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Abstract

When considering a Monte Carlo estimation procedure, the path produced by successive

partial estimates is often used as a guide for informal convergence diagnostics. However the

confidence region associated with that path cannot be derived simplistically from the confidence

interval for the estimate itself. An asymptotically correct approach can be based on the Brownian

motion approximation of the path, but no exact formula for the corresponding area-minimizing

confidence region is yet known. We construct proxy regions based on local time arguments and

consider numerical approximations. These are then available for a more incisive assessment of

the Monte Carlo procedure and thence of the estimate itself.

Keywords: boundary crossing probability; Brownian motion; central limit theo-

rem; local time; Monte Carlo path; prediction region; simultaneous confidence

region.

1 Introduction

The Monte Carlo method (see, for example, Robert and Casella, 2004) is validated by both the

Law of Large Numbers (LLN) and the Central Limit Theorem (CLT):

(a) the (almost sure) convergence of an average

(1) În =
1
n

n∑
i=1

h(Xi) −→ I =
∫
h(x)π(dx)
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is guaranteed by the LLN when the Xi’s are drawn independently from the probability mea-

sure π and h is integrable against π;

(b) the variation of În − I is asymptotically Gaussian when h2 is integrable against π.

There is however a difficulty in using the CLT to assess the convergence of the sequence (În)1≤n≤N :

while the CLT tells us that the limiting value I lies in the interval [ÎN−2σ/
√
N, ÎN+2σ/

√
N ], with

probability close to 0.95 for large enough N , it does not provide information on the probabilistic

behaviour of the sequence (În)1≤n≤N . In other words, the CLT is not helpful in assessing where

the whole path (În)1≤n≤N might lie, were we to start a new simulation experiment. Nevertheless,

the shape of (În)1≤n≤N is customarily used to decide about the stability of a Monte Carlo estimate

and the relevance of the corresponding Monte Carlo experiment. In a fairly informal way, we often

decide to stop a Monte Carlo experiment, (which is to say, we choose the final value of N), and

to adopt the final value of ÎN as an acceptable approximation to I, based on the appearance of

(În)1≤n≤N , even though another run of the Monte Carlo experiment, based on a different pseudo-

random seed, might have produced a very different appearance and thus might have led to a different

conclusion (to wit, to continue the Monte Carlo experiment and use more simulations). It thus

seems necessary to provide a confidence assessment on the entire trajectory of the Monte Carlo

sequence so as to help to quantify this kind of decision.

Therefore we need to approximate the trajectory of (În)1≤n≤N in order to see how to assess its

variability as a sequence without running an extensive Monte Carlo experiment that would require

many replications of (În)1≤n≤N . Such an approximation is found in Donsker’s theorem, and relates

the sequence to a Brownian motion {W (t)}0≤t≤1. We are therefore looking for a “smallest” region

R ⊂ [0, 1]×R that contains {W (t)}0≤t≤1 with a high enough probability. The purpose of this paper

is to derive such a region R, based on a minimal area optimality criterion, and to study its use in

Monte Carlo experiments. In Section 2, we restate the problem in more formal terms; in Sections

3 and 4, we derive quasi-optimal confidence and prediction regions, while Section 5 illustrates the

confidence procedures in a specific Monte Carlo setting and Section 6 concludes the paper.

2 Simultaneous confidence and prediction regions

To formalise the setup further, consider π a probability distribution and the quantity of interest,

π(h) =
∫
h(x)π(dx) = Eπ[h(X)] ,
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approximated by the standard Monte Carlo estimator În given by (1). The sequence (În)1≤n≤N is

converted to the random step function

{δN (t)}t∈[0,1] =

 1
bNtc

bNtc∑
i=1

h(Xi)


t∈[0,1]

where bxc denotes the integer part of x (the greatest integer not exceeding x). Note: δN (1) = ÎN .

