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Abstract

The deviance information criterion (DIC) introduced by Spiegel-
halter et al. (2002) for model assessment and model comparison is di-
rectly inspired by linear and generalised linear models, but it is open
to different possible variations in the setting of missing data mod-
els, depending in particular on whether or not the missing variables
are treated as parameters. In this paper, we reassess the criterion
for such models and compare different DIC constructions, testing the
behaviour of these various extensions in the cases of mixtures of dis-
tributions and random effect models.
Keywords: completion, deviance, DIC, EM algorithm, MAP, model
comparison, mixture model, random effect model.

1 Introduction

When developing their theory of the deviance information criterion (DIC) for
the assessment and comparison of models, Spiegelhalter et al. (2002) mostly
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focussed on the case of generalised linear models, although they concluded
their seminal paper with a discussion of the possibilities of extending this
notion to models like mixtures of distributions. The ensuing discussion in the
Journal of the Royal Statistical Society pointed out the possible difficulties of
defining DIC precisely in these scenarios. In particular, DeIorio and Robert
(2002) described some possible inconsistencies in the definition of a DIC for
mixture models, while Richardson (2002) presented an alternative notion of
DIC, again in the context of mixture models.

The fundamental versatility of the DIC criterion is that, in hierarchical
models, basic notions like parameters and deviance may take several equally
acceptable meanings, with direct consequences for the properties of the cor-
responding DICs. As pointed out in Spiegelhalter et al. (2002), this is not
a problem per se when parameters of interest (or a “focus”) can be identi-
fied but this is not always the case when practitioners compare models. The
diversity of the numerical answers associated with the different focusses is
then a real difficulty of the method. As we will see, these different choices
can produce quite distinct evaluations of the effective dimension pD that is
central to the DIC criterion. (Although this is not in direct connection with
our missing data set-up, nor with the DIC criterion, note that Hodges and
Sargent (2001) also describes the derivation of degrees of freedom in loosely
parameterised models.)

There is thus a need to evaluate and compare the properties of the most
natural choices of DICs: The present paper reassesses the definition and
connection of various DIC criteria for missing data models. In Section 2, we
recall the notions introduced in Spiegelhalter et al. (2002). Section 3 presents
a typology of the possible extensions of DIC for missing data models, while
Section 4 constructs and compares these extensions in random effect models,
and Section 5 does the same for mixtures of distributions. We conclude the
paper with a discussion of the relevance of the various extensions in Section
6.

2 Bayesian measures of complexity and fit

For competing parametric statistical models, f(y|θ), the construction of a
generic model-comparison tool is a difficult problem with a long history.
In particular, the issue of devising a selection criterion that works both as
a measure of fit and as a measure of complexity is quite challenging. In
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this paper, we examine solely the criteria developed in Spiegelhalter et al.
(2002), including, in connection with model complexity, their measure, pD,
of the effective number of parameters in a model. We refer the reader to this
paper, the ensuing discussion and to Hodges and Sargent (2001) for further
references. This quantity is based on a deviance, defined by

D(θ) = −2 log f(y|θ) + 2 log h(y) ,

where h(y) is some fully specified standardizing term which is function of
the data alone. Then the effective dimension pD is defined as

pD = D(θ)−D(θ̃) , (1)

where D(θ) is the posterior mean deviance,

D(θ) = Eθ[−2 log f(y|θ)|y] + 2 log h(y),

which can be regarded as a Bayesian measure of fit, and θ̃ is an estimate
of θ depending on y. The posterior mean θ = E[θ|y] is often a natural
choice for θ̃ but the posterior mode or median can also be justified as an
alternative. Note that pD is completely independent of the choice of the
standardizing h. As explicitly pointed out in Spiegelhalter et al. (2002), the
fact that pD does depend on the choice of the estimate θ̃ and more generaly
on the parameterisation of the model is one of the difficulties of this approach
that can only be solved when there is a clear “focus” on the parameter of
interest in the model. In the event of a global model comparison where no
particular parameterisation enjoys a special position, as for instance in the
comparison of the number of components in a mixture of distributions, there
is no intrinsic definition to the dimension pD.

A corresponding Deviance Information Criterion (DIC) for model com-
parison is advanced by Spiegelhalter et al. (2002) from this construction:

DIC = D(θ) + pD

= D(θ̃) + 2pD (2)

= 2D(θ)−D(θ̃)

= −4Eθ[log f(y|θ)|y] + 2 log f(y|θ̃).
For model comparison, we need to set h(y) = 1, for all models, so we take

D(θ) = −2 log f(y|θ). (3)
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Provided that D(θ) is available in closed form, D(θ) can easily be approx-
imated using an MCMC run by taking the sample mean of the simulated
values of D(θ). (If f(y|θ) is not available in closed form, as is often the
case for missing data models like (4), further simulations can provide a con-
verging approximation or, as we will see below, can be exploited directly in
alternative representations of the likelihood and of the DIC criterion.) When
θ = E[θ|y] is used, D(θ) can also be approximated by plugging in the sample
mean of the simulated values of θ. As pointed out by Spiegelhalter et al.
(2002), this choice of θ̃ ensures that pD is positive when the density is log-
concave in θ, but it is not appropriate when θ is discrete-valued since E[θ|y]
usually fails to take one of these values. Also, the effective dimension pD may
well be negative for models outside the log-concave densities. We will discuss
further the issue of choosing (or not choosing) θ̃ in the following sections.

