑

i=1

(ω̄i,T h(xi,T )−Π(h)) L−→ N (0, σ2
T )

where

σ2
T =

∫ (
h2(x′)

π(x′)∑D
d=1 pT

d qd(x, x′)

)
Π⊗Π(dx, dx′)− π(h)2.
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A toy Bayesian study: a Gaussian mixture model

We consider an iid sample y = (y1, . . . , yn) from

f(y|µ1, µ2) =
(
pfN (µ1,σ2)(y) + (1− p)fN (µ2,σ2)(y)

)

where p 6= 1/2 and σ2 are known parameters.

Prior distributions: µ1 ∼ N (
α, σ2/δ

)
and µ2 ∼ N (

α, σ2/δ
)
.

µ(µ1, µ2) = π
(
µ1, µ2|y

) ∝
(

fN (α,σ2/δ)(µ1)fN (α,σ2/δ)(µ2)
n∏

i=1

f (yi|µ1, µ2)

)
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Figure 1: Simulated data n = 500, p = 0.3, σ2 = 1, µ1 = 0 and µ2 = 2
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Use of the D-kernels PMC algorithm.

After an arbitrary initialization, use of the previous (importance) sample
(after resampling) to build random walk proposals,

N ((µ)(t−1)
i , vi)

with a multi-scale variance vi within a predetermined set of D scales,
whose importance is proportional to its survival rate in the resampling
step.
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Figure 2: PMC weighted sample (n=1000) after 10 iterations (the weights
are proportional to the circles at each point).
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Conclusion

• The PMC scheme is a viable alternative to MCMC schemes.

• The iterative nature of PMC erodes the dependence to the importance
function by offering a wide range of adaptive kernels that can take advan-
tage of the previously simulated samples.
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