2.1 Confidence regions

To fix ideas, we first reformulate the CLT in this setting: for a fixed t ∈ [0, 1], if Eπ[|h(X)|2] <∞

then the random variable √
bNtc

(
δN (t)− π(h)
Vπ[h(X)]1/2

)
converges in distribution to a standard N (0, 1) random variable, where

Vπ[h(X)] =
∫
h2(x)π(dx)− (

∫
h(x)π(dx))2 .

In a standard Monte Carlo setting, it is customary to replace Vπ[h(X)] with an estimate. Conse-

quently we introduce the random function

{γN (t)}t∈[0,1] =

 1
bNtc

bNtc∑
i=1

(h(Xi)− δN (t))2


t∈[0,1]

;

if Eπ[|h(X)|2] < ∞ and t ∈ [0, 1] is fixed then γN (t) almost surely converges to Vπ[h(X)] and the

random variable √
bNtc

(
δN (t)− π(h)
γN (t)1/2

)
also converges in distribution to a standard normal random variable by virtue of Slutsky’s theorem

(Billingsley, 1995).

Therefore if we fix both t ∈ [0, 1] and α ∈]0, 0.5[ then the (random) confidence interval

(2)

[
δN (t)−

√
γN (t)√
bNtc

Φ−1(1− α/2) , δN (t) +

√
γN (t)√
bNtc

Φ−1(1− α/2)

]

contains π(h) with a probability converging to 1−α whenN goes to infinity. This confidence interval

is thus justified from probability theory and it is appropriately used in simulation experiments as

an indicator of the precision of the Monte Carlo estimator.
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However, if we use the interval (2) for each value of t ∈ [0, 1] then the confidence band thus

built around {δN (t)}t∈[0,1],

(3)

{
(t, y) ∈ [0, 1]× R

∣∣∣∣∣ y ∈
[
δN (t)−

√
γN (t)√
bNtc

Φ−1(1− α/2), δN (t) +

√
γN (t)√
bNtc

Φ−1(1− α/2)

]}
,

is not valid. Indeed, this is not a simultaneous confidence region and it contains the horizontal line

y = π(h) with a probability that is asymptotically smaller than 1−α. (In case of extreme variation

of (δN (t))t∈[0,1], it may even fail to contain any horizontal line.)

Constructing a confidence band on (δN (t))t∈[0,1] (and therefore on the horizontal line π(h)) is

nonetheless possible when using Donsker’s theorem. This theorem states that the random functional 1√
N

bNtc∑
i=1

(
h(Xi)− π(h)√

Vπ[h(X)]

)
t∈[0,1]

converges in distribution (when N goes to infinity) to a standard Brownian motion on [0, 1], denoted

{W (t)}t∈[0,1] (Billingsley, 1968). This is also the approximation used in the Kolmogorov-Smirnov

test calibration.

Similarly, the random functionγN (1)−1/2

√
N

bNtc∑
i=1

{h(Xi)− π(h)}


t∈[0,1]

converges in distribution to a standard Brownian motion {W (t)}t∈[0,1]. Donsker’s theorem thus

enables us to determine the right asymptotic setting to define a confidence band on the simulation

output.

Therefore, given two bounding functions g and f on [0, 1] such that

(4) P (−g(t) ≤W (t) ≤ f(t), t ∈ [0, 1]) = 1− α,

the random region

(5)

{
(t, y) ∈ [0, 1]× R

∣∣∣∣∣ y ∈
[
δN (t)− f(t)

√
NγN (1)
bNtc

, δN (t) + g(t)

√
NγN (1)
bNtc

]}
contains the horizontal line {π(h)}t∈[0,1] with an asymptotic probability equal to 1 − α. Using

Donsker’s theorem hence leads to a simultaneous asymptotic confidence region.

We will derive the functions f and g based on a minimal area optimality criterion in Section 3,

but we first consider below an alternative region that is more relevant for simulation purposes.
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2.2 A predictive region

The confidence region (5) is not directly relevant for Monte Carlo approximation, because only the

final estimate δN (1) = ÎN should be considered for the estimation of π(h). In particular, (5) is

much less informative than the final (asymptotic) confidence interval based on the whole sample.