3 DICs for missing data models

In this section, we describe alternative definitions of DIC in missing data
models, that is, when

f(y|θ) =

∫
f(y, z|θ)dz , (4)

by attempting to write a typology of natural DICs in such settings. Missing
data models thus involve variables z which are non-observed, or missing,
in addition to the observed variables y. There are numerous occurrences
of such models in theoretical and practical Statistics and we refer to Little
and Rubin (1987), McLachlan and Krishnan (1997) and Cappé et al. (2005)
for different accounts of the topic. Whether or not the missing data z are
truly meaningful for the problem is relevant for the construction of the DIC
criterion because the focus of inference may be on the parameter θ, the pair
(θ, z) or on z only, as in classification problems.

The observed data associated with this model will be denoted by y =
(y1, . . . , yn) and the corresponding missing data by z = (z1, . . . , zn). Follow-
ing the EM terminology, the likelihood f(y|θ) is often called the observed
likelihood while f(y, z|θ) is called the complete likelihood. We will use as
illustrations of such models the special cases of random effect and mixture
models in Sections 4 and 5.
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3.1 Observed DICs

A first category of DICs is associated with the observed likelihood, f(y|θ),
under the assumption that it can be computed in closed form (which is for
instance the case for mixture models but does not always hold for hidden
Markov models). While, from (3),

D(θ) = −2Eθ [log f(y|θ)|y]

is clearly and uniquely defined, even though it may require (MCMC) sim-
ulation to be computed approximately, choosing θ̃ is more delicate and the
definition of the second term D(θ̃) in (1) is not unique.

In fact, within missing data models like the mixture model of Section
5, the parameters θ are not always identifiable and the posterior mean θ =
Eθ[θ|y] can then be a very poor estimator. For instance, in the mixture case,
if both prior and likelihood are invariant with respect to the labels of the com-
ponents, all marginals (in the components) are the same, all posterior means
are identical, and the plug-in mixture then collapses to a single-component
mixture (Celeux et al., 2000). As a result,

DIC1 = −4Eθ [log f(y|θ)|y] + 2 log f(y|Eθ [θ|y])

is often not a good choice. For instance, in the mixture case, DIC1 quite
often leads to a negative value for pD. (The reason for this is that, even
under an identifiability constraint, the posterior mean borrows from several
modal regions of the posterior density and ends up with a value that is located
between modes, see also the discussion in Marin et al., 2005.)

A more relevant choice for θ̃ is the posterior mode or modes,

θ̂(y) = arg max
θ

f(θ|y) ,

since this depends on the posterior distribution of the whole vector θ, rather
than on the marginal posterior distributions of its elements as in the mixture
case. This leads to the alternative “observed” DIC

DIC2 = −4Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) .

Recall that, for the K-component mixture problem, there exist a multiple
of K! marginal posterior modes. Note also that, when the prior on θ is
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uniform, so that θ̂(y) is also the maximum likelihood estimator, which can
be computed by the EM algorithm, the corresponding pD,

pD = −2Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) ,

is necessarily positive. However, positivity does not always hold for other
prior distributions, even though it is asymptotically true when the Bayes
estimator is convergent.

When non-identifiability is endemic, as in mixture models, the parame-
terisation by θ of the model f(y|θ) is often not relevant and the inferential
focus is mostly on the density itself. In this setting, a more natural choice
for D(θ̃) is to select an estimator f̂(y) of the density f(y|θ), since this func-
tion is invariant under permutation of the component labels. For instance,
one can use the posterior expectation Eθ [f(y|θ)|y]. (Note that this is also
independent of the representation (4).) In terms of functional estimation,
this approach provides stable evaluations that are superior to the plug-in
estimates f(y|θ̂); furthermore, the density estimator is easily approximated
by an MCMC evaluation. For instance, for a Gaussian mixture with density

f(y|θ) =
K∑

i=1

piφ(y|µi, σ
2
i ),

we have

f̂(y) =
1

m

m∑

l=1

K∑
i=1

p
(l)
i φ(y|µ(l)

i , σ
2(l)
i ) ≈ Eθ[f(y|θ)|y] ,

where φ(y|µi, σ
2
i ) denotes the density of the normal N (µi, σ

2
i ) distribution,

θ = {p, µ, σ2} with µ = (µ1, . . . , µK)t, σ2 = (σ2
1, . . . , σ

2
K)t and p = (p1, . . . , pK)t,

m denotes the number of MCMC simulations and (p
(l)
i , µ

(l)
i , σ

2(l)
i )1≤i≤m is the

result of the l-th MCMC iteration. This is also the MCMC predictive density,
and this leads to another criterion,

DIC3 = −4Eθ [log f(y|θ)|y] + 2 log f̂(y) ,

where f̂(y) =
∏n

i=1 f̂(yi). Note that this is also the proposal of Richardson
(2002) in her discussion of Spiegelhalter et al. (2002). This is quite a sensi-
ble alternative, since the predictive distribution is quite central to Bayesian
inference. (See, for instance, the notion of Bayes factors, which are ratios

of predictives, Robert, 2001.) Note however that the relative values of f̂(y),
for different models, also constitute the “posterior Bayes factors” of Aitkin
(1991) which came under strong criticism in the ensuing discussion.
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3.2 Complete DICs

The missing data structure makes available many alternative representations
of the DIC, by reallocating the positions of the log and of the various ex-
pectations. This is not simply a formal exercise: missing data models offer
a wide variety of interpretations depending on the chosen representation for
the missing data structure.

