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Introduction
Let (X, B(X),II) be a probability space.
(A1) II <« p and I(dx) = w(x)u(dx).

(A2) 7 is known up to a normalizing constant:
m(z)
[ 7@t

e 7 is known;

o m(z) = ;

e the calculation of / 7(z)p(dr) < oo is intractable.
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Problem: for some II-measurable applications h, approximate
[ r@)(@u(da
[ 7@t

rwwzjﬁww@mwmz

(A3) the calculation of /h(x)ﬁ(a:),u(dx) is intractable.

Applications in Bayesian statistic: (w(0|x) o< f(x|0)w(0)).
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The Monte Carlo framework

1) Monte Carlo methods (MC)

— Generate an iid sample z1,...,xy from IT and to estimate I1(h) by

HMC 1thz

ﬁ]\N/lc(h) —qs 1I(h)

If TI(h2) = [ h2(z)m(x)pu(ds) <

\/N(ﬁf‘\?c(h) —1II(h)) —c N(0,TI((h — TI())?)).

Often impossible to simulate directly from II!
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2) Markov Chain Monte Carlo methods (MCMC)

— Generate 1, ..., 2(T) from a Markov chain (z:),.y with stationary
distribution II and estimate II(h) by

fLUCMC(y _ N1 S (+9).

1=T—N

Convergence to the stationary distribution could be very slow!
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3) Importance sampling

Let () be a probability distribution on (X, B(X)). Suppose that I1 < @ ,
Q) < p and that Q(dx) = q(x)u(dx):

(h) = / h() ()} (@) (@)ude).

—> Generate an iid sample x1,...,xn from @, called the proposal dis-
tribution, and to estimate II(h) by

N

ﬁéfzv(h) =N Z h(zi){m/q}(x;).

1=1
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It Q((hm/q)?) < oo,

VNS (h) — TI(h)) —2 N (0,Q((hr/q — T1(h))?)) .

For many h, a sufficient condition for Q((hm/q)?) < oo is that m/q is
bounded.

The normalizing constant of II is unknown, not possible to use ﬁés -

It is natural to use the self-normalized version of the IS estimator,

ﬁg{v]\{s(h) = (Z{W/Q}(ﬂ%)) Zh(%){ﬁ/Q}(%)-
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If II((1 + h?)(7w/q)?) < oo,

VNI (h) = TI(h)) —2 N (0,Q((m/q)*(h — TI(h))?)) .

The quality of the SNIS approximation depends on the choice of the pro-
posal distribution ().
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PMC algorithms

The notion of importance sampling can actually be greatly generalized
to encompass much more adaptive and local schemes than thought previ-

ously.

This extension is to learn from experience, that is, to build an impor-
tance sampling function based on the performances of earlier importance

sampling proposals.

By introducing a temporal dimension to the selection of the importance
function, an adaptive perspective can be achieved at little cost, for a

potentially large gain in efficiency.
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Fni=o0{(xij,Ji,j)1<i<N,0<j<t), -7'—1{7,15 = FntVo{(zit1)i<i<n} (t >0)

—_— = Y —=J =

Qo< p (qo) and Qit(Fni—1)<<p (qit(Fni—1))
Generic PMC algorithm

e At time O,
a) Draw (z;0)1<i<n iid according to Qo and set w; 0 = {7/qo}(xi,0);
b) Conditionally on o {(z:0)1<i<n},
generate (J;0)1<i<nN W M(1, (@i0)1<i<nN)-
o At timet (t=1,...,T),
a) Conditionally on Fn ;—1, generate independent z; + ~ Q; +(Fn,—1) and set

Wit — {W/Qi,t(FN,t—l)}(xi,t)Q
b) Conditionally on F5 ,_1, generate (J;:)1<i<n " M1, (@it)1<i<N)-

Wit = Wit/ z;\rzl Wit
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After T iterations of the previous algorithm, the PMC estimator of II(h)

is given by

PMC E
wz Th sz

It is also possible to use the cumulated PMC estimator according to the

1terations.

Given Fy ¢—1, how to construct Q; +(Fn1—1)7
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D-kernel PMC schemes

Idea: construct Q; + (Fnt—1) as a mixture of D different transition kernels
whose weights are proportional to their survival rates in the previous

resampling step.

Purpose: the algorithm would automatically adapt the mixture to the
target distribution

Consider (Q4)1<i<p a family of transition kernels on X x B(X):

(Qa(z,))1<d<D,zex <K W, VA € B(X),Qa(z,A) = [, qa(z, ") pu(dz’).
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D-kernel PMC algorithm

e At time 0, use the same step as in the generic PMC algorithm to produce

the sample (z;,0, Ji,0)1<i<n and set pi’N =1/D.
e Attimet (t=1,...,T),
a) Conditionally on o {(f(z',t—lﬁgigzv} (if t # 1), generate

iid
(Kit)i<i<n ~ M(1, (pZ’N)gng)
b) Conditionally on o {(Zi -1, Ki+)1<i<n}, generate independent
(it)1<isn ~ QK o (Tijt—1, )

and set w; ¢+ = m(Ti,t)/qrc; , (Tijt—1,Tit);
c) Conditionally on o {(Zi,t—1, Kit,Tit)1<i<N}, generate

(Jit)i<icn o M(1, (@it)1<i<n)

and set (557:,157 K’I:,t) — ( Ji ¢ty KJZ st ) ) t+1 N =N~ Z ( )
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(A1) Vke{l,...,D},IQI{n(2')/qr(z,2') < oo} =1.
We denote by 7, the uniform distribution on {1,..., D}.