More precisely, the interval

(6)

[
δN (1)−

√
γN (1)√
N

Φ−1(1− α/2), δN (1) +

√
γN (1)√
N

Φ−1(1− α/2)

]
contains π(h) with a asymptotic probability of 1−α and, due to the lack of simultaneity requirement,

it is smaller than the slice of (5) for t = 1,[
δN (1)− f(1)

√
NγN (1)
N

, δN (1) + g(1)

√
NγN (1)
N

]
.

Moreover, as pointed out previously, the quantity of interest from a Monte Carlo point of view

is rather a prediction region that contains another Monte Carlo sequence with a given (asymptotic)

probability. Given an iid sample Y1, . . . , Yn from π that is independent of X1, . . . , Xn, we can use

the decompositionγN (1)−1/2

√
N

bNtc∑
i=1

(h(Yi)− δN (1))


t∈[0,1]

=

γN (1)−1/2

√
N

bNtc∑
i=1

(h(Yi)− π(h))


t∈[0,1]

−

(
bNtc γN (1)−1/2

√
N

(δN (1)− π(h))

)
t∈[0,1]

,

to deduce that it converges in distribution to a continuous random process that is the sum of a

standard Brownian motion {W (t)}t∈[0,1] and of a random line (tU)t∈[0,1], U being a standard normal

random variable independent of {W (t)}t∈[0,1].

Therefore, if we set Z(t) = W (t) + tU , t ∈ [0, 1], the prediction region for the Monte Carlo

sequence can be reduced to the derivation of two bounds g and f on [0, 1] such that

(7) P(−g(t) ≤ Z(t) ≤ f(t), t ∈ [0, 1]) = 1− α ,

since the band

(8)

{
(t, y) ∈ [0, 1]× R

∣∣∣∣∣ y ∈
[
δN (1)− f(t)

√
NγN (1)
bNtc

, δN (1) + g(t)

√
NγN (1)
bNtc

]}

is a prediction region of level 1− α for the sequence

bNtc∑
i=1

h(Yi)
/
bNtc


t∈[0,1]

.
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As an aside, note that the processγN (1)−1/2

√
N

bNtc∑
i=1

{h(Yi)− h(Xi)}


t∈[0,1]

=

γN (1)−1/2

√
N

bNtc∑
i=1

{h(Yi)− π(h)}


t∈[0,1]

−

γN (1)−1/2

√
N

bNtc∑
i=1

{h(Xi)− π(h)}


t∈[0,1]

converges in distribution to a continuous random process which is the sum of two independent

standard Brownian motions or, equivalently, the process {F (t)}t∈[0,1] =
{√

2W (t)
}
t∈[0,1]

. Therefore,

using the same bounds as in (4), the random region{
(t, y) ∈ [0, 1]× R

∣∣∣∣∣ y ∈
[
δN (t)−

√
2f(t)

√
NγN (1)
bNtc

, δN (t) +
√

2g(t)

√
NγN (1)
bNtc

]}

is also a prediction region of level 1 − α for an independent Monte Carlo sequence. However, for

each t ∈ [0, 1[, the variability of δN (t) is more important than the one of δN (1) and, for the same

Rao-Blackwell reason as above, the global variability of {
√

2W (t)}t∈[0,1] is also more important than

the one of {W (t) + tU}t∈[0,1]. There is thus little incentive in using the above prediction region,

when compared with (8).

We will deal with the derivation of approximately optimal solutions to (7) in Section 4.