We can first note that, using the complete likelihood f(y, z|θ), we can
set D(θ) as the posterior expected value (over the missing data) of the joint
deviance,

D(θ) = −2Eθ {EZ [log f(y,Z|θ)|y, θ] |y}
= −2EZ {Eθ [log f(y,Z|θ)|y,Z] |y}
= −2Eθ,Z [log f(y,Z|θ)|y] .

In addition to the difficulty of choosing θ̃, already encountered in the previous
section, we now have the problem of defining the fixed point deviance, D(θ̃),
in connection with the missing data structure. Using the same motivations as
for the EM algorithm (McLachlan and Krishnan, 1997), we can first define
a complete data DIC, by defining the complete data estimator Eθ[θ|y, z],
which does not suffer from identifiability problems since the components are
identified by z, and then obtain DIC for the complete model as

DIC(y, z) = −4Eθ [log f(y, z|θ)|y, z] + 2 log f(y, z|Eθ[θ|y, z]) .

As in the EM algorithm, we can then integrate this quantity to define

DIC4 = EZ [DIC(y,Z)|y]

= −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ [log f(y,Z|Eθ[θ|y,Z])|y] .

This requires the computation of a posterior expectation for each value of Z,
but this is usually not difficult as the complete model is often chosen for its
simplicity.

A second solution that integrates the notion of “focus” defended in Section
2.1 of Spiegelhalter et al. (2002) is to consider Z as an additional parameter
(of interest) rather than as a missing variable and to use a pivotal quantity
D(θ̃) based on estimates of both z and θ; that is, informally,

D(θ̃) = −2 log f(y, ẑ(y)|θ̂(y)) .
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Once again, we must stress that, in missing data problems like the mixture
model, the choices for these estimators are quite delicate as the expectations
of Z, given y, are poor estimators, being for instance all identical under
exchangeable priors (see Section 5.2) and, besides, most often taking values
outside the support of Z, as in the mixture case. For this purpose, the
only relevant estimator (ẑ(y), θ̂(y)) in this setting seems thus to be the joint
maximum a posteriori (MAP) estimator of the pair (z, θ), given y, unless
one is ready to define a proper loss function as in Celeux et al. (2000) which
somehow contradicts the initial purpose of DIC since a loss function should
also integrate the model choice aspects in that case. Note that, in the event
of non-identifiability or simply multimodality, the MAP estimates are not
unique but they are all equivalent. In the case of K-component mixtures,
choosing one MAP estimate is then equivalent to selecting one of the K!
possible component orderings.

Given that this estimator is not available in closed form, we can choose
to estimate it by using the best–in terms of the values of the posterior dis-
tribution proportional to f(y, z|θ)f(θ)–pair that arose during the MCMC
iterations. Note that the missing data structure is usually chosen so that
the joint distribution f(y, z|θ) is available in closed form. Thus, even if the
MAP estimate cannot be derived analytically, the values of f(y, z|θ)f(θ) at
the simulated pairs (z, θ) can be computed.

The DIC corresponding to this analysis is then

DIC5 = −4Eθ,Z [log f(y,Z|θ)|y] + 2 log f(y, ẑ(y)|θ̂(y)) ,

which, barring a poor MCMC approximation to the MAP estimate, should
lead to a positive effective dimension,

pD5 = −2Eθ,Z [log f(y,Z|θ)|y] + 2 log f(y, ẑ(y)|θ̂(y)) ,

given that, under a flat prior, the second part of DIC5 is the maximum of
the function integrated in the first part over θ and Z. Note however that
DIC5 is somewhat inconsistent in the way it takes z into account. The
posterior deviance, that is, the first part of DIC5, incorporates z as missing
variables while D(θ̃) and therefore pD5 regard z as an additional parameter
(see Sections 4 and 5 for illustrations).

Another interpretation of the posterior deviance and a corresponding DIC
can be directly derived from the EM analysis of the missing data model.
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Recall (Dempster et al., 1977; McLachlan and Krishnan, 1997; Robert and
Casella, 2001, §5.3.3) that the core function of the EM algorithm is

Q(θ|y, θ0) = EZ [log f(y,Z|θ)|y, θ0] ,

where θ0 represents the “current” value of θ, and Q(θ|y, θ0) is maximised
over θ in the “M” step of the algorithm, to provide the following “current”
value θ1. The function Q is usually easily computable, as for instance in the
mixture case. Therefore, another natural choice for D(θ̃) is to take

D(θ̃) = −2Q(θ̂(y)|y, θ̂(y)) = −2EZ[log f(y,Z|θ̂(y))|y, θ̂(y)] ,

where θ̂(y) is an estimator of θ based on f(θ|y), such as the marginal MAP
estimator, or, maybe more naturally, a fixed point of Q, such as an EM
maximum likelihood estimate. This choice leads to a corresponding DIC

DIC6 = −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ[log f(y,Z|θ̂(y))|y, θ̂(y)] .

As for DIC4, this strategy is consistent in the way it regards Z as missing
information rather than as an extra parameter, but it is not guaranteed
to lead to a positive effective dimension pD6, as the maximum likelihood
estimator gives the maximum of

logEZ [f(y,Z|θ)|y, θ]

rather than of
EZ [log f(y,Z|θ)|y, θ]

the latter of which is smaller since log is a concave function. An alternative
to the maximum likelihood estimator would be to choose θ̂(y) to maximise
Q(θ|y, θ), which represents a more challenging problem, not addressed by
EM unfortunately.