We can then deduce a LLN on the pairs (z;;, K; ;) produced by the pre-

vious algorithm

Proposition 1 Under (A1), for h € Ly, and for all T > 1,

N
_ N —o0

E Wi rh(zir, Kir) —p &7, (h).

i—1
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This result is negative because, while it implies that

N
Z wirh(x; 1)
i—1

is a convergent estimator of w(h), it also shows that, for T > 1,

N
N7 Iz, —8 =
1=1

Therefore, at each iteration, the weights of all kernels converge to 1/D
when the number of points in the sample grows to infinity. This translates
in the lack of learning properties for the D-kernel PMC algorithm: its

properties at iteration 1 and at iteration 10 are the same.
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In importance sampling as well as in MCMC settings, the conditioning

improvement brought by Rao-Blackwellization may be significant.

In the context of the D-kernel PMC scheme, the Rao-Blackwellization
argument is that it is not necessary to use the mixture component in the

computation of the importance weight but rather the whole mixture.

The importance weight is therefore

D
W(xi,t)/ng’N(]d(jji,t—laxi,t) rather than () /qk, ,(Zi—1, i),
d=1
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Rao-Blackwellized D-kernel PMC algorithm

e At timet (t=2,...,T),
a) Conditionally on o {(f(z',t—lhgigN}, generate

(Kit)i<i<nN %i M(1, (pZ’Nﬁgng);

b) Conditionally on o {(Z;+—1, Ki+)1<i<n}, generate independent

(wit)1<i<n ~ QK o (Tijt—1,)

c) Conditionally on o {(:Eq;,t_l, Kiv_1, 337;,75)1§7;§N}, generate

21d

(Jit)1<i<n ~ M(1,(0it)1<i<nN)

and Set (iiﬂh K'ift) (xJZ t7t7 K‘]Z t7 ) t+1 N — N Zz 1 ( )'
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(A2) V(5 k1) €{l,..., D} [ [%W’Ml(m”} I © [(dz, de') < oo.

qi(z,2")q;(z,z')

Proposition 2 Under (A1) and (A2), for h € Li; and for all T > 1,

then
N
N—>
Z xz T ?I? H(h)
N N—
po N T5E pl

and the limiting coefficients (p})1<a<p are defined recursively by

I'—= pl—1 9a (2, 7') II ® II(dz, dx').
Pa pd /(ZD p;r 1q](ajaj)> X ( ) )

71=1
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D
S:{a:(al,...,ap); vde{l,...,D}, ag >0 andZadzl}.

d=1

Va € S, let us denote by KL(«a) the Kullback-Leibler divergence between

D
I1(dx) Z agQq(z,dx’) and 11 ® II(dx, dz'):
d=1

m(x)m(z")
KL(«) = lo
() /[ g(”(@ ZdD:1 O‘de($>5’3/)>

Kullback-Leibler divergence criterion: the best mixture of transition ker-

I ® II(dz, dx").

nels is the one that minimizes KL(«).

Link between this criteria and the Rao-Blackwellized PMC algorithm?
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We define F' as the function on S such that

_ (4 qa(x, x")
Fla) = ( d/ [Z?_l ozjqj(x,il?’)

and construct the sequence on S

I1® I(dx, dx'))

1<d<D

o’ =(1/D,...,1/D)
ot = F(at) for t >0

F' corresponds to

/
- (g oo
J

j=1 q; (CL’, 37/)

Adap’Ski Meeting (January 11, 2004)

Page 20



(A3) Vie{l,...,D},—oc0 < [ [log(gi(z,z"))| I @ II(dx,dz") < co.

Proposition 3 Under (A3), for all a € S,

KL ® F(a) < KL(«a).

Therefore, the Kullback Leibler divergence criterion decreases at each

step. This property is closely linked with the EM algorithm.
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max — KL
o arg max ()

Proposition 4 Under (A3),

t 'e

lim o' = o™?

t— o0

o’ =(1/D,...,1/D)
ot = F(at) fort > 0
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Proposition 5 Under (A1) and (A2), for h € L and for all T > 1,

\/T Z Wj Th sz H<h)) LN(O’O-%)

where

( m(@’) ) @ (dz, dz') — 7(h)>2.

Zd 1 ngd(x7 Z’l)
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A toy Bayesian study: a Gaussian mixture model

We consider an iid sample y = (y1,...,¥yn) from

FWlnt, p2) = 0fn(un,o2) (W) + (1= D) N (us,02) (Y))

where p # 1/2 and o2 are known parameters.

Prior distributions: p; ~ N (a,0?/§) and ps ~ N (a, 02 /6).

:u(:ulnu2) = T (M17M2|Q) X <f]\/(oz,02/5)(:ul)fj\/'(oz,aQ/(S) (/’LQ) Hf (yz,ula,u2)>

1=1
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Density
| | | | ]
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Figure 1: Simulated data n = 500, p = 0.3, 02 =1, u; = 0 and pg = 2
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Use of the D-kernels PMC algorithm.

After an arbitrary initialization, use of the previous (importance) sample
(after resampling) to build random walk proposals,

N () vy)

with a multi-scale variance v; within a predetermined set of D scales,
whose importance is proportional to its survival rate in the resampling

step.
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Figure 2: PMC weighted sample (n=1000) after 10 iterations (the weights
are proportional to the circles at each point).
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Conclusion

e The PMC scheme is a viable alternative to MCMC schemes.

e The iterative nature of PMC erodes the dependence to the importance
function by offering a wide range of adaptive kernels that can take advan-

tage of the previously simulated samples.
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