3 Minimal area confidence regions

As previously described, for computing simultaneous confidence regions of level 1− α, we have to

derive two bounding functions g and f on [0, 1] such that (4) holds. Among the solutions to this

problem, a natural optimality criterion is to select those such that the area of the confidence band∫ 1
0 (f(x) + g(x)) dx is minimal. We are thus trying to solve a functional optimisation problem,

namely to find the pair of functions u, v which together solve the problem

min
u,v

∫ 1

0
(u(t) + v(t))dt

under the constraint that

P(−v(t) ≤W (t) ≤ u(t), t ∈ [0, 1]) = 1− α ,

with u ≥ 0 and v ≥ 0.
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From the symmetry of the standard Brownian motion, if the minimum is attained and is unique

then we have v = u. So we can assume that the solution to the above problem satisfies f = g and

then replace the above problem with

min
u≥0

∫ 1

0
u(t)dt

under the constraint that P(−u(t) ≤W (t) ≤ u(t), t ∈ [0, 1]) = 1− α.

This minimization problem does not have a closed form solution and appears to be extremely

difficult to solve. We will detail some local time approximations to its resolution, but let us

first point out that the computation of the probability that a standard Brownian motion remains

between two given boundaries is a complex question that has occupied many researchers for many

years (see, for example, Anderson, 1960; Robbins and Siegmund, 1970; Durbin, 1971; Lerche, 1986;

Durbin, 1992; Daniels, 1996; Borodin and Salminen, 2002; Li, 2003).

In this literature, explicit representations of two-sided boundary crossing probabilities are ex-

tremely rare and mostly address linear cases (Anderson, 1960; Hall, 1997), even though there exist

a few nonlinear boundaries (Robbins and Siegmund, 1970; Daniels, 1996; Novikov et al., 1999).

For most functions, though, computing two-sided boundary crossing probabilities for the Brownian

motion requires some level of approximation.

3.1 Local time solution

Given the intractable difficulty of the derivation of the confidence band, we now switch to a related

and much easier problem based on local times.

The original problem is to solve, for a fixed 0 < α < 1,

min
u

(∫ 1

0
u(t)dt

)
subject to the constraint P {−u(t) ≤ X(t) ≤ u(t) for all t ∈ (0, 1]} = 1− α ,

where X = {X(t)}t is a continuous time process (in this section, X is a Wiener process {W (t)}t

while, for the prediction problem, it is the modification {W (t)+tU}t). Equivalently we can consider

the dual problem

min
u
{1− P (−u(t) ≤ X(t) ≤ u(t) for all t ∈ (0, 1])} subject to the constraint

∫ 1

0
u(t)dt = β ,

where β > 0 is a given constant.

This formulation suggests the study of an alternative and easier problem, in which we replace
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the probability by a local time expectation:

(9) min
u

E
[
Lu(1) + L−u(1)

]
subject to the constraint

∫ 1

0
u(t)dt = β .

Here, Lu(s) is the local time accumulated by X along the curve u up to time s, to be defined below,

and we require u to be C1-smooth.

This new problem is much easier because local time is additive. Therefore, firstly, we may

restrict attention to the one-sided problem, that is, replace E [Lu(1) + L−u(1)] by E [Lu(1)] and,

secondly, it is then possible to localize the minimization problem in time, as now detailed.

Definitions of local time for Wiener processes and for other semimartingales can be found in

Revuz and Yor (1999, Ch. VI); for our purposes we use the Itô-Tanaka formula (Revuz and Yor,

1999, Ch. VI, Theorem 1.2) which defines a local time L for a continuous semimartingale Y , started

at 0, with increasing process 〈Y, Y 〉(t) = t. (These conditions are equivalent to the requirement

that Y be a Brownian motion with possibly non-stationary drift.) Applying the Itô-Tanaka formula

to X − u, we obtain the following formula for the local time Lu of X at the time-varying level u

(the C1-smooth condition on u is required here):

1
2
Lu(t) =

∫ t

0
u′(s)I[X(s)>u(s)]ds+

∫ t

0
I[X(s)≤u(s)]dX(s)−min{X(t), u(t)} .

The local time Lu(t) can be also interpreted as the time spent by X close to the curve u up to time

t, in the sense that (see Revuz and Yor, 1999, Ch. VI, Corollary 1.9)

(10) Lu(t) = lim
ε→0

1
ε

∫ t

0
I[u(s)≤X(s)<u(s)+ε]ds .

Therefore, so long as X has a continuous transition probability density ps,t(x, y) (which is the

density of X(t) given X(s) = x), we can write

E[Lu(1)] =
∫ 1

0
p0,s(0, u(s))ds .