3.3 Conditional DICs

A third category of constructions of DICs in the context of missing variable
models is to adopt a different inferential focus and consider z as an addi-
tional parameter. The DIC can then be based on the conditional likelihood,
f(y|z, θ). This approach has obvious asymptotic and coherency difficulties,
as discussed in previous literature (Marriott, 1975; Bryant and Williamson,
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1978; Little and Rubin, 1983), but it is computationally feasible and can thus
be compared with the other solutions above. (Note in addition that DIC5

is situated between the complete and the conditional approaches in that it
uses the complete likelihood but similarly estimates z. As we will see below,
it appears quite naturaly as an extension of DIC7.)

A natural solution in this framework is then to apply the original defini-
tion of DIC to the conditional distribution, which leads to

DIC7 = −4Eθ,Z [log f(y|Z, θ)|y] + 2 log f(y|ẑ(y), θ̂(y)) ,

where again the pair (z, θ) is estimated by the joint MAP estimator, (ẑ(y), θ̂(y))
approximated by MCMC. This approach leads to a positive effective dimen-
sion pD7, under a flat prior for z and θ, for the same reasons as for DIC5.

Note that there is a strong connection between DIC5 and DIC7 in that

DIC5 = DIC7 +
{
−4Eθ,Z [log f(Z|y, θ)|y] + 2 log f(ẑ(y)|y, θ̂(y)) ,

}

the additional term being similar to the difference between Q(θ|y, θ0) and the
observed log-likelihood in the EM algorithm. The difference between DIC5

and DIC7 is not necessarily positive even though it appears as a DIC on
the conditional distribution, given that D(θ̃) is evaluated at the joint MAP
estimate.

An alternative solution is to separate θ from Z, taking once more the
missing data perspective, as in DIC4; that is, to condition first on Z and
then integrate over Z conditional on y, giving

DIC8 = −4Eθ,Z [log f(y|Z, θ)|y] + 2EZ

[
log f(y|Z, θ̂(y,Z))|y

]
,

where θ̂(y, z) is an estimator of θ based on f(y, z|θ), such as the posterior
mean (which is now a correct estimator because it is based on the joint distri-
bution) or the MAP estimator of θ (conditional on both y and z). Here Z is
dealt with as missing variables rather than as an additional parameter. The
simulations in Section 5.5 illustrate that DIC8 actually behaves differently
from DIC7 when estimating the complexity through pD.

4 Random effect models

In this section we list the various DICs in the context of a simple random
effect model. Some of the details of the calculations are not given here but are
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available from the authors. The model was discussed in Spiegelhalter et al.
(2002), but here we set it up as a missing data problem, with the random
effects regarded as missing values, because computations are feasible in closed
form for this model and allow for a better comparison of the different DICs.
More specifically, we focus on the way these criteria account for complexity,
i.e. on the pDs, since there is no real model-selection issue in this setting.

Suppose therefore that, for i = 1, . . . , p,

yi = zi + εi,

where zi ∼ N (θ, λ−1) and εi ∼ N (0, τ−1
i ), with all random variables inde-

pendent and with λ and the τi’s known. We use a flat prior for θ. Then

log f(y, z|θ) = log f(y|z) + log f(z|θ)
= −p log 2π +

1

2

∑
i

log (λτi)− 1

2

∑
i

τi(yi − zi)
2

−1

2
λ

∑
i

(zi − θ)2.

Marginally, yi ∼ N (θ, τ−1
i + λ−1) ∼ N (θ, 1/(λρi)), where ρi = τi/(λ + τi).

Thus

log f(y|θ) = −p

2
log 2π +

1

2

∑
i

log (λρi)− λ

2

∑
i

ρi(yi − θ)2.

4.1 Observed DICs

For this example

θ|y ∼ N
(∑

i ρiyi∑
i ρi

,
1

λ
∑

i ρi

)
,

and therefore the posterior mean and mode of θ, given y, are both equal to
θ̂(y) =

∑
i ρiyi/

∑
i ρi. Thus

DIC1 = DIC2 = p log 2π −
∑

i

log(λρi) + λ
∑

i

ρi(yi − θ̂(y))2 + 2.

Furthermore, pD1 = pD2 = 1.
For DIC3 it turns out that

f̂(y) = Eθ[f(y|θ)|y]

= 2−1/2 f(y|θ̂(y)), (5)

11



so that
DIC3 = DIC1 − log 2

and pD3 = 1− log 2.
Surprisingly, the relationship (5) is valid even though both f(·|θ̂(y)) and

f̂(·) are densities. Indeed, this identity only holds for the particular value y
corresponding to the observations. For other values of z, f̂(z) is not equal to
f(z|θ̂(y))/

√
2. Note also that it makes sense that pD3 is smaller than pD2 in

that the predictive distribution is not necessarily of the same complexity as
the sum of the dimensions of its parameters.

4.2 Complete DICs

For the random effect model,

D(θ) = −2Eθ,Z [log f(y,Z|θ)|y]

= −2EZ {Eθ [log f(y,Z|θ)|y,Z] |y}
= 2p log 2π −

∑
i

log(λτi)

+EZ

[∑
i

τi(yi − zi)
2 + λ

∑
i

(zi − z̄)2 + 1|y
]

= −2EZ [log f(y,Z|Eθ[θ|y,Z])|y] + 1,

since θ|y, z ∼ N (z, 1
λp

). As a result, pD4 = 1.
After further detailed calculations we obtain

DIC4 = 2p log 2π −
∑

i

log(λτi) +
∑

i

λρi(1− ρi)(yi − θ̂(y))2

+λ
∑

i

ẑ2
i − λp θ̂(y)2 + 2 + p

= DIC2 + p log 2π + p +
∑

i

log
ρi

τi

.

We also obtain pD5 = 1 + p, pD6 = 1,

DIC5 = DIC4 + p,

and
DIC6 = DIC5 − p = DIC4.
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The value of pD5 is not surprising since, in DIC5, z is regarded as an
extra parameter of dimension p. This is not the case in DIC6 since, in the
computation of D(θ̃), z is then treated as missing variables.

4.3 Conditional DICs and further remarks

DIC7 and DIC8 involve f(y|z, θ). In the random effect model, this quantity
does not depend on parameter θ so that computing the pDs and therefore
the DICs does not really make sense. For instance, pD8 would be 0 and pD7,
although different from 0, because z is considered as an additional parameter,
would not take θ into account either (unless indirectly through z).

Note however that

DIC7 = p log 2π −
∑

i

log τi + λ
∑

i

ρi(1− ρi)(yi − θ̂(y))2

+2[
∑

r

ρr + {
∑

r

ρr(1− ρr)}/(
∑

r

ρr)],

which appears at the end of Section 2.5 of Spiegelhalter et al. (2002), corre-
sponding to a ‘change of focus’.

The DICs (DIC1,2,4,6) leading to the same measure of complexity through
pD = 1 but to different posterior deviances show how the latter can incor-
porate an additional penalty by measuring the amount of missing informa-
tion, corresponding to z, in DIC4 and DIC6. DIC5 incorporates the miss-
ing information in the posterior deviance while pD5 regards z as an extra
p-dimensional parameter (pD5 = 1 + p). This illustrates the unsatisfactory
inconsistency in the way DIC5 takes z into account, as pointed out in Section
3.2.

5 Mixtures of distributions

As suggested in Spiegelhalter et al. (2002) and detailed in the ensuing discus-
sion, an archetypical example of a missing data model is the K-component
normal mixture in which

f(y|θ) =
K∑

j=1

pjφ(y|µj, σ
2
j ),

K∑
j=1

pj = 1 ,
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with notation as defined in Section 3.1. Note at this point that, while mix-
tures can be easily handled by winBUGS 1.4, the use of DIC for these models
is not possible in the current version (see Spiegelhalter et al., 2004).

The observed likelihood of a mixture is

f(y|θ) =
n∏

i=1

K∑
j=1

pjφ(yi|µj, σ
2
j ) .

This model can be interpreted as a missing data model problem if we in-
troduce the membership variables z = (z1, . . . , zn), a set of K-dimensional
indicator vectors, denoted by zi = {zi1, . . . , ziK} ∈ {0, 1}K , so that zij = 1
if and only if yi is generated from the normal distribution φ(.|µj, σ

2
j ), condi-

tional on zi, and P (Zij = 1) = pj. The corresponding complete likelihood is
then

f(y, z|θ) =
n∏

i=1

K∏
j=1

{
pjφ(yi|µj, σ

2
j )

}zij . (6)

5.1 Observed DICs

Since f(y|θ) is available in closed form, the missing data z can be ignored
and the expressions (2) and (3) for the deviance and DIC can be computed
using m simulated values θ(1), . . . , θ(m) from an MCMC run. (We refer the
reader to Celeux et al. (2000) and Marin et al. (2005) for details of the now-
standard implementation of an MCMC algorithm in mixture settings.) The
first term of DIC1, DIC2 and DIC3 is therefore approximated by an MCMC
algorithm as

D(θ) ≈ − 2

m

m∑

l=1

log f(y|θ(l))

= − 2

m

m∑

l=1

n∑
i=1

log

{
K∑

j=1

p
(l)
j φ(yi|µ(l)

j , σ
2(l)
j )

}
,

where m is the number of iterations and (p
(l)
j , µ

(l)
j , σ

2(l)
j )1≤j≤k are the simulated

values of the parameters.
For DIC1, the posterior means of the parameters are computed as the

MCMC sample means of the simulated values of θ, but, as mentioned in
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Section 3.1 and further discussed in Celeux et al. (2000), these estimators
are not meaningful if no identifiability constraint is imposed on the model
(see also Stephens, 2000), and even then they often lead to negative pD’s. For
instance, for the Galaxy dataset (Roeder, 1990) discussed below in Section 5.5,
we get pD1 equal to −1.8, 5.0,−77.7,−69.1,−82.9,−65.5, for K = 2, . . . , 7,
respectively, using 5000 iterations of the Gibbs sampler. In view of this
considerable drawback, the DIC1 criterion is not to be considered further for
this model.

5.2 Complete DICs

The first terms of DIC4, DIC5 and DIC6 are all identical. In view of this,
we can use the same MCMC algorithm as before to come up with an ap-
proximation to Eθ,Z [log f(y,Z|θ)|y], except that we also need to simulate
the z’s.