For our purpose, we can assume furthermore that X(s) is normally distributed with mean zero

and variance τ(s). Hence the resolution of the minimization problem (9) amounts to solving

min
u

(
1√
2π

∫ 1

0
exp

(
− u(s)2

2 τ(s)

)
ds√
τ(s)

)
subject to the constraint

∫ 1

0
u(t)dt = β .

This minimization problem localizes: using a variation u(s) + εh(s) and differentiating with

respect to ε, we find the condition for extremality to be

u(s)√
τ(s)

exp

−1
2

(
u(s)√
τ(s)

)2
 = κτ(s) ,
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where κ is the variational constant (or Lagrange multiplier) connected to β. (In fact this integral

minimization problem can be solved even if we suppose u to be merely measurable.) There are no

solutions to this equation if κτ(s) > 1/
√
e, just one solution if equality holds, and two solutions

(one above
√
τ(s), one below) if κτ(s) < 1/

√
e. A second variation argument shows that the

minimization problem is solved by the larger solution if any exist, and otherwise we should take

u = 0 (when κτ(s) > 1/
√
e).

Taking ψ(a) to be the larger solution to ψe−ψ
2/2 = a, if solutions exist, we see that the required

minimizing u is given by

(11) u?(s) =


ψ(κτ(s))

√
τ(s) if κτ(s) ≤ 1/

√
e ,

0 otherwise.

The function ψ can be expressed in terms of the so-called ProductLog or Lambert W function, the

analytic solution w(z) of wew = z (Corless et al., 1996). Indeed, selecting an appropriate branch

of ProductLog (using the conventions of Mathematica), we find

ψ(a) =
√
−ProductLog(−1,−a2) for a ≤ 1/

√
e .

When X is the Brownian motion, t(s) = s and the optimal solution u? can be easily computed

(either via mathematical software such as Mathematica or via an equivalent R function, available

from the authors). For this type of functions, the resolution of the original problem then amounts

to the computation of the appropriate constant κ to achieve a proper coverage level. For α = 0.05,

our simulations led to κ = 0.105 (see below for details).

3.2 Numerical results

Before detailing our resolution of the coverage approximation and the corresponding performances

of some classes of solutions, we review some approximation techniques found in the literature. We

denote by P1(u) the probability P{|W (t)| ≤ u(t), t ∈ [0, 1]}.

Since the analytical resolution of the optimisation problem seems to be completely out of reach,

we describe a numerical approach based on a partition t0 = 0 < t1 < t2 < . . . < tn = 1 of

the interval [0, 1] of size n ≥ 1, with δti = ti − ti−1 and βi = u(ti). We will distinguish below

between three types of approximation, even though there exist many other possible approaches in

the literature, like, e.g., polynomial and Poisson approximations, and Girsanov transformations.
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The first type of approximation is based on the approach of Wang and Potzelberger (1997) and

Potzelberger and Wang (2001). These authors show that, for any continuous function u,

P1(u) = lim
n→∞

E[`(W (t1),W (t2), . . . , . . . ,W (tn)]

where `(x1, . . . , xn) is defined by

n∏
i=1

I(−βi<xi<βi)

[
1− exp

[
− 2
δti

(−βi−1 − xi−1)(−βi − xi)
]
− exp

[
− 2
δti

(βi−1 − xi−1)(βi − xi)
]]
.

Using this result, Potzelberger and Wang (2001) derive the following Monte Carlo estimator of

P1(u)

P̂1(u)n,N =
1
N

N∑
j=1

`(Wj(t1),Wj(t2), . . . ,Wj(tn))

where W1, . . . ,WN are N independent standard Brownian motions on [0, 1]. As n and N go to

infinity, P̂1(u)n,N converges almost surely to P1(u). Under the assumptions that the boundary u

is twice continuous differentiable with u′′(0) 6= 0 and u′′(t) = 0 at most in finitely many points

t ∈]0, 1], the authors proposed a special rule for choosing a sequence of “optimal partitions”. Note

that it is also possible to use a crude Monte Carlo method to approximate P1(u), that is to estimate

P1(u) with

˜P1(u)n,N =
1
N

N∑
j=1

n∏
i=0

I{−βi≤Wj(ti)≤βi}.

However, the variance of the Monte Carlo estimator of Potzelberger and Wang (2001) is in-

evitably smaller than the one of a crude Monte Carlo method insofar as `(x1, . . . , xn) ≤ 1 for

all (x1, . . . , xn) ∈ Rn.

The second type of approximation is due to Novikov et al. (1999), based on the representation

P1(u) = E

[
n−1∏
i=0

pi(u|W (ti),W (ti+1))

]
,

where pi(u|x, y) = P(−u(t) < W (t) < u(t), ti ≤ t ≤ ti+1|W (ti) = x,W (ti+1) = y). Let un be the

piecewise linear approximation of u with connecting points (ti, u(ti)), i = 0, . . . , n. Hall (1997)

calculated the conditional distribution of crossing the upper and lower linear boundaries. Using this

result, Novikov et al. (1999) have built a fast algorithm that calculates P1(un). Finally, as un(t)

goes to u(t) uniformly on [0, 1], it follows from the continuity property of probability measures

that lim
n→∞

P1(un) = P1(u). As n tends to infinity, the algorithm of Novikov et al. (1999) gives a

convergent approximation of P1(u).
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Class u(t) minimum
∫ 1
0 u(t)dt

1 a a = 2.242 2.242

2 a+ bt a = 1, b = 1.77 1.885

3 a+ b
√
t a = 0.3, b = 2.35 1.866

? u?(t) κ = 0.105 1.865

Table 1: Optimal solutions for three classes of parametrised boundaries, along with the local time

solution u∗ (the two last lines are based on 5, 000 simulated Brownian paths with partition size

500).

For the third type of approximation, Durbin (1971), Park and Schuurmann (1976), Loader and

Deely (1987) have proposed to use some Volterra integral equations. Various integral equations

involving the distribution of the first exit time from a corridor between two given boundaries have

been published. Based on the discretization of integral equations, Loader and Deely (1987) have

given a numerical solution that is very efficient and we will use this approximation.

In our numerical experiment, besides the solution given by the local time approximation, we

have only considered three classes of functions: the constant class u(t) = a (a > 0), the linear class

u(t) = a + bt (a, b > 0), the square root class u(t) = a + b
√
t (a, b > 0). For each class, we have

derived parameters such that P1(u) = 0.95 and
∫ 1
0 u(t)dt is minimum. While the two first classes

allow for analytical expressions for boundary crossing probabilities, in the case of the third class,

we have used the approximation method of Loader and Deely (1987). Table 1 presents the results

of this numerical experiment. Figure 1 presents 5000 simulated Brownian paths together with the

solutions in each class.

As clear from both Figure 1 and Table 1, the gain reached in increasing the complexity of u is

very marginal: moreover while the local time approximation function u? actually does better that

the approximations studied here, nevertheless the difference is very small. We also ran simulations

for other classes of functions, such as u(t) = a + bt + ct2 + d log(t), with no visible improvement.

We thus propose to use either u? or the function u(t) = 0.3 + 2.35
√
t (which is obviously simpler

to compute) for constructing a confidence region of level 0.95.
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Figure 1: 5000 Brownian paths and functions u such that P1(u) = 0.95, as given by Table 1. The

two last functions in Table 1 are almost identical.