Recall that Eθ,Z [log f(y,Z|θ)|y] = Eθ {EZ [log f(y,Z|θ)|y, θ] |y} (Section
3.2). Given that, for mixture models, EZ[log f(y,Z|θ)|y, θ] is available in
closed form as

EZ[log f(y,Z|θ)|y, θ] =
n∑

i=1

K∑
j=1

P (Zij = 1|θ,y) log(pjφ(yi|µj, σ
2
j )) ,

with

P (Zij = 1|θ,y) =
pjφ(yi|µj, σ

2
j )∑K

k=1 pkφ(yi|µk, σ2
k)

def
= tij(y, θ) ,

this approximation is obtained from the MCMC output θ(1), . . . , θ(m) as

1

m

m∑

l=1

n∑
i=1

K∑
j=1

tij(y, θ(l)) log{p(l)
j φ(yi|µ(l)

j , σ
2(l)
j )} . (7)

Then the second term in DIC4,

2EZ[log f(y,Z|Eθ[θ|y, z]|y] ,

can be approximated by

2

m

m∑

l=1

n∑
i=1

K∑
j=1

z
(l)
ij log{p(l)

j φ(yi|µ(l)
j , σ

2(l)
j )} (8)
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where θ
(l)

= θ(y, z(l)) = E[θ|y, z(l)], which can be computed exactly, as shown
below, using standard results in Bayesian analysis (Robert, 2001). The prior
on θ is assumed to be a product of conjugate densities,

f(θ) = f(p)
K∏

j=1

f(µj, σj) ,

where f(p) is a Dirichlet density D(. |α1, . . . , αK), f(µj|σj) is a normal den-
sity φ(. |ξj, σ

2
j /nj) and f(σ2

j ) is an inverse gamma density IG(. |νj/2, s
2
j/2).

The quantities α1, . . . , αK , ξj, nj, νj and s2
j are fixed hyperparameters. It

follows that

p̄
(l)
j = Eθ[pj|y, z(l)] =

{
αj + m

(l)
j

} / K∑

k=1

αk + n

µ̄
(l)
j = Eθ[µj|y, z(l)] =

{
njξj + m

(l)
j µ̂

(l)
j

} /
(nj + m

(l)
j )

σ̄
2(l)
j = Eθ[σ

2
j |y, z(l)] =

{
s2

j + ŝ
2(l)
j +

njm
(l)
j

nj + m
(l)
j

(µ̂
(l)
j − ξj)

2

} /
(νj + m

(l)
j − 2),

with

m
(l)
j =

n∑
i=1

z
(l)
ij , µ̂

(l)
j =

1

m
(l)
j

n∑
i=1

z
(l)
ij yi , ŝ

2(l)
j =

n∑
i=1

z
(l)
ij (yi − µ̂

(l)
j )2 ,

and with the z(l) = (z
(l)
1 , . . . , z

(l)
n ) simulated at the `th iteration of the MCMC

algorithm.
If we use approximation (7), the DIC criterion is then

DIC4 ≈ − 4

m

m∑

l=1

n∑
i=1

K∑
j=1

tij(y, θ(l)) log{p(l)
j φ(yi|µ(l)

j , σ
2(l)
j )}

+
2

m

m∑

l=1

n∑
i=1

K∑
j=1

z
(l)
ij log{p(l)

j φ(yi|µ(l)
j , σ

2(l)
j )} .

Similar formulae apply for DIC5, with the central deviance D(θ) being based
instead on the (joint) MAP estimator.
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In the case of DIC6, the central deviance also requires less computation,
since it is based on an estimate of θ that does not depend on z. We then
obtain

− 4

m

m∑

l=1

n∑
i=1

K∑
j=1

tij(y, θ(l)) log(p
(l)
j φ(yi | µ(l)

j , σ
2(l)
j ))

+ 2
n∑

i=1

K∑
j=1

tij(y, θ̄) log(p̄jφ(yi | µ̄j, σ̄
2
j )),

as an approximation to DIC6.

5.3 Conditional DICs

Since the conditional likelihood f(y|z, θ) is available, we can also use criteria
DIC7 and DIC8. The first term can be approximated in a similar fashion to
the previous section, namely as

D(Z, θ) ≈ − 2

m

m∑

l=1

n∑
i=1

K∑
j=1

tij(y, θ(l)) log φ(yi|µ(l)
j , σ

2(l)
j ) .

The second term of DIC7, D(z, θ), is readily obtained, while the computations
for DIC8 of

EZ[log f(y|Z, θ̂(y,Z))|y]

are very similar to those proposed above for the approximation of DIC6.
Note however that the weights pj are no longer part of the DIC factor,

except through the posterior weights tij, since f(y|z, θ) does not depend on
p.

5.4 A relationship between DIC2 and DIC4

We have

DIC2 = −4Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) ,

where θ̂(y) denotes a posterior mode of θ, and

DIC4 = −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ [log f(y,Z|Eθ[θ|y,Z])|y] .
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We can write

Eθ,Z [log f(y,Z|θ)|y] = Eθ [EZ {log f(y,Z|θ)|y, θ} |y]

= Eθ [EZ {log f(y|θ)|y, θ} |y]

+Eθ [EZ {log f(Z|y, θ)|y, θ} |y] .

Then

Eθ,Z [log f(y,Z|θ)|y] = Eθ [log f(y|θ)|y)]− Eθ [Ent {f(Z|y, θ)} |y] , (9)

where the entropy,

Ent {f(Z|y, θ)} = −EZ {log f(Z|y, θ)|y, θ} > 0

is a measure of the mixture overlap. When the mixture components are well
separated this entropy term is near 0 and it is far from 0 when the mixture
components are poorly separated.