4 Minimal area prediction regions

The construction of prediction regions of level 1−α is very similar to the above, with the difference

that the limiting process is now {W (t) + tU}t. The optimisation problem is thus

min
u≥0

∫ 1

0
u(t)dt

under the constraint that P2(u) = P(−u(t) ≤W (t) + tU ≤ u(t), t ∈ [0, 1]) = 1− α.

Similar difficulties beset the derivation of the optimal bound and we use once more approxi-

mate boundaries to evaluate the boundary-crossing probability, either derived from the local time

representation or by “crude” Monte Carlo methods.

4.1 Local time solution

The local time approximation of Section 3.1 also applies to this setting, in the sense that, for the

modified problem (9), we have an explicit solution given in (11). The difference with the above

section is that, as we are dealing with X(t) = W (t) + tU , we have τ(s) = s(1 + s), and so the
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extremal envelopes are now given by

(12) u?(s) =


ψ(κs(1 + s))

√
s(1 + s) for κs(1 + s) ≤ 1/

√
e ,

0 otherwise,

for varying κ.

Once again, these optimal solutions u? can be computed numerically (for example in Mathe-

matica). By way of example, Figure 2 shows upper and lower envelopes ±u? at κ = 1/20 together

with 100 simulations of the Brownian motion with empirical mean, W (t) + tU .

Figure 2: 100 Brownian/empirical mean trajectories together with a two-sided version of the ex-

tremal u? for κ = 1/20.

For our determination of the 1 − α confidence region, we must thus calibrate κ to achieve a

given coverage. Using the simulation experiment detailed below, we found κ = 0.095 for α = .05.

4.2 Numerical results

Since we do not have a Volterra expression as for the Brownian motion, we use a cruder Monte

Carlo approach to derive coverage probabilities and optimal values of parameterised boundaries.

Once more, we use a partition t0 = 0 < t1 < t2 < . . . < tn = 1 of the interval [0, 1] of size

n ≥ 1, with βi = u(ti). It follows from the continuity property of probability measures that, if

13



un(t) −→ u(t) uniformly on [0, 1], then

lim
n→∞

P2(un) = P2(u) and lim
n→∞

n∏
i=1

P(−βi ≤W (ti) ≤ βi) = P2(u) .

Moreover, the product of the P(−βi ≤W (ti) ≤ βi) can be estimated by a Monte Carlo approxima-

tion, namely

P̂2(u)n,N =
1
N

N∑
j=1

n∏
i=0

I−βi≤Wj(ti)≤βi

where W1, . . . ,WN are N independent standard Brownian motions on [0, 1]. As N goes to infinity,

P̂2(u)n,N converges almost surely to
n∏
i=1

P(−βi ≤ W (ti) ≤ βi) and, as n and N both go to infinity,

P̂2(u)n,N is a convergent estimator of P2(u).

For the same three parameterised classes of functions u(·) as above, we have evaluated the

function u that minimises its subgraph under the coverage constraint P2(u) = 0.95. Table 2

presents the results, along with the corresponding local time solution. Figure 3 plots 5, 000 paths

W (t) + tU against the four functions.

Class h(t) Minimum
∫ 1
0 h(t)dt

1 a a = 2.94 2.94

2 a+ bt a = 1.2, b = 2.1 2.25

3 a+ b
√
t a = 0.1, b = 3.15 2.2

? u?(t) κ = .095 2.189

Table 2: Optimal solutions for three classes of parametrised boundaries, along with the local time

solution u∗, based on 1, 000, 000 simulated Brownian paths with partition size 1000.

Once again, the gain brought by the local time solution or other classes of boundary functions,

like u(t) = a+ bt+ ct2 + d log(t), is quite minimal when compared with the basic function u0(t) =

0.1 + 3.15
√
t. In practice, since u0 is almost indistinguishable from u?, it seems more convenient to

use u0 for the evaluation of Monte Carlo variability.