It follows that

DIC4 = DIC2 + 4Eθ [Ent {f(Z|y, θ)} |y]

+2EZ [log f(y,Z|Eθ[θ|y,Z])|y]− 2 log f(y|θ̂(y),

Now, we assume that

EZ [log f(y,Z|E[θ|y,Z])|y] ≈ EZ

[
log f(y,Z|θ̂(y))|y

]
.

This approximation should be valid provided that

E[θ|y, ẑ(y)] = θ̂(y)

where

ẑ(y) = arg max
z

f(z|y) .

The last two terms can be further written as

2EZ [log f(y,Z|Eθ[θ|y,Z])|y]− 2 log f(y|θ̂(y) ≈
2EZ

[
log f(Z|y, θ̂(y))|y

]
.
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Then

Eθ [Ent {f(Z|y, θ)} |y] = −Eθ [EZ {log f(Z|y, θ)|y, θ} |y]

= −Eθ,Z [log f(Z|y, θ)|y]

≈ −EZ

[
log f(Z|y, θ̂(y))|y

]
.

The last approximation should be reasonable when the posterior for θ given
y is sufficiently concentrated around its mode.

We therefore have

DIC4 ≈ DIC2 + 2Eθ [Ent {f(Z|y, θ)} |y] , (10)

from which it follows that DIC4 > DIC2 and that the difference between
the two criteria is twice the posterior mean of the mixture entropy. This
inequality can be verified in the experiments that follow. The important
point to note about this inequality is that DIC4 and DIC2 are of different
natures, with DIC4 penalizing poorly separated mixtures. Note also that
van der Linde (2004) provides an alternative entry to DIC via entropy and
information representations, although her paper is focussed on variable selec-
tion. (Using the Fisher information in the context of mixtures is also quite
challenging (McLachlan and Krishnan, 1997).)

5.5 A numerical comparison

When calculating the various DICs for the Galaxy dataset (Roeder, 1990), now
used in most papers on mixture estimation, we obtain the results presented
in Table 1. As one can see, DIC5 and DIC6 do not behave satisfactorily: the
former leads to excessively large and non-increasing pD’s, presumably because
of its inconsistency in dealing with Z and to poor MCMC approximations
to the MAP estimates. The results from DIC6 are not reliable because of
computational problems in the computation of the marginal MAP estimates.
DIC7 leads to larger pD’s too, presumably as a side effect of incorporating
Z as a parameter, whereas DIC8 behaves satisfactorily with respect to pD,
considering that for a K-component mixture the number of parameters is
3K−1. Finally, note that all DICs indicate K = 3 as the appropriate number
of components. In addition, the effective dimension for DIC3 stabilises after
K = 3, indicating that the extra components do not greatly contribute to
the deviance of the model, which may not be so appropriate. The same is
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observed for DIC4 to a lesser extent. DIC2 gives reasonable results until
K = 4. The subsequent degradation for K = 5 and K = 6 may come from
the instability in the plug-in estimate f(y|θ̂(y)). The adequacy of the plug-in
estimates is shown in Figures 1 and 2.
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Figure 1: Galaxy dataset of 82 observations with K = 2 components fitted:
average density, plug-in density with mean parameters, plug-in density with
marginal MAP parameters, and plug-in density with joint MAP parameters,
The number of iterations is 10,000 (burn-in) plus 10,000 (main).

We also analysed a dataset of 146 observations simulated from the normal
mixture

0.288N (0, .22) + 0.260N (−1.5, .52) + 0.171N (2.2, 3.42) + 0.281N (3.3, .52) .

The simulation results are available in Table 3. Figure 3 represents the
corresponding estimates after 20, 000 MCMC iterations for K = 2. For this
number of components, the differences between the estimates are negligible.
The same applies to Figure 3, for K = 3. The differences start to appear
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Figure 2: Galaxy dataset of 82 observations with K = 3, 4, 5, 6 components
fitted: average density, plug-in density with average parameters, plug-in den-
sity with marginal MAP parameters, and plug-in density with joint MAP pa-
rameters. The number of iterations is 10,000 (burn-in) plus 10,000 (main).
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Figure 3: Simulated dataset of 146 observations with K = 2, 3, 4, 5, 6, 7 com-
ponents fitted: average density (gold and full), plug-in density with average
parameters (tomato and dots), plug-in density with marginal MAP parame-
ters (forest green and dots-and-dashes), and plug-in density with joint MAP
parameters (chocolate and dashes). The number of iterations is 10,000 (burn-
in) plus 10,000 (main).
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DIC2 DIC3 DIC4 DIC5 DIC6 DIC7 DIC8

K (pD2) (pD3) (pD4) (pD5) (pD6) (pD7) (pD8)
2 453 451 502 705 501 417 410

(5.56) (3.66) (5.50) (207.88) (4.48) (11.07) (4.09)
3 440 436 461 622 471 378 372

(9.23) (4.94) (6.40) (167.28) (15.80) (13.59) (7.43)
4 446 439 473 649 482 388 382

(11.58) (5.41) (7.52) (183.48) (16.51) (17.47) (11.37)
5 447 442 485 658 511 395 390

(10.80) (5.48) (7.58) (180.73) (33.29) (20.00) (15.15)
6 449 444 494 676 532 407 398

(11.26) (5.49) (8.49) (191.10) (46.83) (28.23) (19.34)
7 460 446 508 700 571 425 409

(19.26) (5.83) (8.93) (200.35) (71.26) (40.51) (24.57)

Table 1: Results for the Galaxy dataset and 20,000 MCMC simulations: ob-
served, complete and conditional DICs and corresponding effective dimen-
sions pD.

for K = 4 in Figure 3. Since the correct number of components is indeed
4, we compare the various estimates with the true values in Table 2. Figure
3 shows larger differences for K = 5, K = 6 and K = 7. Note that, after
K = 4, the predictive density hardly changes. The same phenomenon occurs
in Figure 2 for the Galaxy dataset.

Turning to Table 3, we see that DIC2 and DIC3 behave similarly as for
the galaxy dataset, except that pD3 is decreasing from K = 3 and pD2 from
K = 5. DIC5 and DIC6 are not satisfactory, since they are producing negative
pD’s. (For DIC5, this is not inconsistent with the remark on its positivity
in Section 3.2 since for the mixture example the prior is not flat.) DIC7

produces non-increasing and highly fluctuating pD’s. Only DIC4 and DIC8

give reasonable pD’s close to 3K− 1 with DIC4 selecting K = 3 (with K = 4
being a close second-best choice) while DIC8 is selecting K = 7. Note that
DIC5 and DIC6 select the right number of components! After 10, 000 more
MCMC iterations, we observed that DIC5 and DIC6 were still selecting K =
4 with negative pD’s, DIC4 was selecting K = 4 too and the others were
selecting K = 7.
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p1 p2 p3 p4 µ1 µ2 µ3 µ4 σ2
1 σ2

2 σ2
3 σ2

4

True .26 .29 .17 .28 -1.5 0 2.2 3.3 .25 .04 11.6 .25
Map .22 .39 .37 .027 -1.38 -.13 3.30 7.02 .09 .13 .53 1.64
Mean .23 .35 .35 .061 -1.27 -.02 3.19 6.33 .17 .14 .56 2.99
Mmap .21 .34 .14 .31 -1.35 -.08 3.12 3.46 .13 .11 7.04 .38

Table 2: Estimation results for the simulated dataset with 146 observations,
K = 4 and 10, 000 MCMC simulations.

6 Conclusion

This paper has shown that the deviance information criterion of Spiegelhalter
et al. (2002) and the corresponding effective dimension allow for a wide range
of interpretations and extensions outside exponential families, as was already
apparent from the published discussion of the paper. What we have found
in addition through theoretical and experimental studies is that some of
these extensions, while as “natural” as the others, are simply not adequate
for evaluating the complexity and fit of a model, either because they give
negative effective dimensions or because they exhibit too much variability
from one model to the next. While Spiegelhalter et al. (2002) argue that
negative pD’s are indicative of a possibly poor fit between the model and the
data, there is no explanation of that kind in our cases: for the same data
and the same model, some DICs are associated with positive pDs and others
are not.

Among the various criteria, DIC3 and DIC4 stand out as being the most
reliable of the DICs we studied: they are more resistant to poor estimates
in that DIC3 does not depend on estimates (in the classical sense) and DIC4

relies on a conditional estimate that gets averaged over iterations. However,
the behaviour of DIC3 in terms of the corresponding pD is questionable. If
one of these two DICs needs to be picked out as the DIC for missing data
models, it is undoubtedly DIC4, as it builds on the missing data structure
rather naturally, starting from the complete DIC and integrating over the
missing variables. However, DIC4 is not invariant to the choice of Z, whereas
DIC3 is. This DIC takes into account the missing data structure but it favors
models minimizing the missing information (as shown in Section 5.4). While
a sensible choice and focussing on the missing data structure, DIC4 does not
necessarily lead to the most suitable model. For instance, in the mixture case,
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DIC2 DIC3 DIC4 DIC5 DIC6 DIC7 DIC8

K (pD2) (pD3) (pD4) (pD5) (pD6) (pD7) (pD8)
2 581 582 598 579 602 409 398

(5.10) (6.25) (5.12) (-13.48) (9.20) (15.73) (4.13)
3 554 557 569 481 584 317 319

(11.44) (15.08) (6.76) (-81.67) (21.56) (7.23) (8.42)
4 539 534 572 393 541 260 228

(17.0) (11.4) (9.1) (-170.2) (-21.8) (42.6) (10.0)
5 540 529 610 432 657 280 219

(21.6) (11.1) (12.0) (-165.7) (59.3) (74.7) (13.4)
6 537 527 653 486 730 251 215

(19.6) (10.3) (16.4) (-150.9) (93.0) (52.8) (16.7)
7 534 526 687 550 739 248 210

(17.86) (9.84) (20.73) (-116.62) (72.32) (58.54) (20.12)

Table 3: Results for the simulated dataset with 146 observations and 20, 000
MCMC simulations: observed, complete and conditional DICs (first line) and
corresponding effective dimensions pD (second line).

it chooses the mixture model with the cluster structure for which there is the
greatest evidence, and this model can be different from the most relevant
model. Nonetheless, DICs can be seen as a Bayesian version of AIC and, as
pointed out by several discussants in Spiegelhalter et al. (2002), they may
underpenalize model complexity: DIC4 can therefore be expected to reduce
this tendency in a sensible way.

The fact that DIC7 may produce increasing pDs for increasing complexity
is not very surprising, but it points out a drawback with this kind of criterion,
because considering Z as an additional parameter makes the (conditional)
model too adaptive to be well-discriminating. Similarly, DIC8 is not very
discriminating but it may warrant further investigation: it is rather stable
for varying Ks and it leads to pD values close to the number of parameters
in the model, at least in the case of the mixture model.
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