5 Example

We consider a toy problem when π is N (0, 1) and h(x) = exp(x2/4.01). The reason why we picked

this specific function h is that it provides a borderline for an infinite variance estimator—had we
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Figure 3: 5000 W (t) + tU paths and functions h such that P (h) = 0.95

chosen 4.0 instead of 4.01 in the denominator, the regular Monte Carlo estimator would have had

an infinite variance and the CLT would not apply). The Monte Carlo estimator of π(h) is

δN (1) =
1
n

N∑
i=1

exp
(
X2
i /4.01

)
where X1, . . . , Xn is an iid N (0, 1) sample. The average behaviour of the sequence of δN (t)’s is

illustrated by Figure 4, for 1000 replicas of N = 1000 simulations. Note the interesting feature that

one realisation out of the 1000 replicas takes a huge jump around t = 0.55: this kind of behaviour

is typical of estimators with infinite (or almost infinite) variances. A correct predictive confidence

band should not include this extreme behaviour; however, were we to run a single simulation and

observe this type of jump then the resulting confidence band should be to some extent enlarged.

The repetition of the Monte Carlo sequences also shows a 1/
√
t shape that validates the application

of the CLT.

As noted in Section 2, the use of a point-wise normal confidence interval on the path-wise

simulation is in principle incorrect in terms of coverage. In addition, as shown by Figure 5, it

suffers from the practical defect that the confidence band has boundaries that reflect the estimator

path (with a 1/
√
t range decrease). Moreover, although this particular issue does not arise here,

in the event of several big jumps of the estimator along iterations, it may even occur that the
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Figure 4: 1000 replicas of a sequence of Monte Carlo estimators δN (t) for N = 1000.

confidence band develops discontinuities. Furthermore, when comparing the scale of the band with

Figure 4, which demonstrates a typical range of variation, we can see that it is much too small to

accommodate the variation of the majority of the sequences.

If we now consider Figure 6, based on the same realisation of {δ1000(t)}t∈[0,1] as in Figure 5, the

simultaneous confidence region based on (5) is much more satisfactory in that, while its variations

still track the non-monotonic variation of the estimator sequence, and thus suffers from a lack of

regularity that is inappropriate for a confidence band, the range is wider, as shown in Figure 7,

and thus tends to erase the jumps in the estimator itself.

If we now turn to the most relevant confidence band, as derived in Section 4, namely (8), it

is represented in Figure 8 for the same realization of the Monte Carlo sequence as in Figure 5.

The difficulties of the previous bands have disappeared in that the confidence band is centred at

the final value of the estimate and do not present irregular jumps on their boundary. Intuitively,

this band should be wider than the previous ones, in order to accommodate variations in the whole

sequence but this is not exactly the case, as shown in Figure 9 by the comparison between the three

bands. While (8) leads on average to a wider region, there are occurrences when (5) exceeds the

boundaries of (8); this relates to the defect of (5) concerning discontinuous jumps, as mentioned

above.
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Figure 5: Confidence band at level 0.95 derived from a näıve application of the CLT for one sequence

of Monte Carlo estimators represented by the inner curve.

Figure 6: Confidence band at level 0.95 derived from (5) for the same realisation as in Figure 5.
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Figure 7: Comparison of the confidence bands of Figures 5 (tighter) and 6 (wider).

Figure 8: Confidence band at level 0.95 derived from (5) for the same realisation as Figure 5.
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Figure 9: Comparison of the confidence bands of Figures 5, 6 and 8.

6 Conclusion

It seems to us that this assessment should be used for every Monte Carlo experiment, given that the

bound u has only to be determined once for a confidence level α. Indeed, once we have determined

a proper boundary function u?, available as an R program from the authors, there is no cause for

computational worry since the additional cost is completely negligible. We also stress that the

extension to Markov Chain Monte Carlo settings causes no especial difficulty so long as the same

functional CLT applies.
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